Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 355
Filtrar
1.
Cell ; 173(1): 234-247.e7, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29551264

RESUMEN

Dicer proteins are known to produce small RNAs (sRNAs) from long double-stranded RNA (dsRNA) templates. These sRNAs are bound by Argonaute proteins, which select the guide strand, often with a 5' end sequence bias. However, Dicer proteins have never been shown to have sequence cleavage preferences. In Paramecium development, two classes of sRNAs that are required for DNA elimination are produced by three Dicer-like enzymes: Dcl2, Dcl3, and Dcl5. Through in vitro cleavage assays, we demonstrate that Dcl2 has a strict size preference for 25 nt and a sequence preference for 5' U and 5' AGA, while Dcl3 has a sequence preference for 5' UNG. Dcl5, however, has cleavage preferences for 5' UAG and 3' CUAC/UN, which leads to the production of RNAs precisely matching short excised DNA elements with corresponding end base preferences. Thus, we characterize three Dicer-like enzymes that are involved in Paramecium development and propose a biological role for their sequence-biased cleavage products.


Asunto(s)
Paramecium/genética , Proteínas Protozoarias/metabolismo , Ribonucleasa III/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Elementos Transponibles de ADN/genética , Paramecium/metabolismo , Filogenia , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , División del ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Alineación de Secuencia , Análisis de Secuencia de ARN
2.
EMBO J ; 41(22): e111839, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36221862

RESUMEN

Small RNAs mediate the silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. The unicellular ciliate Paramecium is a model to study dynamic genome organization in eukaryotic cells, given its unique feature of nuclear dimorphism. Here, the formation of the somatic macronucleus during sexual reproduction requires eliminating thousands of transposon remnants (IESs) and transposable elements scattered throughout the germline micronuclear genome. The elimination process is guided by Piwi-associated small RNAs and leads to precise cleavage at IES boundaries. Here we show that IES recognition and precise excision are facilitated by recruiting ISWI1, a Paramecium homolog of the chromatin remodeler ISWI. ISWI1 knockdown substantially inhibits DNA elimination, quantitatively similar to development-specific sRNA gene knockdowns but with much greater aberrant IES excision at alternative boundaries. We also identify key development-specific sRNA biogenesis and transport proteins, Ptiwi01 and Ptiwi09, as ISWI1 cofactors in our co-immunoprecipitation studies. Nucleosome profiling indicates that increased nucleosome density correlates with the requirement for ISWI1 and other proteins necessary for IES excision. We propose that chromatin remodeling together with small RNAs is essential for efficient and precise DNA elimination in Paramecium.


Asunto(s)
Paramecium , Paramecium/genética , Paramecium/metabolismo , Elementos Transponibles de ADN/genética , Ensamble y Desensamble de Cromatina , Nucleosomas/genética , ADN Protozoario/genética , ADN Protozoario/metabolismo
3.
Genome Res ; 32(4): 710-725, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35264449

RESUMEN

The unicellular ciliate Paramecium contains a large vegetative macronucleus with several unusual characteristics, including an extremely high coding density and high polyploidy. As macronculear chromatin is devoid of heterochromatin, our study characterizes the functional epigenomic organization necessary for gene regulation and proper Pol II activity. Histone marks (H3K4me3, H3K9ac, H3K27me3) reveal no narrow peaks but broad domains along gene bodies, whereas intergenic regions are devoid of nucleosomes. Our data implicate H3K4me3 levels inside ORFs to be the main factor associated with gene expression, and H3K27me3 appears in association with H3K4me3 in plastic genes. Silent and lowly expressed genes show low nucleosome occupancy, suggesting that gene inactivation does not involve increased nucleosome occupancy and chromatin condensation. Because of a high occupancy of Pol II along highly expressed ORFs, transcriptional elongation appears to be quite different from that of other species. This is supported by missing heptameric repeats in the C-terminal domain of Pol II and a divergent elongation system. Our data imply that unoccupied DNA is the default state, whereas gene activation requires nucleosome recruitment together with broad domains of H3K4me3. In summary, gene activation and silencing in Paramecium run counter to the current understanding of chromatin biology.


Asunto(s)
Histonas , Paramecium , Cromatina/genética , Código de Histonas , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Paramecium/genética , Paramecium/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
4.
PLoS Biol ; 20(9): e3001782, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070319

RESUMEN

In metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins.


Asunto(s)
Centriolos/metabolismo , Cilios/ultraestructura , Paramecium/metabolismo , Animales , Membrana Celular , Centriolos/química , Cilios/metabolismo , Mamíferos , Paramecium/química , Paramecium/citología
5.
Curr Microbiol ; 81(9): 265, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003318

RESUMEN

Protists, including ciliates retain crystals in their cytoplasm. However, their functions and properties remain unclear. To comparatively analyze the crystals of Paramecium bursaria, a ciliate, associated with and without the endosymbiotic Chlorella variabilis, we investigated the isolated crystals using a light microscope and analyzed their length and solubility. A negligible number of crystals was found in P. bursaria cells harboring symbiotic algae. The average crystal length in alga-free and algae-reduced cells was about 6.8 µm and 14.4 µm, respectively. The crystals of alga-free cells were spherical, whereas those of algae-reduced cells were angular in shape. The crystals of alga-free cells immediately dissolved in acids and bases, but not in water or organic solvents, and were stable at - 20 °C for more than 3 weeks. This study, for the first time, reveals that the characteristics of crystals present in the cytoplasm of P. bursaria vary greatly depending on the amount of symbiotic algae.


Asunto(s)
Chlorella , Paramecium , Simbiosis , Chlorella/química , Chlorella/metabolismo , Paramecium/metabolismo , Cristalización , Citoplasma/química
6.
PLoS Genet ; 16(4): e1008723, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32298257

RESUMEN

Gene duplication and diversification drive the emergence of novel functions during evolution. Because of whole genome duplications, ciliates from the Paramecium aurelia group constitute a remarkable system to study the evolutionary fate of duplicated genes. Paramecium species harbor two types of nuclei: a germline micronucleus (MIC) and a somatic macronucleus (MAC) that forms from the MIC at each sexual cycle. During MAC development, ~45,000 germline Internal Eliminated Sequences (IES) are excised precisely from the genome through a 'cut-and-close' mechanism. Here, we have studied the P. tetraurelia paralogs of KU80, which encode a key DNA double-strand break repair factor involved in non-homologous end joining. The three KU80 genes have different transcription patterns, KU80a and KU80b being constitutively expressed, while KU80c is specifically induced during MAC development. Immunofluorescence microscopy and high-throughput DNA sequencing revealed that Ku80c stably anchors the PiggyMac (Pgm) endonuclease in the developing MAC and is essential for IES excision genome-wide, providing a molecular explanation for the previously reported Ku-dependent licensing of DNA cleavage at IES ends. Expressing Ku80a under KU80c transcription signals failed to complement a depletion of endogenous Ku80c, indicating that the two paralogous proteins have distinct properties. Domain-swap experiments identified the α/ß domain of Ku80c as the major determinant for its specialized function, while its C-terminal part is required for excision of only a small subset of IESs located in IES-dense regions. We conclude that Ku80c has acquired the ability to license Pgm-dependent DNA cleavage, securing precise DNA elimination during programmed rearrangements. The present study thus provides novel evidence for functional diversification of genes issued from a whole-genome duplication.


Asunto(s)
Genoma de Protozoos , Inestabilidad Genómica , Autoantígeno Ku/genética , Proteínas Protozoarias/genética , Duplicación de Gen , Autoantígeno Ku/química , Autoantígeno Ku/metabolismo , Macronúcleo/genética , Macronúcleo/metabolismo , Micronúcleo Germinal/genética , Micronúcleo Germinal/metabolismo , Paramecium/genética , Paramecium/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
7.
Nat Chem Biol ; 16(12): 1314-1320, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33199904

RESUMEN

Electrical signaling was a dramatic development in evolution, allowing complex single-cell organisms like Paramecium to coordinate movement and early metazoans like worms and jellyfish to send regulatory signals rapidly over increasing distances. But how are electrical signals generated in biology? In fact, voltage-gated sodium channels conduct sodium currents that initiate electrical signals in all kingdoms of life, from bacteria to man. They are responsible for generating the action potential in vertebrate nerve and muscle, neuroendocrine cells, and other cell types1,2. Because of the high level of conservation of their core structure, it is likely that their fundamental mechanisms of action are conserved as well. Here we describe the complete cycle of conformational changes that a bacterial sodium channel undergoes as it transitions from resting to activated/open and inactivated/closed states, based on high-resolution structural studies of a single sodium channel. We further relate this conformational cycle of the ancestral sodium channel to the function of its vertebrate orthologs. The strong conservation of amino acid sequence and three-dimensional structure suggests that this model, at a fundamental level, is relevant for both prokaryotic and eukaryotic sodium channels, as well as voltage-gated calcium and potassium channels.


Asunto(s)
Potenciales de Acción/fisiología , Bacterias/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/química , Células Procariotas/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/genética , Secuencia Conservada , Evolución Molecular , Expresión Génica , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Paramecium/genética , Paramecium/metabolismo , Células Procariotas/citología , Estructura Secundaria de Proteína
8.
J Eukaryot Microbiol ; 69(5): e12901, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35243727

RESUMEN

Primary (eukaryote and procaryote) and secondary (eukaryote and eukaryote) endosymbioses are driving forces in eukaryotic cell evolution. These phenomena are still contributing to acquire new cell structures and functions. To understand mechanisms for establishment of each endosymbiosis, experiments that can induce endosymbiosis synchronously by mixing symbionts isolated from symbiont-bearing host cells and symbiont-free host cells are indispensable. Recent progress on endosymbiosis using Paramecium and their endonuclear symbiotic bacteria Holospora or symbiotic green alga Chlorella has been remarkable, providing excellent opportunities for elucidating host-symbiont interactions. These organisms are now becoming model organisms to know the mechanisms for establishing primary and secondary endosymbioses. Based on experiments of many researchers, we introduce how these endosymbionts escape from the host lysosomal fusion, how they migrate in the host cytoplasm to localize specific locations within the host, how their species specificity and strain specificity of the host cells are controlled, how their life cycles are controlled, how they escape from the host cell to infect more young host cell, how they affect the host viability and gene expression, what kind of substances are needed in these phenomena, and what changes had been induced in the symbiont and the host genomes.


Asunto(s)
Chlorella , Paramecium , Paramecium/metabolismo , Simbiosis
9.
Am J Hum Genet ; 102(5): 956-972, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727692

RESUMEN

Primary ciliary dyskinesia (PCD) is a genetically and phenotypically heterogeneous disorder characterized by destructive respiratory disease and laterality abnormalities due to randomized left-right body asymmetry. PCD is mostly caused by mutations affecting the core axoneme structure of motile cilia that is essential for movement. Genes that cause PCD when mutated include a group that encode proteins essential for the assembly of the ciliary dynein motors and the active transport process that delivers them from their cytoplasmic assembly site into the axoneme. We screened a cohort of affected individuals for disease-causing mutations using a targeted next generation sequencing panel and identified two unrelated families (three affected children) with mutations in the uncharacterized C11orf70 gene (official gene name CFAP300). The affected children share a consistent PCD phenotype from early life with laterality defects and immotile respiratory cilia displaying combined loss of inner and outer dynein arms (IDA+ODA). Phylogenetic analysis shows C11orf70 is highly conserved, distributed across species similarly to proteins involved in the intraflagellar transport (IFT)-dependant assembly of axonemal dyneins. Paramecium C11orf70 RNAi knockdown led to combined loss of ciliary IDA+ODA with reduced cilia beating and swim velocity. Tagged C11orf70 in Paramecium and Chlamydomonas localizes mainly in the cytoplasm with a small amount in the ciliary component. IFT139/TTC21B (IFT-A protein) and FLA10 (IFT kinesin) depletion experiments show that its transport within cilia is IFT dependent. During ciliogenesis, C11orf70 accumulates at the ciliary tips in a similar distribution to the IFT-B protein IFT46. In summary, C11orf70 is essential for assembly of dynein arms and C11orf70 mutations cause defective cilia motility and PCD.


Asunto(s)
Dineínas Axonemales/metabolismo , Trastornos de la Motilidad Ciliar/genética , Proteínas del Citoesqueleto/genética , Flagelos/metabolismo , Mutación/genética , Proteínas Nucleares/genética , Alelos , Secuencia de Aminoácidos , Dineínas Axonemales/ultraestructura , Secuencia de Bases , Transporte Biológico , Diferenciación Celular/genética , Chlamydomonas/metabolismo , Secuencia Conservada/genética , Flagelos/ultraestructura , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Proteínas Nucleares/química , Paramecium/metabolismo , Paramecium/ultraestructura , Transcripción Genética
10.
J Exp Biol ; 224(9)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33944932

RESUMEN

Calcium ions (Ca2+) entering cilia through the ciliary voltage-gated calcium channels (CaV) during the action potential causes reversal of the ciliary power stroke and backward swimming in Paramecium tetraurelia. How calcium is returned to the resting level is not yet clear. Our focus is on calcium pumps as a possible mechanism. There are 23 P. tetraurelia genes for calcium pumps that are members of the family of plasma membrane Ca2+ ATPases (PMCAs). They have domains homologous to those found in mammalian PMCAs. Of the 13 pump proteins previously identified in cilia, ptPMCA2a and ptPMCA2b are most abundant in the cilia. We used RNAi to examine which PMCA might be involved in regulating intraciliary Ca2+ after the action potential. RNAi for only ptPMCA2a and ptPMCA2b causes cells to significantly prolong their backward swimming, which indicates that Ca2+ extrusion in the cilia is impaired when these PMCAs are depleted. We used immunoprecipitations (IP) to find that ptPMCA2a and ptPMCA2b are co-immunoprecipitated with the CaV channel α1 subunits that are found only in the cilia. We used iodixanol (OptiPrep) density gradients to show that ptPMCA2a and ptPMCA2b and CaV1c are found in the same density fractions. These results suggest that ptPMCA2a and ptPMCA2b are located in the proximity of ciliary CaV channels.


Asunto(s)
Paramecium , Potenciales de Acción , Animales , Calcio/metabolismo , Canales de Calcio/genética , Cilios/metabolismo , Iones , Paramecium/genética , Paramecium/metabolismo
11.
Nucleic Acids Res ; 44(12): 5908-23, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27085807

RESUMEN

Across kingdoms, RNA interference (RNAi) has been shown to control gene expression at the transcriptional- or the post-transcriptional level. Here, we describe a mechanism which involves both aspects: truncated transgenes, which fail to produce intact mRNA, induce siRNA accumulation and silencing of homologous loci in trans in the ciliate Paramecium We show that silencing is achieved by co-transcriptional silencing, associated with repressive histone marks at the endogenous gene. This is accompanied by secondary siRNA accumulation, strictly limited to the open reading frame of the remote locus. Our data shows that in this mechanism, heterochromatic marks depend on a variety of RNAi components. These include RDR3 and PTIWI14 as well as a second set of components, which are also involved in post-transcriptional silencing: RDR2, PTIWI13, DCR1 and CID2. Our data indicates differential processing of nascent un-spliced and long, spliced transcripts thus suggesting a hitherto-unrecognized functional interaction between post-transcriptional and co-transcriptional RNAi. Both sets of RNAi components are required for efficient trans-acting RNAi at the chromatin level and our data indicates similar mechanisms contributing to genome wide regulation of gene expression by epigenetic mechanisms.


Asunto(s)
Heterocromatina/metabolismo , Paramecium/genética , Proteínas Protozoarias/genética , Interferencia de ARN , ARN Bicatenario/genética , Transgenes , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Heterocromatina/química , Anotación de Secuencia Molecular , Paramecium/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Polinucleotido Adenililtransferasa/genética , Polinucleotido Adenililtransferasa/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , ARN Bicatenario/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Eukaryot Microbiol ; 64(1): 106-133, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27251227

RESUMEN

This review summarizes biogenesis, composition, intracellular transport, and possible functions of trichocysts. Trichocyst release by Paramecium is the fastest dense core-secretory vesicle exocytosis known. This is enabled by the crystalline nature of the trichocyst "body" whose matrix proteins (tmp), upon contact with extracellular Ca2+ , undergo explosive recrystallization that propagates cooperatively throughout the organelle. Membrane fusion during stimulated trichocyst exocytosis involves Ca2+ mobilization from alveolar sacs and tightly coupled store-operated Ca2+ -influx, initiated by activation of ryanodine receptor-like Ca2+ -release channels. Particularly, aminoethyldextran perfectly mimics a physiological function of trichocysts, i.e. defense against predators, by vigorous, local trichocyst discharge. The tmp's contained in the main "body" of a trichocyst are arranged in a defined pattern, resulting in crossstriation, whose period expands upon expulsion. The second part of a trichocyst, the "tip", contains secretory lectins which diffuse upon discharge. Repulsion from predators may not be the only function of trichocysts. We consider ciliary reversal accompanying stimulated trichocyst exocytosis (also in mutants devoid of depolarization-activated Ca2+ channels) a second, automatically superimposed defense mechanism. A third defensive mechanism may be effectuated by the secretory lectins of the trichocyst tip; they may inhibit toxicyst exocytosis in Dileptus by crosslinking surface proteins (an effect mimicked in Paramecium by antibodies against cell surface components). Some of the proteins, body and tip, are glycosylated as visualized by binding of exogenous lectins. This reflects the biogenetic pathway, from the endoplasmic reticulum via the Golgi apparatus, which is also supported by details from molecular biology. There are fragile links connecting the matrix of a trichocyst with its membrane; these may signal the filling state, full or empty, before and after tmp release upon exocytosis, respectively. This is supported by experimentally produced "frustrated exocytosis", i.e. membrane fusion without contents release, followed by membrane resealing and entry in a new cycle of reattachment for stimulated exocytosis. There are some more puzzles to be solved: Considering the absence of any detectable Ca2+ and of acidity in the organelle, what causes the striking effects of silencing the genes of some specific Ca2+ -release channels and of subunits of the H+ -ATPase? What determines the inherent polarity of a trichocyst? What precisely causes the inability of trichocyst mutants to dock at the cell membrane? Many details now call for further experimental work to unravel more secrets about these fascinating organelles.


Asunto(s)
Paramecium/fisiología , Transporte Biológico , Biogénesis de Organelos , Orgánulos/metabolismo , Orgánulos/fisiología , Orgánulos/ultraestructura , Paramecium/citología , Paramecium/genética , Paramecium/metabolismo
13.
Mol Microbiol ; 97(5): 791-807, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25994085

RESUMEN

The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase.


Asunto(s)
Eucariontes/metabolismo , Paramecium/genética , Paramecium/metabolismo , Poliaminas/metabolismo , Espermidina/biosíntesis , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Adenosilmetionina Descarboxilasa/química , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Animales , Vías Biosintéticas/genética , Cadaverina/análogos & derivados , Cadaverina/biosíntesis , Eucariontes/genética , Fusión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Procesamiento Proteico-Postraduccional , Schistosoma/genética , Alineación de Secuencia , Espermidina/análogos & derivados , Espermidina/farmacología , Espermidina Sintasa/genética , Espermidina Sintasa/metabolismo , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/crecimiento & desarrollo
14.
J Exp Biol ; 219(Pt 19): 3028-3038, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27707864

RESUMEN

Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary CaV channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three CaVα1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary CaV channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of CaV channel activity do not express any of the three CaV1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three CaV channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the CaV1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia.


Asunto(s)
Canales de Calcio/metabolismo , Cilios/metabolismo , Paramecium/metabolismo , Secuencia de Bases , Western Blotting , Canales de Calcio/química , Secuencia de Consenso , Inmunoprecipitación , Mutación/genética , Fenotipo , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tinción con Nitrato de Plata , Soluciones , Fracciones Subcelulares/metabolismo , Natación
15.
J Eukaryot Microbiol ; 63(1): 138-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26084401

RESUMEN

Dynein heavy chains are motor proteins that comprise a large gene family found across eukaryotes. We have investigated this gene family in four ciliate species: Ichthyophthirius, Oxytricha, Paramecium, and Tetrahymena. Ciliates appear to encode more dynein heavy chain genes than most eukaryotes. Phylogenetic comparisons demonstrated that the last common ancestor of the ciliates that were examined expressed at least 14 types of dynein heavy chains with most of the expansion coming from the single-headed inner arm dyneins. Each of the dyneins most likely performed different functions within the cell.


Asunto(s)
Cilióforos/genética , Dineínas/química , Dineínas/genética , Evolución Molecular , Secuencia de Aminoácidos , Cilióforos/metabolismo , Oxytricha/genética , Oxytricha/metabolismo , Paramecium/genética , Paramecium/metabolismo , Filogenia , Tetrahymena/genética , Tetrahymena/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(12): 4646-50, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487793

RESUMEN

The size of an organism matters for its metabolic, growth, mortality, and other vital rates. Scale-free community size spectra (i.e., size distributions regardless of species) are routinely observed in natural ecosystems and are the product of intra- and interspecies regulation of the relative abundance of organisms of different sizes. Intra- and interspecies distributions of body sizes are thus major determinants of ecosystems' structure and function. We show experimentally that single-species mass distributions of unicellular eukaryotes covering different phyla exhibit both characteristic sizes and universal features over more than four orders of magnitude in mass. Remarkably, we find that the mean size of a species is sufficient to characterize its size distribution fully and that the latter has a universal form across all species. We show that an analytical physiological model accounts for the observed universality, which can be synthesized in a log-normal form for the intraspecies size distributions. We also propose how ecological and physiological processes should interact to produce scale-invariant community size spectra and discuss the implications of our results on allometric scaling laws involving body mass.


Asunto(s)
Bacterias , Chlamydomonas , Ecosistema , Euglena gracilis , Euplotes , Modelos Biológicos , Paramecium , Bacterias/citología , Bacterias/metabolismo , Chlamydomonas/citología , Chlamydomonas/metabolismo , Euglena gracilis/citología , Euglena gracilis/metabolismo , Euplotes/citología , Euplotes/metabolismo , Paramecium/citología , Paramecium/metabolismo
17.
Lasers Med Sci ; 31(4): 741-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26984347

RESUMEN

Photobiomodulation is proposed as a non-linear process, and only low-level laser therapy (LLLT) is assumed to stimulate exposed cells, whereas high powered laser and fluences can cause negative effects, exhausting the cell's energy reserve as a consequence of excessive photon-based stimulation. In our work, we investigated and compared the effects of 808-nm diode laser (CW) with a new flat-top handpiece. To this purpose, we tested the photobiomodulation effects of 1 and 3 J/cm(2) fluence, both generated by 100 mW or 1 W of laser power and of 64 J/cm(2) of fluence generated by 100 mW, 1 W, 1.5 W or 2 W, as expressed through oxygen consumption and ATP synthesis of Paramecium. Data collected indicates the incremental consumption of oxygen through irradiation with 3 J/cm(2)-100 mW or 64 J/cm(2)-1 W correlates with an increase in Paramecium ATP synthesis. The Paramecium respiration was inhibited by fluences 64 J/cm(2)-100 mW or 64 J/cm(2)-2 W and was followed by a decrease in the endogenous ATP concentration. The 1 J/cm(2)-100 mW or 1 W and 3 J/cm(2)-1 W did not affect mitochondrial activity. The results show that the fluence of 64 J/cm(2)-1 W more than the 3 J/cm(2)-100 mW causes greater efficiency in Paramecium mitochondria respiratory chain activity. Our results suggest that thanks to flat-top handpiece we used, high fluences by high-powered laser have to be reconsidered as an effective and non-invasive therapy. Possible associated benefits of deeper tissue penetration would increase treatment effectiveness and reduced irradiation time.


Asunto(s)
Láseres de Semiconductores , Mitocondrias/efectos de la radiación , Paramecium/efectos de la radiación , Adenosina Trifosfato/biosíntesis , Humanos , Mitocondrias/metabolismo , Consumo de Oxígeno , Paramecium/metabolismo
18.
Opt Lett ; 40(17): 4114-7, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26368725

RESUMEN

Holographic microscopy is an emerging biological technique that provides amplitude and quantitative phase imaging, though the contrast provided by many cell types and organelles is low, and until now no dyes were known that increased contrast. Here we show that the metallocorrole Ga(tpfc)(SO3)2, which has a strong Soret band absorption, increases contrast in both amplitude and phase and facilitates tracking of Escherichia coli with minimal toxicity. The change in phase contrast may be calculated from the dye-absorbance spectrum using the Kramers-Kronig relations, and represents a general principle that may be applied to any dye or cell type. This enables the use of holographic microscopy for all applications in which specific labeling is desired.


Asunto(s)
Colorantes/metabolismo , Holografía/métodos , Microscopía de Contraste de Fase/métodos , Escherichia coli/citología , Escherichia coli/metabolismo , Metaloporfirinas/metabolismo , Paramecium/citología , Paramecium/metabolismo
19.
J Cell Sci ; 125(Pt 18): 4395-404, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22718349

RESUMEN

Within the FOP family of centrosomal proteins, the conserved FOR20 protein has been implicated in the control of primary cilium assembly in human cells. To ascertain its role in ciliogenesis, we have investigated the function of its ortholog, PtFOR20p, in the multiciliated unicellular organism Paramecium. Using combined functional and cytological analyses, we found that PtFOR20p specifically localises at basal bodies and is required to build the transition zone, a prerequisite to their maturation and docking at the cell surface and hence to ciliogenesis. We also found that PtCen2p (one of the two basal body specific centrins, an ortholog of HsCen2) is required to recruit PtFOR20p at the developing basal body and to control its length. By contrast, the other basal-body-specific centrin PtCen3p is not needed for assembly of the transition zone, but is required downstream, for basal body docking. Comparison of the structural defects induced by depletion of PtFOR20p, PtCen2p or PtCen3p, respectively, illustrates the dual role of the transition zone in the biogenesis of the basal body and in cilium assembly. The multiple potential roles of the transition zone during basal body biogenesis and the evolutionary conserved function of the FOP proteins in microtubule membrane interactions are discussed.


Asunto(s)
Membrana Celular/metabolismo , Centrosoma/metabolismo , Secuencia Conservada , Paramecium/citología , Paramecium/metabolismo , Proteínas Protozoarias/metabolismo , Cilios/metabolismo , Cilios/ultraestructura , Genes Protozoarios , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Paramecium/genética , Paramecium/ultraestructura , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Recombinantes de Fusión/metabolismo
20.
PLoS Genet ; 7(4): e1002049, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21533177

RESUMEN

During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms involved in genome dynamics.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , Genoma de Protozoos , Paramecium/genética , Proteínas Protozoarias/genética , Roturas del ADN de Doble Cadena , ADN Ligasa (ATP) , ADN Ligasas/genética , Replicación del ADN , Elementos Transponibles de ADN , ADN Protozoario/metabolismo , Paramecium/crecimiento & desarrollo , Paramecium/metabolismo , Filogenia , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda