Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 439
Filtrar
1.
Biochem Biophys Res Commun ; 644: 155-161, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36652767

RESUMEN

Denervated skeletal muscles show decreased Akt activity and phosphorylation, resulting in atrophy. Akt inhibits downstream transcription of atrophy-associated ubiquitin ligases like muscle ring-finger protein 1 (MuRF-1). In addition, reduced Akt signaling contributes to aberrant protein synthesis in muscles. In ALS mice, we recently found that carboxyl-terminator modulator protein (CTMP) expression is increased and correlated with reduced Akt signaling in atrophic skeletal muscle. CTMP has also been implicated in promoting muscle degeneration and catabolism in an in vitro muscle atrophy model. The present study examined whether sciatic nerve injury (SNI) stimulated CTMP expression in denervated skeletal muscle during muscle atrophy. We hypothesized that CTMP deficiency would reduce neurogenic atrophy and reverse Akt signaling downregulation. Compared to the unaffected contralateral muscle, wild-type (WT) gastrocnemius muscle had a significant increase in CTMP (p < 0.05). Furthermore, denervated CTMP knockout (CTMP-KO) gastrocnemius weighed more than WT muscle (p < 0.05). Denervated CTMP-KO gastrocnemius also showed higher Akt and downstream glycogen synthase kinase 3ß (GSK3ß) phosphorylation compared to WT muscle (p < 0.05) as well as ribosomal proteins S6 and 4E-BP1 phosphorylation (p < 0.001 and p < 0.05, respectively). Moreover, CTMP-KO mice showed significantly lower levels of E3 ubiquitin ligase MuRF-1 and myostatin than WT muscle (p < 0.05). Our findings suggest that CTMP is essential to muscle atrophy after denervation and it may act by reducing Akt signaling, protein synthesis, and increasing myocellular catabolism.


Asunto(s)
Atrofia Muscular , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Desnervación , Proteínas Portadoras/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(36): 22080-22089, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32820071

RESUMEN

Nonshivering thermogenesis occurs in brown adipose tissue to generate heat in response to cold ambient temperatures. Thioesterase superfamily member 1 (Them1) is transcriptionally up-regulated in brown adipose tissue upon exposure to the cold and suppresses thermogenesis in order to conserve energy reserves. It hydrolyzes long-chain fatty acyl-CoAs that are derived from lipid droplets, preventing their use as fuel for thermogenesis. In addition to its enzymatic domains, Them1 contains a C-terminal StAR-related lipid transfer (START) domain with unknown ligand or function. By complementary biophysical approaches, we show that the START domain binds to long-chain fatty acids, products of Them1's enzymatic reaction, as well as lysophosphatidylcholine (LPC), lipids shown to activate thermogenesis in brown adipocytes. Certain fatty acids stabilize the START domain and allosterically enhance Them1 catalysis of acyl-CoA, whereas 18:1 LPC destabilizes and inhibits activity, which we verify in cell culture. Additionally, we demonstrate that the START domain functions to localize Them1 near lipid droplets. These findings define the role of the START domain as a lipid sensor that allosterically regulates Them1 activity and spatially localizes it in proximity to the lipid droplet.


Asunto(s)
Ácidos Grasos/metabolismo , Lisofosfatidilcolinas/metabolismo , Palmitoil-CoA Hidrolasa/química , Palmitoil-CoA Hidrolasa/metabolismo , Acilcoenzima A/metabolismo , Tejido Adiposo Pardo/enzimología , Tejido Adiposo Pardo/metabolismo , Regulación Alostérica , Ácidos Grasos/química , Humanos , Cinética , Gotas Lipídicas/enzimología , Gotas Lipídicas/metabolismo , Lisofosfatidilcolinas/química , Palmitoil-CoA Hidrolasa/genética , Dominios Proteicos
3.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768628

RESUMEN

Activating transcription factor 3 (ATF3) is a stress-induced transcription factor and a familiar neuronal marker for nerve injury. This factor has been shown to protect neurons from hypoxic insult in vitro by suppressing carboxyl-terminal modulator protein (CTMP) transcription, and indirectly activating the anti-apoptotic Akt/PKB cascade. Despite prior studies in vitro, whether this neuroprotective pathway also exists in the brain in vivo after ischemic insult remains to be determined. In the present study, we showed a rapid and marked induction of ATF3 mRNA throughout ischemia-reperfusion in a middle cerebral artery (MCA) occlusion model. Although the level of CTMP mRNA was quickly induced upon ischemia, its level showed only a mild increase after reperfusion. With the gain-of-function approach, both pre- and post-ischemic administration of Ad-ATF3 ameliorated brain infarct and neurological deficits. Whereas, with the loss-of-function approach, ATF3 knockout (KO) mice showed bigger infarct and worse functional outcome after ischemia. In addition, these congenital defects were rescued upon reintroducing ATF3 to the brain of KO mice. ATF3 overexpression led to a lower level of CTMP and a higher level of p-Akt(473) in the ischemic brain. On the contrary, ATF3 KO resulted in upregulation of CTMP and downregulation of p-Akt(473) instead. Furthermore, post-ischemic CTMP siRNA knockdown led to smaller infarct and better behaviors. CTMP siRNA knockdown increased the level of p-Akt(473), but did not alter the ATF3 level in the ischemic brain, upholding the ATF3→CTMP signal cascade. In summary, our proof-of-principle experiments support the existence of neuroprotective ATF3→CTMP signal cascade regulating the ischemic brain. Furthermore, these results suggest the therapeutic potential for both ATF3 overexpression and CTMP knockdown for stroke treatment.


Asunto(s)
Isquemia Encefálica , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Proteínas Portadoras/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Ratones Noqueados , Infarto Encefálico/genética , ARN Interferente Pequeño/genética , Infarto Cerebral , Palmitoil-CoA Hidrolasa/metabolismo
4.
Anticancer Drugs ; 33(7): 632-641, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35324530

RESUMEN

Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is an important mitochondrial protein, while its function in endometrial cancer remains unknown. This study aimed to explore the function of LETM1 in endometrial cancer and reveal the underlying mechanisms involving carboxy-terminal modulator protein (CTMP). Immunohistochemistry was performed to detect the expression of LETM1 and CTMP in normal, atypical hyperplastic and endometrial cancer endometrial tissues. LETM1 and CTMP were silenced in two endometrial cancer cell lines (ISK and KLE), which were verified by western blot. Cell viability, colony number, migration and invasion were detected by cell counting kit-8, colony formation, wound healing and trans-well assays, respectively. A xenograft mouse model was established to determine the antitumor potential of LETM1/CTMP silencing in vivo . In addition, CTMP was overexpressed to evaluate its regulatory relationship with LETM1 in endometrial cancer cells. The expression of LETM1 and CTMP proteins were higher in endometrial cancer tissues than atypical hyperplastic tissues and were higher in atypical hyperplastic tissues than normal tissues. LETM1 and CTMP were also upregulated in ISK and KLE cells. Silencing of LETM1 or CTMP could decrease the viability, colony number, migration and invasion of endometrial cancer cells and the weight and volume of tumor xenografts. In addition, CTMP was downregulated by LETM1 silencing in KLE cells, and its overexpression enhanced the malignant characteristics of si-LETM1-transfected KLE cells. Silencing of LETM1 inhibits the malignant progression of endometrial cancer through downregulating CTMP.


Asunto(s)
Neoplasias Endometriales , Proteínas Mitocondriales , Animales , Proteínas de Unión al Calcio/metabolismo , Proteínas Portadoras , Línea Celular Tumoral , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Femenino , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Nucleótidos Cíclicos , Palmitoil-CoA Hidrolasa/metabolismo , Timidina Monofosfato
5.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457027

RESUMEN

Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants.


Asunto(s)
Arabidopsis , Jatropha , Proteína Transportadora de Acilo/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Jatropha/genética , Jatropha/metabolismo , Palmitoil-CoA Hidrolasa/análisis , Palmitoil-CoA Hidrolasa/metabolismo , Desarrollo de la Planta , Aceites de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Tioléster Hidrolasas/genética
6.
Proteins ; 89(6): 599-613, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33378101

RESUMEN

Vicinal cysteine disulfides are thought to be associated with specific conformations of cysteine disulfides due to the restricted rotation of single bonds in an eight-membered cyclic disulfide loop. Conformations of vicinal cysteine disulfides are analyzed using χ1 , χ2 , χ3 , χ2 ', χ1 ' torsion angles in the crystal structures of proteins retrieved from Protein Data Bank (PDB). 85% of vicinal disulfides have (+, -)LHStaple conformation with trans configuration of the peptide bond and 9% have (-, -)RHStaple conformation with cis configured peptide bond. Conformational analysis of dipeptide Cys-Cys vicinal disulfide by density functional theory (DFT) further supported (+, -)LHStaple, (-, -)RHStaple, and (+, +)RHStaple as the preferred conformations of vicinal disulfides. Interestingly, the rare conformations of vicinal disulfides are observed in the ligand-bound forms of proteins and have higher disulfide strain energy. Conformations of vicinal disulfides in palmitoyl protein thioesterase 1, AChBP, and α7 nicotinic receptor are changed from preferred (+, -)LHStaple to rare (+, -)AntiLHHook/(+, -)AntiRHHook/(+, +)RHStaple conformation due to binding of ligands. Surprisingly, ligands are proximal to the vicinal disulfides in protein complexes that exhibited rare conformations of vicinal disulfides. The report has identified (+, -) LHStaple/(-, -) RHStaple as the hallmark conformations of vicinal disulfides and unraveled ligand-induced transition in conformations of vicinal cysteine disulfides in proteins.


Asunto(s)
Proteínas Portadoras/química , Cisteína/química , Dipéptidos/química , Disulfuros/química , Palmitoil-CoA Hidrolasa/química , Receptor Nicotínico de Acetilcolina alfa 7/química , Animales , Proteínas Portadoras/metabolismo , Cisteína/metabolismo , Bases de Datos de Proteínas , Teoría Funcional de la Densidad , Dipéptidos/metabolismo , Disulfuros/metabolismo , Humanos , Ligandos , Lymnaea , Modelos Moleculares , Palmitoil-CoA Hidrolasa/metabolismo , Unión Proteica , Conformación Proteica , Termodinámica , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
7.
J Biol Chem ; 294(50): 19034-19047, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31676684

RESUMEN

Acyl-CoA thioesterases (Acots) hydrolyze fatty acyl-CoA esters. Acots in the mitochondrial matrix are poised to mitigate ß-oxidation overload and maintain CoA availability. Several Acots associate with mitochondria, but whether they all localize to the matrix, are redundant, or have different roles is unresolved. Here, we compared the suborganellar localization, activity, expression, and regulation among mitochondrial Acots (Acot2, -7, -9, and -13) in mitochondria from multiple mouse tissues and from a model of Acot2 depletion. Acot7, -9, and -13 localized to the matrix, joining Acot2 that was previously shown to localize there. Mitochondria from heart, skeletal muscle, brown adipose tissue, and kidney robustly expressed Acot2, -9, and -13; Acot9 levels were substantially higher in brown adipose tissue and kidney mitochondria, as was activity for C4:0-CoA, a unique Acot9 substrate. In all tissues, Acot2 accounted for about half of the thioesterase activity for C14:0-CoA and C16:0-CoA. In contrast, liver mitochondria from fed and fasted mice expressed little Acot activity, which was confined to long-chain CoAs and due mainly to Acot7 and Acot13 activities. Matrix Acots occupied different functional niches, based on substrate specificity (Acot9 versus Acot2 and -13) and strong CoA inhibition (Acot7, -9, and -13, but not Acot2). Interpreted in the context of ß-oxidation, CoA inhibition would prevent Acot-mediated suppression of ß-oxidation, while providing a release valve when CoA is limiting. In contrast, CoA-insensitive Acot2 could provide a constitutive siphon for long-chain fatty acyl-CoAs. These results reveal how the family of matrix Acots can mitigate ß-oxidation overload and prevent CoA limitation.


Asunto(s)
Acilcoenzima A/metabolismo , Mitocondrias/enzimología , Palmitoil-CoA Hidrolasa/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Palmitoil-CoA Hidrolasa/deficiencia , Palmitoil-CoA Hidrolasa/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tioléster Hidrolasas/metabolismo
8.
Biochem Soc Trans ; 48(1): 281-290, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31872231

RESUMEN

The post-translational modification protein S-acylation (commonly known as palmitoylation) plays a critical role in regulating a wide range of biological processes including cell growth, cardiac contractility, synaptic plasticity, endocytosis, vesicle trafficking, membrane transport and biased-receptor signalling. As a consequence, zDHHC-protein acyl transferases (zDHHC-PATs), enzymes that catalyse the addition of fatty acid groups to specific cysteine residues on target proteins, and acyl proteins thioesterases, proteins that hydrolyse thioester linkages, are important pharmaceutical targets. At present, no therapeutic drugs have been developed that act by changing the palmitoylation status of specific target proteins. Here, we consider the role that palmitoylation plays in the development of diseases such as cancer and detail possible strategies for selectively manipulating the palmitoylation status of specific target proteins, a necessary first step towards developing clinically useful molecules for the treatment of disease.


Asunto(s)
Aciltransferasas/metabolismo , Antígeno B7-H1/metabolismo , Lipoilación/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Receptor de Melanocortina Tipo 1/metabolismo , Proteínas ras/metabolismo , Animales , Cisteína/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Lipoilación/fisiología , Ratones , Neoplasias/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Procesamiento Proteico-Postraduccional
9.
Rev Med Virol ; 29(5): e2057, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31179598

RESUMEN

During human immunodeficiency virus (HIV) infection, Nef viral protein plays a crucial role in viral pathogenesis and progression of acquired immunodeficiency syndrome. Nef is expressed in the early stages of infection and alters the cellular environment increasing infectivity, viral replication, and the evasion of host immune response through several mechanisms. Nef has numerous functional domains that allow it to interact with a number of proteins, interfering with intracellular traffic. Among these proteins, human peroxisomal thioesterase 8, ACOT8, has been shown to be an important cellular partner of Nef. It has been suggested that this interaction may be involved in Nef-dependent endocytosis and also in the modulation of lipid composition in membrane rafts. However, the actual role of this interaction, as well as the mechanisms involved, has not yet been fully elucidated. In this review, we focused on the interplay between Nef and ACOT8 proteins, highlighting the possible physiological relevance in HIV infection.


Asunto(s)
Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Interacciones Huésped-Patógeno , Palmitoil-CoA Hidrolasa/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Biomarcadores , Humanos , Unión Proteica
10.
Bioprocess Biosyst Eng ; 43(1): 33-43, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31549308

RESUMEN

In this study, to produce adipic acid, mutant strains of Candida tropicalis KCTC 7212 deficient of AOX genes encoding acyl-CoA oxidases which are important in the ß-oxidation pathway were constructed. Production of adipic acid in the mutants from the most favorable substrate C12 methyl laurate was significantly increased. The highest level of production of adipic acid was obtained in the C. tropicalis ΔAOX4::AOX5 mutant of 339.8 mg L-1 which was about 5.4-fold higher level compared to the parent strain. The C. tropicalis ΔAOX4::AOX5 mutant was subjected to fed-batch fermentation at optimized conditions of agitation rate of 1000 rpm, pH 5.0 and methyl laurate of 3% (w/v), giving the maximum level of adipic acid of 12.1 g L-1 and production rate of 0.1 g L-1 h-1.


Asunto(s)
Adipatos/metabolismo , Candida tropicalis/genética , Candida tropicalis/metabolismo , Proteínas Fúngicas , Ingeniería Metabólica , Mutación , Palmitoil-CoA Hidrolasa , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Palmitoil-CoA Hidrolasa/genética , Palmitoil-CoA Hidrolasa/metabolismo
11.
J Therm Biol ; 93: 102681, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33077108

RESUMEN

Members of the ACOT (acyl-CoA thioesterase) family hydrolyze fatty acyl-CoA to form free fatty acids (FFAs) and coenzyme A (CoA). These enzymes play important roles in fatty acid metabolism. Here, we report the cloning and functional analysis of acot11ß in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂). The open reading frame of acot11ß was found to be 594 bp in length, encoding 198 amino acids. We determined the transcript levels of acot11ß in ten tissues of hybrid yellow catfish by qRT-PCR and found that it was highly expressed in the liver, so we chose the liver for further analysis. We determined the transcript levels of acot11ß in hybrid yellow catfish under heat stress conditions, and analyzed the changes in serum biochemical parameters, liver biochemical parameters, and transcript levels of lipid metabolism-related genes. Healthy yellow catfish were subjected to heat stress at 35 °C for 96 h, and the experimental results were compared with those from fish in a control group (28 °C). The levels of glucose (GLU), total cholesterol (TC), and triglyceride (TG) in serum were significantly increased in the heat-stressed group compared with the control group (P < 0.05). Acute heat stress led to decreased liver glycogen contents, but significantly increased TC and TG contents in the liver (P < 0.05). The transcript levels of acot11ß, acc, and fas were significantly reduced, while that of pparα was significantly increased in hybrid yellow catfish exposed to heat stress (P < 0.05). Our results indicate that acot11ß plays an important role in regulating lipid metabolism in hybrid yellow catfish, and this metabolic process is greatly affected by temperature. These results may be useful for developing effective strategies to prevent or reduce metabolic disorders of yellow catfish caused by high temperature.


Asunto(s)
Bagres/genética , Proteínas de Peces/genética , Respuesta al Choque Térmico , Palmitoil-CoA Hidrolasa/genética , Animales , Glucemia/metabolismo , Bagres/metabolismo , Colesterol/sangre , Proteínas de Peces/metabolismo , Hibridación Genética , Metabolismo de los Lípidos , Hígado/metabolismo , Especificidad de Órganos , PPAR alfa/genética , PPAR alfa/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triglicéridos/sangre
12.
Am J Physiol Endocrinol Metab ; 317(5): E941-E951, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039008

RESUMEN

Neurons uniquely antagonize fatty acid utilization by hydrolyzing the activated form of fatty acids, long chain acyl-CoAs, via the enzyme acyl-CoA thioesterase 7, Acot7. The loss of Acot7 results in increased fatty acid utilization in neurons and exaggerated stimulus-evoked behavior such as an increased startle response. To understand the contribution of Acot7 to seizure susceptibility, we generated Acot7 knockout (KO) mice and assayed their response to kainate-induced seizures. Acot7 KO mice exhibited potentiated behavioral and molecular indices of seizure severity following kainic acid administration, suggesting that fatty acid metabolism in neurons can be a critical regulator of neuronal activity. These data are consistent with the presentation of seizures in a human with genomic deletion of ACOT7 demonstrating the conservation of function across species. To further understand the metabolic complications arising from a deletion in Acot7, we subjected Acot7 KO mice to a high-fat diet. While the loss of Acot7 did not result in metabolic complications following a normal chow diet, a high-fat diet induced greater body weight gain, adiposity, and glucose intolerance in Acot7 KO mice. These data demonstrate that Acot7, a fatty acid metabolic enzyme highly enriched in neurons, regulates both brain-specific metabolic processes related to seizure susceptibility and the whole body response to dietary lipid.


Asunto(s)
Enfermedades Metabólicas/genética , Palmitoil-CoA Hidrolasa/genética , Convulsiones/genética , Adiposidad , Animales , Conducta Animal , Dieta Alta en Grasa , Agonistas de Aminoácidos Excitadores , Femenino , Intolerancia a la Glucosa/genética , Ácido Kaínico , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Embarazo , Convulsiones/inducido químicamente , Convulsiones/psicología , Aumento de Peso
13.
Chem Res Toxicol ; 32(2): 255-264, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30667213

RESUMEN

Orlistat has been proved to be an effective fatty acid synthase inhibitor that is able to inhibit the proliferation and induce apoptosis in many cancer cell types. However, the anticancer effects of orlistat on hepatocellular carcinoma are undefined. We found that orlistat inhibited cell growth and induced G0/G1 cell cycle arrest with increased cyclin D, cyclin E, and p21 expression in human hepatoma Hep3B cells. Furthermore, protein expression of cyclin A, cyclin B, Cdk1, Cdk2, and Cdk4 was reduced by orlistat. This study investigated the role of lipid metabolism on orlistat-induced human hepatoma Hep3B cell death. The decrease in the expression of key enzymes in fatty acid metabolism, including FASN, ACOT8, PPT1, FABP1, CPT1 and CPT2, was observed after orlistat treatment. We also demonstrated that peroxisomal activity was involved in the orlistat-induced Hep3B cell death. In this study, we established an in vitro model to investigate the effect of orlistat on lipid accumulation. We found that orlistat significantly inhibited the cellular lipid content when administered in fatty acid overload conditions in Hep3B cells. Combination treatment of orlistat and paclitaxel was able to induce a synergistic effect on growth inhibition and cell apoptosis in Hep3B cells. Our data suggested that orlistat displays antitumor activity and enhances the efficacy of paclitaxel in Hep3B cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Orlistat/farmacología , Paclitaxel/farmacología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Metabolismo de los Lípidos/genética , Neoplasias Hepáticas/patología , Palmitoil-CoA Hidrolasa/genética , Palmitoil-CoA Hidrolasa/metabolismo , Peroxisomas/metabolismo
14.
Appl Microbiol Biotechnol ; 103(9): 3693-3704, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30834961

RESUMEN

Biotechnologically produced (R)-3-hydroxybutyrate is an interesting pre-cursor for antibiotics, vitamins, and other molecules benefitting from enantioselective production. An often-employed pathway for (R)-3-hydroxybutyrate production in recombinant E. coli consists of three-steps: (1) condensation of two acetyl-CoA molecules to acetoacetyl-CoA, (2) reduction of acetoacetyl-CoA to (R)-3-hydroxybutyrate-CoA, and (3) hydrolysis of (R)-3-hydroxybutyrate-CoA to (R)-3-hydroxybutyrate by thioesterase. Whereas for the first two steps, many proven heterologous candidate genes exist, the role of either endogenous or heterologous thioesterases is less defined. This study investigates the contribution of four native thioesterases (TesA, TesB, YciA, and FadM) to (R)-3-hydroxybutyrate production by engineered E. coli AF1000 containing a thiolase and reductase from Halomonas boliviensis. Deletion of yciA decreased the (R)-3-hydroxybutyrate yield by 43%, whereas deletion of tesB and fadM resulted in only minor decreases. Overexpression of yciA resulted in doubling of (R)-3-hydroxybutyrate titer, productivity, and yield in batch cultures. Together with overexpression of glucose-6-phosphate dehydrogenase, this resulted in a 2.7-fold increase in the final (R)-3-hydroxybutyrate concentration in batch cultivations and in a final (R)-3-hydroxybutyrate titer of 14.3 g L-1 in fed-batch cultures. The positive impact of yciA overexpression in this study, which is opposite to previous results where thioesterase was preceded by enzymes originating from different hosts or where (S)-3-hydroxybutyryl-CoA was the substrate, shows the importance of evaluating thioesterases within a specific pathway and in strains and cultivation conditions able to achieve significant product titers. While directly relevant for (R)-3-hydroxybutyrate production, these findings also contribute to pathway improvement or decreased by-product formation for other acyl-CoA-derived products.


Asunto(s)
Ácido 3-Hidroxibutírico/biosíntesis , Acilcoenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Tioléster Hidrolasas/genética , Ácido 3-Hidroxibutírico/análisis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Halomonas/enzimología , Ingeniería Metabólica , Palmitoil-CoA Hidrolasa/genética , Tioléster Hidrolasas/metabolismo
15.
J Lipid Res ; 59(2): 368-379, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29208699

RESUMEN

Thioesterase superfamily member 1 (Them1) is an acyl-CoA thioesterase that is highly expressed in brown adipose tissue, where it functions to suppress energy expenditure. Lower Them1 expression levels in the liver are upregulated in response to high-fat feeding. Them1-/- mice are resistant to diet-induced obesity, hepatic steatosis, and glucose intolerance, but the contribution of Them1 in liver is unclear. To examine its liver-specific functions, we created conditional transgenic mice, which, when bred to Them1-/- mice and activated, expressed Them1 exclusively in the liver. Mice with liver-specific Them1 expression exhibited no changes in energy expenditure. Rates of fatty acid oxidation were increased, whereas hepatic VLDL triglyceride secretion rates were decreased by hepatic Them1 expression. When fed a high-fat diet, Them1 expression in liver promoted excess steatosis in the setting of reduced rates of fatty acid oxidation and preserved glycerolipid synthesis. Liver-specific Them1 expression did not influence glucose tolerance or insulin sensitivity, but did promote hepatic gluconeogenesis in high-fat-fed animals. This was attributable to the generation of excess fatty acids, which activated PPARα and promoted expression of gluconeogenic genes. These findings reveal a regulatory role for Them1 in hepatocellular fatty acid trafficking.


Asunto(s)
Ácidos Grasos/metabolismo , Hígado/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Palmitoil-CoA Hidrolasa/deficiencia , Palmitoil-CoA Hidrolasa/genética
16.
J Ind Microbiol Biotechnol ; 45(4): 281-291, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29442208

RESUMEN

Thioesterases (TEs) play an essential role in the metabolism of fatty acids (FAs). To explore the role of TEs in mediating intracellular lipid metabolism in the oleaginous fungus Mortierella alpina, the acyl-CoA thioesterase ACOT8I was overexpressed. The contents of total fatty acids (TFAs) were the same in the recombinant strains as in the wild-type M. alpina, whilst the production of free fatty acids (FFAs) was enhanced from about 0.9% (wild-type) to 2.8% (recombinant), a roughly threefold increase. Linoleic acid content in FFA form constituted about 9% of the TFAs in the FFA fraction in the recombinant strains but only about 1.3% in the wild-type M. alpina. The gamma-linolenic acid and arachidonic acid contents in FFA form accounted for about 4 and 25%, respectively, of the TFAs in the FFA fraction in the recombinant strains, whilst neither of them in FFA form were detected in the wild-type M. alpina. Overexpression of the TE ACOT8I in the oleaginous fungus M. alpina reinforced the flux from acyl-CoAs to FFAs, improved the production of FFAs and tailored the FA profiles of the lipid species.


Asunto(s)
Ácido Araquidónico/química , Ácidos Grasos no Esterificados/química , Metabolismo de los Lípidos , Mortierella/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Biomasa , Cromatografía en Capa Delgada , ADN/química , ADN de Hongos/genética , Fermentación , Glucosa/química , Concentración de Iones de Hidrógeno , Ácido Linoleico/química , Lípidos/química , Consumo de Oxígeno , Isoformas de Proteínas , Proteínas Recombinantes/química , Ácido gammalinolénico/química
17.
J Lipid Res ; 58(6): 1174-1185, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28416579

RESUMEN

Acyl-CoA thioesterase 7 (ACOT7) is an intracellular enzyme that converts acyl-CoAs to FFAs. ACOT7 is induced by lipopolysaccharide (LPS); thus, we investigated downstream effects of LPS-induced induction of ACOT7 and its role in inflammatory settings in myeloid cells. Enzymatic thioesterase activity assays in WT and ACOT7-deficient macrophage lysates indicated that endogenous ACOT7 contributes a significant fraction of total acyl-CoA thioesterase activity toward C20:4-, C20:5-, and C22:6-CoA, but contributes little activity toward shorter acyl-CoA species. Lipidomic analyses revealed that LPS causes a dramatic increase, primarily in bis(monoacylglycero)phosphate species containing long (≥C20) polyunsaturated acyl-chains in macrophages, and that the limited effect observed by ACOT7 deficiency is restricted to glycerophospholipids containing 20-carbon unsaturated acyl-chains. Furthermore, ACOT7 deficiency did not detectably alter the ability of LPS to induce cytokines or prostaglandin E2 production in macrophages. Consistently, although ACOT7 was induced in macrophages from diabetic mice, hematopoietic ACOT7 deficiency did not alter the stimulatory effect of diabetes on systemic inflammation or atherosclerosis in LDL receptor-deficient mice. Thus, inflammatory stimuli induce ACOT7 and remodeling of phospholipids containing unsaturated long (≥C20)-acyl chains in macrophages, and, although ACOT7 has preferential thioesterase activity toward these lipid species, loss of ACOT7 has no major detrimental effect on macrophage inflammatory phenotypes.≥.


Asunto(s)
Macrófagos/metabolismo , Palmitoil-CoA Hidrolasa/biosíntesis , Fosfolípidos/metabolismo , Animales , Citocinas/biosíntesis , Dinoprostona/metabolismo , Inducción Enzimática/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glicerofosfolípidos/metabolismo , Inflamación/enzimología , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Palmitoil-CoA Hidrolasa/deficiencia , Palmitoil-CoA Hidrolasa/genética , Palmitoil-CoA Hidrolasa/metabolismo
18.
Biochemistry ; 56(10): 1460-1472, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28156101

RESUMEN

Mycobacteria contain a large number of highly divergent species and exhibit unusual lipid metabolism profiles, believed to play important roles in immune invasion. Thioesterases modulate lipid metabolism through the hydrolysis of activated fatty-acyl CoAs; multiple copies are present in mycobacteria, yet many remain uncharacterized. Here, we undertake a comprehensive structural and functional analysis of a TesB thioesterase from Mycobacterium avium (MaTesB). Structural superposition with other TesB thioesterases reveals that the Asp active site residue, highly conserved across a wide range of TesB thioesterases, is mutated to Ala. Consistent with these structural data, the wild-type enzyme failed to hydrolyze an extensive range of acyl-CoA substrates. Mutation of this residue to an active Asp residue restored activity against a range of medium-chain length fatty-acyl CoA substrates. Interestingly, this Ala mutation is highly conserved across a wide range of Mycobacterium species but not found in any other bacteria or organism. Our structural homology analysis revealed that at least one other TesB acyl-CoA thioesterase also contains an Ala residue at the active site, while two other Mycobacterium TesB thioesterases harbor an Asp residue at the active site. The inactive TesBs display a common quaternary structure that is distinct from that of the active TesB thioesterases. Investigation of the effect of expression of either the catalytically active or inactive MaTesB in Mycobacterium smegmatis exposed, to the best of our knowledge, the first genotype-phenotype association implicating a mycobacterial tesB gene. This is the first report that mycobacteria encode active and inactive forms of thioesterases, the latter of which appear to be unique to mycobacteria.


Asunto(s)
Acilcoenzima A/química , Proteínas Bacterianas/química , Mycobacterium avium/enzimología , Mycobacterium smegmatis/enzimología , Palmitoil-CoA Hidrolasa/química , Acilcoenzima A/metabolismo , Alanina/química , Alanina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Escherichia coli/enzimología , Escherichia coli/genética , Expresión Génica , Estudios de Asociación Genética , Hidrólisis , Isoenzimas/química , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutación , Mycobacterium avium/genética , Mycobacterium smegmatis/genética , Palmitoil-CoA Hidrolasa/clasificación , Palmitoil-CoA Hidrolasa/genética , Palmitoil-CoA Hidrolasa/metabolismo , Dominios Proteicos , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
19.
Metab Eng ; 42: 59-65, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28587908

RESUMEN

Acyl-CoAs are essential intermediates in the biosynthetic pathways of a number of industrially and pharmaceutically important molecules. When these pathways are reconstituted in a heterologous microbial host for metabolic engineering purposes, the acyl-CoAs may be subject to undesirable hydrolysis by the host's native thioesterases, resulting in a waste of cellular energy and decreased intermediate availability, thus impairing bioconversion efficiency. 4-hydroxycoumarin (4HC) is a direct synthetic precursor to the commonly used oral anticoagulants (e.g. warfarin) and rodenticides. In our previous study, we have established an artificial pathway for 4HC biosynthesis in Escherichia coli, which involves the thioester intermediate salicoyl-CoA. Here, we utilized the 4HC pathway as a demonstration to examine the negative effect of salicoyl-CoA degradaton, identify and inactivate the responsible thioesterase, and eventually improve the 4HC production. We screened a total of 16 E. coli thioesterases and tested their hydrolytic activity towards salicoyl-CoA in vitro. Among all the tested candidate enzymes, YdiI was found to be the dominant contributor to the salicoyl-CoA degradation in E. coli. Remarkably, the ydiI knockout strain carrying the 4HC pathway exhibited an up to 300% increase in 4HC production. An optimized 4HC pathway construct introduced in the ydiI knockout strain led to the accumulation of 935mg/L of 4HC in shake flasks, which is about 1.5 folds higher than the wild-type strain. This study demonstrates a systematic strategy to alleviate the undesirable hydrolysis of thioester intermediates, allowing production enhancement for other biosynthetic pathways with similar issues.


Asunto(s)
4-Hidroxicumarinas/biosíntesis , Escherichia coli/metabolismo , Palmitoil-CoA Hidrolasa/biosíntesis , Escherichia coli/genética , Palmitoil-CoA Hidrolasa/genética
20.
Biochim Biophys Acta Gen Subj ; 1861(8): 2112-2118, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28454735

RESUMEN

Due to the strict enantioselectivity of firefly luciferase, only d-luciferin can be used as a substrate for bioluminescence reactions. Unfortunately, luciferin racemizes easily and accumulation of nonluminous l-luciferin has negative influences on the light emitting reaction. Thus, maintaining the enantiopurity of luciferin in the reaction mixture is one of the most important demands in bioluminescence applications using firefly luciferase. In fireflies, however, l-luciferin is the biosynthetic precursor of d-luciferin, which is produced from the L-form undergoing deracemization. This deracemization consists of three successive reactions: l-enantioselective thioesterification by luciferase, in situ epimerization, and hydrolysis by thioesterase. In this work, we introduce a deracemizative luminescence system inspired by the biosynthetic pathway of d-luciferin using a combination of firefly luciferase from Luciola cruciata (LUC-G) and fatty acyl-CoA thioesterase II from Escherichia coli (TESB). The enzymatic reaction property analysis indicated the importance of the concentration balance between LUC-G and TESB for efficient d-luciferin production and light emission. Using this deracemizative luminescence system, a highly sensitive quantitative analysis method for l-cysteine was constructed. This LUC-G-TESB combination system can improve bioanalysis applications using the firefly bioluminescence reaction by efficient deracemization of D-luciferin.


Asunto(s)
Luciérnagas/metabolismo , Luciferina de Luciérnaga/metabolismo , Luciferasas/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Animales , Luminiscencia , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda