Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Genet Sel Evol ; 56(1): 5, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200416

RESUMEN

BACKGROUND: Paratuberculosis is a contagious and incurable disease that is caused by Mycobacterium avium subsp. paratuberculosis (MAP) with significant negative effects on animal welfare and farm profitability. Based on a large naturally infected flock over 12 years, we analyzed repeated enzyme-linked immunosorbent assay tests (ELISA), OvineSNP50 BeadChip genotypes and whole-genome sequences imputed from 56 influential animals. The main goals were to estimate the genetic parameters of proxy traits for resistance to MAP, identify genomic regions associated with the host's immune response against MAP and search for candidate genes and causative mutations through association and functional annotation analyses of polymorphisms identified by sequencing. RESULTS: Two variables were derived from ELISA tests. The first, a binary variable, assessed the infection status of each animal over the entire productive life, while the second considered the level of antibody recorded over time. Very similar results were obtained for both variables. Heritability estimates of about 0.20 were found and a significant region capturing 18% and 13% of the genetic variance was detected on ovine chromosome 20 by linkage disequilibrium and linkage analysis on OvineSNP50 positions. Functional annotation and association analyses on the imputed sequence polymorphisms that were identified in this region were carried out. No significant variants showed a functional effect on the genes that mapped to this region, most of which belong to the major histocompatibility complex class II (MHC II). However, the conditional analysis led to the identification of two significant polymorphisms that can explain the genetic variance associated with the investigated genomic region. CONCLUSIONS: Our results confirm the involvement of the host's genetics in susceptibility to MAP in sheep and suggest that selective breeding may be an option to limit the infection. The estimated heritability is moderate with a relevant portion being due to a highly significant region on ovine chromosome 20. The results of the combined use of sequence-based data and functional analyses suggest several genes belonging to the MHC II as the most likely candidates, although no mutations in their coding regions showed a significant association. Nevertheless, information from genotypes of two highly significant polymorphisms in the region can enhance the efficiency of selective breeding programs.


Asunto(s)
Formación de Anticuerpos , Paratuberculosis , Animales , Ovinos/genética , Paratuberculosis/genética , Genotipo , Anticuerpos , Ensayo de Inmunoadsorción Enzimática
2.
J Dairy Sci ; 107(7): 4804-4821, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38428495

RESUMEN

Johne's disease (JD) is an infectious enteric disease in ruminants, causing substantial economic loss annually worldwide. This work aimed to estimate JD's genetic parameters and the phenotypic and genetic trends by incorporating recent data. It also explores the feasibility of a national genetic evaluation for JD susceptibility in Holstein cattle in the United States. The data were extracted from a JD data repository, maintained at the Council on Dairy Cattle Breeding, and initially supplied by 2 dairy record processing centers. The data comprised 365,980 Holstein cows from 1,048 herds participating in a voluntary control program for JD. Two protocol kits, IDEXX Paratuberculosis Screening Ab Test (IDX) and Parachek 2 (PCK), were used to analyze milk samples with the ELISA technique. Test results from the first 5 parities were considered. An animal was considered infected if it had at least one positive outcome. The overall average of JD incidence was 4.72% in these US Holstein cattle. Genotypes of 78,964 SNP markers were used for 25,000 animals randomly selected from the phenotyped population. Variance components and genetic parameters were estimated based on 3 models, namely, a pedigree-only threshold model (THR), a single-step threshold model (ssTHR), and a single-step linear model (ssLR). The posterior heritability estimates of JD susceptibility were low to moderate: 0.11 to 0.16 based on the 2 threshold models and 0.05 to 0.09 based on the linear model. The average reliability of EBVs of JD susceptibility using single-step analysis for animals with or without phenotypes varied from 0.18 (THR) to 0.22 (ssLR) for IDX and from 0.14 (THR) to 0.18 (ssTHR and ssLR) for PCK. Despite no prior direct genetic selection against JD, the estimated genetic trends of JD susceptibility were negative and highly significant. The correlations of bulls' PTA with economically important traits such as milk yield, milk protein, milk fat, somatic cell score, and mastitis were low, indicating a nonoverlapping genetic selection process with traits in current genetic evaluations. Our results suggest the feasibility of reducing the JD incidence rate by incorporating it into the national genetic evaluation programs.


Asunto(s)
Enfermedades de los Bovinos , Genotipo , Paratuberculosis , Fenotipo , Animales , Bovinos/genética , Paratuberculosis/genética , Enfermedades de los Bovinos/genética , Femenino , Leche , Cruzamiento , Estados Unidos
3.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062990

RESUMEN

Johne's disease (JD), also known as paratuberculosis, is a chronic, untreatable gastroenteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. Evidence for host genetic resistance to disease progression exists, although it is limited due to the extended incubation period (years) and diagnostic challenges. To overcome this, previously restored formalin-fixed paraffin embedded tissue (FFPE) DNA from archived FFPE tissue cassettes was utilized for a novel retrospective case-control genome-wide association study (GWAS) on ovine JD. Samples from known MAP-infected flocks with ante- and postmortem diagnostic data were used. Cases (N = 9) had evidence of tissue infection, compared to controls (N = 25) without evidence of tissue infection despite positive antemortem diagnostics. A genome-wide efficient mixed model analysis (GEMMA) to conduct a GWAS using restored FFPE DNA SNP results from the Illumina Ovine SNP50 Bead Chip, identified 10 SNPs reaching genome-wide significance of p < 1 × 10-6 on chromosomes 1, 3, 4, 24, and 26. Pathway analysis using PANTHER and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was completed on 45 genes found within 1 Mb of significant SNPs. Our work provides a framework for the novel use of archived FFPE tissues for animal genetic studies in complex diseases and further evidence for a genetic association in JD.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Adhesión en Parafina , Paratuberculosis , Polimorfismo de Nucleótido Simple , Enfermedades de las Ovejas , Animales , Paratuberculosis/genética , Paratuberculosis/microbiología , Ovinos , Enfermedades de las Ovejas/genética , Enfermedades de las Ovejas/microbiología , Estudios Retrospectivos , Mycobacterium avium subsp. paratuberculosis/genética , ADN/genética , Formaldehído , Estudios de Casos y Controles , Resistencia a la Enfermedad/genética
4.
BMC Genomics ; 24(1): 656, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907856

RESUMEN

BACKGROUND: To date genomic studies on Map have concentrated on Type C strains with only a few Type S strains included for comparison. In this study the entire pan-genome of 261 Map genomes (205 Type C, 52 Type S and 4 Type B) and 7 Mycobacterium avium complex (Mac) genomes were analysed to identify genomic similarities and differences between the strains and provide more insight into the evolutionary relationship within this Mycobacterial species. RESULTS: Our analysis of the core genome of all the Map isolates identified two distinct lineages, Type S and Type C Map that is consistent with previous phylogenetic studies of Map. Pan-genome analysis revealed that Map has a larger accessory genome than Mycobacterium avium subsp. avium (Maa) and Type C Map has a larger accessory genome than Type S Map. In addition, we found large rearrangements within Type S strains of Map and little to none in Type C and Type B strains. There were 50 core genes identified that were unique to Type S Map and there were no unique core genes identified between Type B and Type C Map strains. In Type C Map we identified an additional CE10 CAZyme class which was identified as an alpha/beta hydrolase and an additional polyketide and non-ribosomal peptide synthetase cluster. Consistent with previous analysis no plasmids and only incomplete prophages were identified in the genomes of Map. There were 45 hypothetical CRISPR elements identified with no associated cas genes. CONCLUSION: This is the most comprehensive comparison of the genomic content of Map isolates to date and included the closing of eight Map genomes. The analysis revealed that there is greater variation in gene synteny within Type S strains when compared to Type C indicating that the Type C Map strain emerged after Type S. Further analysis of Type C and Type B genomes revealed that they are structurally similar with little to no genetic variation and that Type B Map may be a distinct clade within Type C Map and not a different strain type of Map. The evolutionary lineage of Maa and Map was confirmed as emerging after M. hominissuis.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Mycobacterium avium subsp. paratuberculosis/genética , Filogenia , Genoma , Sintenía , Reordenamiento Génico , Paratuberculosis/genética , Mycobacterium avium/genética
5.
BMC Genomics ; 24(1): 605, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821814

RESUMEN

Genome-wide association studies (GWAS) have identified host genetic variants associated with paratuberculosis (PTB) susceptibility. Most of the GWAS-identified SNPs are in non-coding regions. Connecting these non-coding variants and downstream affected genes is a challenge and, up to date, only a few functional mutations or expression quantitative loci (cis-eQTLs) associated with PTB susceptibility have been identified. In the current study, the associations between imputed whole-genome sequence genotypes and whole RNA-Sequencing data from peripheral blood (PB) and ileocecal valve (ICV) samples of Spanish Holstein cows (N = 16) were analyzed with TensorQTL. This approach allowed the identification of 88 and 37 cis-eQTLs regulating the expression levels of 90 and 37 genes in PB and ICV samples, respectively (False discorey rate, FDR ≤ 0.05). Next, we applied summary-based data Mendelian randomization (SMR) to integrate the cis-eQTL dataset with GWAS data obtained from a cohort of 813 culled cattle that were classified according to the presence or absence of PTB-associated histopathological lesions in gut tissues. After multiple testing corrections (FDR ≤ 0.05), we identified two novel cis-eQTLs affecting the expression of the early growth response factor 4 (EGR4) and the bovine neuroblastoma breakpoint family member 6-like protein isoform 2 (MGC134040) that showed pleiotropic associations with the presence of multifocal and diffuse lesions in gut tissues; P = 0.002 and P = 0.017, respectively. While EGR4 acts as a brake on T-cell proliferation and cytokine production through interaction with the nuclear factor Kappa ß (NF-κß), MGC134040 is a target gene of NF-κß. Our findings provide a better understanding of the genetic factors influencing PTB outcomes, confirm that the multifocal lesions are localized/confined lesions that have different underlying host genetics than the diffuse lesions, and highlight regulatory SNPs and regulated-gene targets to design future functional studies.


Asunto(s)
Paratuberculosis , Humanos , Femenino , Bovinos , Animales , Paratuberculosis/genética , Estudio de Asociación del Genoma Completo/veterinaria , Análisis de la Aleatorización Mendeliana , Sitios de Carácter Cuantitativo , Expresión Génica , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética
6.
Appl Environ Microbiol ; 89(2): e0168222, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36719222

RESUMEN

Amplification of the IS900 multicopy element is a hallmark nucleic acid-based diagnostic test for Mycobacterium avium subsp. paratuberculosis, which causes Johne's disease in ruminants. This assay is frequently used to determine the presence of the bacterium in feces of infected cattle and sheep. Two IS900 primer sets developed in the 1990s were widely used for decades, and their use has continued in current studies. However, these primers were developed prior to the availability of complete genome sequences. Recent sequence analysis of the binding locations for one primer pair (P90/P91) identified errors and binding inefficiencies that can be easily corrected to further increase detection sensitivity. The P90 primer is missing two nucleotides that should be present near the 3' end, and it does not bind all copies of IS900 due to 5' deletions at some IS900 loci. These IS900 primer pairs, along with newly developed primers, were tested by real-time PCR on purified genomic DNA to determine which primer set performed the best and how primer design errors affect amplification efficiencies. The newly designed PCR primer set (JB5) showed increased sensitivity by two to three quantification cycles using purified genomic DNA and was similar in efficiency to 150C/921. These tests were extended using DNA from feces and tissues of infected cows, which showed similar results. Finally, a 167-bp partial duplication of IS900 was found in type I strains. Although P90 and P91 primers successfully amplify M. avium subsp. paratuberculosis DNA, their use should be discontinued in favor of more efficient primer pairs in future studies. IMPORTANCE This study is an example of how applied genomic analysis can aid diagnostic test improvements. Detection of Mycobacterium avium subsp. paratuberculosis infection of livestock prior to the appearance of clinical disease signs is very difficult but essential for identifying animals shedding the bacterium to prevent transmission of Johne's disease. Total M. avium subsp. paratuberculosis quantity in the feces as determined by real-time PCR (qPCR) using the IS900 target indicates bacterial shedding status and potential for transmission of the pathogen. However, legacy primers designed prior to the availability of complete genome sequences that are used in these tests to detect M. avium subsp. paratuberculosis were based on data from only a single copy of IS900 and not considering all copies collectively as a group. This approach resulted in primer design errors which can be easily corrected to improve test sensitivities. We tested original primers that contain these errors and their corrected versions by qPCR and showed improved sensitivity on purified genomic DNA as well as fecal and tissue samples. These findings may help detect the organism from environmental samples on farms where sensitivity is currently lacking.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Femenino , Bovinos , Ovinos , Animales , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculosis/diagnóstico , Paratuberculosis/genética , Paratuberculosis/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Elementos Transponibles de ADN , ADN Bacteriano/genética , ADN Bacteriano/análisis , Heces/microbiología , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/microbiología
7.
Anim Genet ; 54(1): 78-81, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36321295

RESUMEN

Mycobacterium avium ssp. paratuberculosis (MAP), causes Johne's disease (JD), or paratuberculosis, a chronic enteritis of ruminants, which in goats is characterized by ileal lesions. The work described here is a case-control association study using the Illumina Caprine SNP50 BeadChip to unravel the genes involved in susceptibility of goats to JD. Goats in herds with a high occurrence of Johne's disease were classified as healthy or infected based on the level of serum antibodies against MAP, and 331 animals were selected for the association study. Goats belonged to the Jonica (157) and Siriana breeds (174). Whole-genome association analysis identified one region suggestive of significance associated with an antibody response to MAP on chromosome 7 (p-value = 1.23 × 10-5 ). These results provide evidence for genetic loci involved in the antibody response to MAP in goats.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades de las Cabras , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos , Paratuberculosis/genética , Paratuberculosis/epidemiología , Paratuberculosis/microbiología , Cabras/genética , Estudio de Asociación del Genoma Completo/veterinaria , Mycobacterium avium/genética , Formación de Anticuerpos/genética , Mycobacterium avium subsp. paratuberculosis/genética , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de los Bovinos/genética , Enfermedades de las Cabras/genética
8.
Int J Mol Sci ; 24(17)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37686376

RESUMEN

Non-coding RNAs (ncRNA) have paved the way to new perspectives on the regulation of gene expression, not only in biology and medicine, but also in associated fields and technologies, ensuring advances in diagnostic means and therapeutic modalities. Critical in this multistep approach are the associations of long non-coding RNA (lncRNA) with diseases and their causal genes in their networks of interactions, gene enrichment and expression analysis, associated pathways, the monitoring of the involved genes and their functional roles during disease progression from one stage to another. Studies have shown that Johne's Disease (JD), caused by Mycobacterium avium subspecies partuberculosis (MAP), shares common lncRNAs, clinical findings, and other molecular entities with Crohn's Disease (CD). This has been a subject of vigorous investigation owing to the zoonotic nature of this condition, although results are still inconclusive. In this review, on one hand, the current knowledge of lncRNAs in cells is presented, focusing on the pathogenesis of gastrointestinal-related pathologies and MAP-related infections and, on the other hand, we attempt to dissect the associated genes and pathways involved. Furthermore, the recently characterized and novel lncRNAs share common pathologies with IBD and JD, including the expression, molecular networks, and dataset analysis results. These are also presented in an attempt to identify potential biomarkers pertinent to cattle and human disease phenotypes.


Asunto(s)
Enfermedad de Crohn , Infecciones por Mycobacterium no Tuberculosas , Paratuberculosis , ARN Largo no Codificante , Humanos , Animales , Bovinos , Paratuberculosis/genética , ARN Largo no Codificante/genética , Enfermedad de Crohn/genética , Progresión de la Enfermedad
9.
BMC Genomics ; 23(1): 768, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36418939

RESUMEN

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis. As a potential zoonotic pathogen, MAP also seriously threatens human health and social security. At present, long non-coding RNA (lncRNA) has attracted wide attention as an useful biomarker in various diseases. Therefore, our study analyzed the lncRNA expression profiles and lncRNA-mRNA regulatory network of MAP infected bovine monocytes-macrophages and uninfected bovine cells by high-throughput sequencing. A total of 4641 differentially expressed lncRNAs genes were identified, including 3111 up-regulated genes and 1530 down-regulated genes. In addition, lncRNA-mRNA interaction analysis was performed to predict the target genes of lncRNA. Among them, after MAP infection, 86 lncRNAs targeted to mRNA, of which only 6 genes were significantly different. The results of Gene Ontology (GO) enrichment analysis showed that the differentially expressed genes significantly enriched in functional groups were related to immune regulation. Multiple signal pathways including NF-κB, NOD-like receptor, Cytokine-cytokine receptor, Toll-like receptor signaling pathway, Chemokine signaling pathway, and other important biochemical, metabolic and signal transduction pathways were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG). In this study, analysis of macrophage transcriptomes in response to MAP infection is expected to provide key information to deeply understand role of the pathogen in initiating an inappropriate and persistent infection in susceptible hosts and molecular mechanisms that might underlie the early phases of paratuberculosis.


Asunto(s)
Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , ARN Largo no Codificante , Animales , Bovinos , Macrófagos/metabolismo , Monocitos , Mycobacterium avium subsp. paratuberculosis/fisiología , Paratuberculosis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo
10.
Genet Sel Evol ; 54(1): 67, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36243688

RESUMEN

BACKGROUND: Bovine paratuberculosis, or Johne's disease (JD), is a contagious and incurable disease caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has adverse effects on animal welfare and is very difficult to control, leading to serious economic consequences. An important line of defense to this disease is host genetic resistance to MAP, which, when it will be more fully understood, could be improved through selective breeding. Using a large dataset of Holstein cows (161,253 animals including 56,766 cows with ELISA serological phenotypes and 12,431 animals with genotypes), we applied a single-step single nucleotide polymorphism (SNP) best linear unbiased prediction approach to investigate the genetic determinism underlying resistance to this disease (heritability estimate and identification of relevant genomic regions) and estimated genetic trends, reliability, and relative risk factors associated with genomic predictions. RESULTS: Resistance to JD was moderately heritable (0.14) and 16 genomic regions were detected that accounted for at least 0.05% of the breeding values variance (GV) in resistance to JD, and were located on chromosomes 1, 3, 5, 6, 7, 19, 20, 21, 23, 25, and 27, with the highest percentage of variance explained by regions on chromosomes 23 (0.36% GV), 5 (0.22% GV), 1 (0.14% GV), and 3 (0.13% GV). When estimated for the whole chromosomes, the autosomes with the largest overall contributions were chromosomes 3 (5.3% GV), 10 (4.8%), 23 (4.7%), 1 (3.6%), 7 (3.4%), 5 (2.9%), 12 (2.5%), 11 (2.2%), and 13 (2%). We estimated a slightly favorable genetic trend in resistance to JD over the last two decades, which can be explained by a low positive genetic correlation between resistance to JD and total merit index (+ 0.06). Finally, in a validation population of 907 cows, relatively reliable genomic predictions (reliability = 0.55) were obtained, which allowed the identification of cows at high risk of infection. CONCLUSIONS: This study provides new insights into the genetic determinism of resistance to JD and shows that this trait can be predicted from SNP genotypes. It has led to the implementation of a single-step genomic evaluation that should rapidly become an effective tool for controlling paratuberculosis on French Holstein farms.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos/genética , Enfermedades de los Bovinos/genética , Femenino , Genómica , Paratuberculosis/genética , Reproducibilidad de los Resultados
11.
Anim Biotechnol ; 33(4): 664-671, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32985930

RESUMEN

This study aimed to explore the association of single nucleotide polymorphisms (SNPs) in CD209 gene with the occurrence of bovine paratuberculosis (PTB) disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) in Indian cattle. A total of 213 animals were preliminarily selected on the basis of physical body condition score, which was then screened by a panel of diagnostic tests viz. Johnin, ELISA, fecal microscopy, and fecal culture, for the establishment of a case-control resource population. A total of four SNPs viz. rs208222804, rs211654540, rs208814257, and rs210748127 in CD209 gene were genotyped by PCR-RFLP. All SNPs, except rs210748127, were polymorphic in our population. Genotypic-phenotypic associations were assessed by the PROCLOGISTIC procedure of SAS 9.3. The SNP rs208814257 yielded three genotypes viz. CC, CG, and GG, which were significantly (p < 0.05) different in case as compared to the control population. The odds of CC and CG in comparison to GG genotype were 1.21 and 0.40, respectively. The CG genotype was significantly higher in control population, indicating that this genotype may provide resistance against PTB in our resource population. Upon validation in an independent, larger test population and following biological characterization, SNP rs208814257 can be incorporated in marker panel for selection of animals with greater resistance to MAP infection.


Asunto(s)
Enfermedades de los Bovinos , Moléculas de Adhesión Celular , Lectinas Tipo C , Paratuberculosis , Receptores de Superficie Celular , Animales , Estudios de Casos y Controles , Bovinos/genética , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/microbiología , Moléculas de Adhesión Celular/genética , Predisposición Genética a la Enfermedad , Lectinas Tipo C/genética , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis/epidemiología , Paratuberculosis/genética , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética
12.
BMC Genomics ; 22(1): 162, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33678157

RESUMEN

BACKGROUND: Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis, or Johne's disease (JD), an incurable bovine disease. The evidence for susceptibility to MAP disease points to multiple interacting factors, including the genetic predisposition to a dysregulation of the immune system. The endemic situation in cattle populations can be in part explained by a genetic susceptibility to MAP infection. In order to identify the best genetic improvement strategy that will lead to a significant reduction of JD in the population, we need to understand the link between genetic variability and the biological systems that MAP targets in its assault to dominate macrophages. MAP survives in macrophages where it disseminates. We used next-generation RNA (RNA-Seq) sequencing to study of the transcriptome in response to MAP infection of the macrophages from cows that have been naturally infected and identified as positive for JD (JD (+); n = 22) or negative for JD (healthy/resistant, JD (-); n = 28). In addition to identifying genetic variants from RNA-seq data, SNP variants were also identified using the Bovine SNP50 DNA chip. RESULTS: The complementary strategy allowed the identification of 1,356,248 genetic variants, including 814,168 RNA-seq and 591,220 DNA chip variants. Annotation using SnpEff predicted that the 2435 RNA-seq genetic variants would produce high functional effect on known genes in comparison to the 33 DNA chip variants. Significant variants from JD(+/-) macrophages were identified by genome-wide association study and revealed two quantitative traits loci: BTA4 and 11 at (P < 5 × 10- 7). Using BovineMine, gene expression levels together with significant genomic variants revealed pathways that potentially influence JD susceptibility, notably the energy-dependent regulation of mTOR by LKB1-AMPK and the metabolism of lipids. CONCLUSION: In the present study, we succeeded in identifying genetic variants in regulatory pathways of the macrophages that may affect the susceptibility of cows that are healthy/resistant to MAP infection. RNA-seq provides an unprecedented opportunity to investigate gene expression and to link the genetic variations to biological pathways that MAP normally manipulate during the process of killing macrophages. A strategy incorporating functional markers into genetic selection may have a considerable impact in improving resistance to an incurable disease. Integrating the findings of this research into the conventional genetic selection program may allow faster and more lasting improvement in resistance to bovine paratuberculosis in dairy cattle.


Asunto(s)
Enfermedades de los Bovinos , Paratuberculosis , Animales , Canadá , Bovinos , Enfermedades de los Bovinos/genética , ADN , Femenino , Estudio de Asociación del Genoma Completo , Macrófagos , Paratuberculosis/genética , RNA-Seq
13.
Dig Dis Sci ; 66(2): 348-358, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33089484

RESUMEN

For decades, Mycobacterium avium subspecies paratuberculosis (MAP) has been linked to the pathogenesis of Crohn's disease. Despite many investigations and research efforts, there remains no clear unifying explanation of its pathogenicity to humans. Proponents argue Crohn's disease shares many identical features with a granulomatous infection in ruminants termed Johne's disease and similarities with ileo-cecal tuberculosis. Both are caused by species within the Mycobacterium genus. Sceptics assert that since MAP is found in individuals diagnosed with Crohn's disease as well as in healthy population controls, any association with CD is coincidental. This view is supported by the uncertain response of patients to antimicrobial therapy. This report aims to address the controversial aspects of this proposition with information and knowledge gathered from several disciplines, including microbiology and veterinary medicine. The authors hope that this discussion will stimulate further research aimed at confirming or refuting the contribution of MAP to the pathogenesis of Crohn's disease and ultimately lead to advanced targeted clinical therapies.


Asunto(s)
Enfermedad de Crohn/microbiología , Enfermedad de Crohn/fisiopatología , Mycobacterium avium subsp. paratuberculosis/aislamiento & purificación , Paratuberculosis/microbiología , Paratuberculosis/fisiopatología , Animales , Ensayos Clínicos como Asunto/métodos , Enfermedad de Crohn/genética , Humanos , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculosis/genética , Reacción en Cadena de la Polimerasa/métodos
14.
Anim Biotechnol ; 32(4): 519-525, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33612073

RESUMEN

Johne's disease is a chronic, contagious, zoonotic disease that affects numerous species including livestock and sometimes humans. The disease is globally distributed in sheep populations and caused by Mycobacterium avium Subsp. paratuberculosis (MAP). A previous genome-wide association study identified single nucleotide polymorphism (SNP) markers associated with OJD serostatus in CD109, PCP4, and SEMA3D genes. Our aim was to evaluate the same markers for association with OJD seroprevalence in Turkish sheep in a retrospective matched case-control study. The serological status for OJD in 1801 sheep was determined for four native and four composite breeds from three research flocks. One hundred eleven matched case-control pairs were constructed according to breed type and age from 1750 comingled ewes reared in the same environment. A Single Nucleotide Primer Extension (SNuPE) assay was designed to genotype PCP4-Intron 1, PCP4-3'UTR, SEMA3D, CD109-intron 2 and CD109-intron 8 markers and a McNemar's test was performed on the matched pairs. An association with these five markers was not detected with the OJD serostatus in Turkish sheep (power of detection, 0.95; odds ratio >3; McNemar's p < .05). Thus, a wider search may be needed to identify any major underlying genetic risk factors for OJD in Turkish sheep.


Asunto(s)
Paratuberculosis , Enfermedades de las Ovejas , Ovinos , Animales , Antígenos CD/genética , Estudios de Casos y Controles , Femenino , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas del Tejido Nervioso/genética , Paratuberculosis/epidemiología , Paratuberculosis/genética , Estudios Retrospectivos , Estudios Seroepidemiológicos , Ovinos/genética , Enfermedades de las Ovejas/genética
15.
J Dairy Sci ; 104(10): 11135-11146, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34253365

RESUMEN

Toll-like receptor 4 (TLR4) is a pattern-recognition receptor involved in the recognition of microbial pathogens and host alarmins. Ligation to TLR4 initiates a signaling cascade that leads to inflammation. Polymorphisms in bovine TLR4 have been associated with Mycobacterium avium ssp. paratuberculosis (MAP) susceptibility and resistance, the cause of Johne's disease, and milk somatic cell score, a biomarker of mastitis. Although the contribution of TLR4 to recognition of bacterial lipopolysaccharide (LPS) has been well characterized, its role in MAP recognition is less certain. Clustered regularly interspaced short palindromic repeats-Cas9 mediated gene editing was performed to generate TLR4 knockout (KO) mammary epithelial cells to determine if TLR4 expression is involved in the initiation of the host inflammatory response to MAP cell lysate (5 and 10 µg/mL) and Escherichia coli LPS (5 µg/mL). The absence of TLR4 in KO cells resulted in enhanced expression of key inflammatory genes (TNFA and IL6), anti-inflammatory genes (IL10 and SOCS3), and supernatant cytokine and chemokine levels (TNF-α, IL-6, IL-10, CCL3) in response to the MAP cell lysate (10 µg/mL). However, in response to LPS, the KO cells showed reduced expression of key inflammatory genes (TNFA, IL1A, IL1B, and IL6) and supernatant cytokine levels (TNF-α, IL-6, CCL2, IL-8) as compared with unedited cells. Overall, these results confirm that TLR4 is essential for eliciting inflammation in response to LPS; however, exacerbated gene and protein expression in TLR4 KO cells in response to MAP cell lysate suggests a different mechanism of infection and host response for MAP, at least in terms of how it interacts with TLR4. These novel findings show potential divergent roles for TLR4 in mycobacterial infections, and this may have important consequences for the therapeutic control of inflammation in cattle.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Sistemas CRISPR-Cas , Bovinos , Enfermedades de los Bovinos/genética , Células Epiteliales , Femenino , Inflamación/veterinaria , Paratuberculosis/genética , Receptor Toll-Like 4
16.
Genet Sel Evol ; 52(1): 14, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32183688

RESUMEN

BACKGROUND: Bovine paratuberculosis is a contagious disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), with adverse effects on animal welfare and serious economic consequences. Published results on host genetic resistance to MAP are inconsistent, mainly because of difficulties in characterizing the infection status of cows. The objectives of this study were to identify quantitative trait loci (QTL) for resistance to MAP in Holstein and Normande cows with an accurately defined status for MAP. RESULTS: From MAP-infected herds, cows without clinical signs of disease were subjected to at least four repeated serum ELISA and fecal PCR tests over time to determine both infected and non-infected statuses. Clinical cases were confirmed using PCR. Only cows that had concordant results for all tests were included in further analyses. Positive and control cows were matched within herd according to their birth date to ensure a same level of exposure to MAP. Cows with accurate phenotypes, i.e. unaffected (control) or affected (clinical or non-clinical cases), were genotyped with the Illumina BovineSNP50 BeadChip. Genotypes were imputed to whole-genome sequences using the 1000 Bull Genomes reference population (run6). A genome-wide association study (GWAS) of MAP status of 1644 Holstein and 649 Normande cows, using either two (controls versus cases) or three classes of phenotype (controls, non-clinical and clinical cases), revealed three regions, on Bos taurus (BTA) chromosomes 12, 13, and 23, presenting significant effects in Holstein cows, while only one of those was identified in Normande cows (BTA23). The most significant effect was found on BTA13, in a short 8.5-kb region. Conditional analyses revealed that only one causal variant may be responsible for the effects observed on each chromosome with the ABCC4 (BTA12), CBFA2T2 (BTA13), and IER3 (BTA23) genes as good functional candidates. CONCLUSIONS: A sequence-based GWAS on cows for which resistance to MAP was accurately defined, was able to identify candidate variants located in genes that were functionally related to resistance to MAP; these explained up to 28% of the genetic variance of the trait. These results are very encouraging for efforts towards implementation of a breeding strategy aimed at improving resistance to paratuberculosis in Holstein cows.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Enfermedades de los Bovinos/genética , Cromosomas/genética , Estudio de Asociación del Genoma Completo/veterinaria , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Paratuberculosis/genética , Sitios de Carácter Cuantitativo/genética , Proteínas Represoras/genética , Animales , Cruzamiento , Bovinos , Ensayo de Inmunoadsorción Enzimática , Femenino , Genotipo , Mycobacterium avium subsp. paratuberculosis , Fenotipo
17.
BMC Vet Res ; 16(1): 165, 2020 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460776

RESUMEN

BACKGROUND: Johne's disease (JD) is a chronic intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection in ruminants. Since there are currently no effective vaccine or treatment options available to control JD, genetic selection may be an alternative strategy to enhance JD resistance. Numerous Single Nucleotide Polymorphisms (SNPs) have been reported to be associated with MAP infection status based on published genome-wide association and candidate gene studies. The main objective of this study was to validate these SNPs that were previously identified to be associated with JD by testing their effect on Holstein bulls' estimated breeding values (EBVs) for milk ELISA test scores, an indirect indicator of MAP infection status in cattle. RESULTS: Three SNPs, rs41810662, rs41617133 and rs110225854, located on Bos taurus autosomes (BTA) 16, 23 and 26, respectively, were confirmed as significantly associated with Holstein bulls' EBVs for milk ELISA test score (FDR < 0.01) based on General Quasi Likelihood Scoring analysis (GQLS) analysis. Single-SNP regression analysis identified four SNPs that were associated with sire EBVs (FDR < 0.05). This includes two SNPs that were common with GQLS (rs41810662 and rs41617133), with the other two SNPs being rs110494981 and rs136182707, located on BTA9 and BTA16, respectively. CONCLUSIONS: The findings of this study validate the association of SNPs with JD MAP infection status and highlight the need to further investigate the genomic regions harboring these SNPs.


Asunto(s)
Enfermedades de los Bovinos/genética , Paratuberculosis/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Cruzamiento , Bovinos/genética , Enfermedades de los Bovinos/microbiología , Resistencia a la Enfermedad/genética , Ensayo de Inmunoadsorción Enzimática/veterinaria , Estudio de Asociación del Genoma Completo/veterinaria , Masculino , Leche/química , Mycobacterium avium subsp. paratuberculosis
18.
J Dairy Sci ; 103(10): 9213-9223, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32828507

RESUMEN

Maedi-Visna virus (MVV) and Mycobacterium avium ssp. paratuberculosis (MAP) are two pathogens that cause chronic, production-limiting diseases in dairy sheep. Although they are present worldwide, there are no detailed reports on their actual effects on milk traits in the literature. This study was designed to investigate the effects of test positivity to MVV and MAP on ovine milk yield, composition and coagulation properties, and curd-firming over time (CFt) variables in clinically healthy animals at the field level. The additive genetic variation and heritabilities of MVV and MAP positivity were also estimated. Milk samples were collected from 1,079 Sarda sheep kept on 23 farms, and pedigree information was obtained from the flock book. Milk yield was also recorded on the sampling date. Positivity for MVV and MAP was determined from milk samples using indirect ELISA test kits. Milk composition traits were measured by spectroscopy, milk coagulation properties were measured with a Formagraph (Foss Italia, Padua, Italy), and CFt traits were calculated using the data from the Formagraph diagram. The effects of MVV and MAP positivity on milk traits were determined through a set of mixed linear models, which took into account various sources of variation, such as days in milk, parity, and flock effects, and included the effects (positive or negative) of the 2 pathogens. A Bayesian threshold sire model with sire relationship was used to estimate genetic variation and heritability. The overall animal prevalence of MVV-positive ewes was 43.6%; on only 1 farm of the 23 tested were all sampled ewes negative. An overall animal prevalence of 10.6% was recorded for MAP, with 4 farms at 0%. Positivity for MVV significantly affected the logarithmic score of the bacterial count, curd firmness after 30 min and 45 min, and the curd-firming instant rate constant. We found significant effects of MAP infection on milk composition, pH, and rennet coagulation time. The mean of the posterior distributions of heritability estimates on the liability scale was 0.15 for MAP and 0.07 for MVV. Our results demonstrate that only a few traits are negatively affected by MVV and MAP positivity, and that there is exploitable genetic variation in MVV and MAP susceptibility in dairy sheep.


Asunto(s)
Leche , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis/diagnóstico , Enfermedades de las Ovejas/virología , Virus Visna-Maedi , Visna/diagnóstico , Animales , Teorema de Bayes , Queso/análisis , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Predisposición Genética a la Enfermedad , Patrón de Herencia , Italia , Modelos Lineales , Leche/química , Paratuberculosis/genética , Paratuberculosis/fisiopatología , Paridad , Embarazo , Ovinos , Enfermedades de las Ovejas/diagnóstico , Visna/genética , Visna/fisiopatología
19.
J Dairy Sci ; 102(5): 4249-4263, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30852025

RESUMEN

Infection of cattle with bovine paratuberculosis (i.e., Johne's disease) is caused by Mycobacterium avium ssp. paratuberculosis (MAP) and results in a chronic incurable gastroenteritis. This disease, which has economic ramifications for the cattle industry, is increasing in detected prevalence globally; subclinically infected animals can silently shed the bacterium into the environment for years, exposing contemporaries and hampering disease-control programs. The objective of the present study was to first quantify the genetic parameters for humoral response to MAP in dairy cattle. This was followed by a genome-based association analysis and subsequent downstream bioinformatic analyses from imputed whole genome sequence SNP data. After edits, ELISA test records were available on 136,767 cows; analyses were also undertaken on a subset of 33,818 of these animals from herds with at least 5 MAP ELISA-positive cows, with at least 1 of those positive cows being homebred. Variance components were estimated using univariate animal and sire linear mixed models. The heritability calculated from the animal model for humoral response to MAP using alternative phenotype definitions varied from 0.02 (standard error = 0.003) to 0.05 (standard error = 0.008). The genome-based associations were undertaken within a mixed model framework using weighted deregressed estimated breeding values as a dependent variable on 1,883 phenotyped animals that were ≥87.5% Holstein-Friesian. Putative susceptibility quantitative trait loci (QTL) were identified on Bos taurus autosome 1, 3, 5, 6, 8, 9, 10, 11, 13, 14, 18, 21, 23, 25, 26, 27, and 29; mapping the most significant SNP to genes within and overlapping these QTL revealed that the most significant associations were with the 10 functional candidate genes KALRN, ZBTB20, LPP, SLA2, FI3A1, LRCH3, DNAJC6, ZDHHC14, SNX1, and HAS2. Pathway analysis failed to reveal significantly enriched biological pathways, when both bovine-specific pathway data and human ortholog data were taken into account. The existence of genetic variation for MAP susceptibility in a large data set of dairy cows signifies the potential of breeding programs for reducing MAP susceptibility. Furthermore, the identification of susceptible QTL facilitates greater biological understanding of bovine paratuberculosis and potential therapeutic targets for future investigation. The novel molecular similarities identified between bovine paratuberculosis and human inflammatory bowel disease suggest potential for human therapeutic interventions to be translated to veterinary medicine and vice versa.


Asunto(s)
Enfermedades de los Bovinos/inmunología , Enfermedades Gastrointestinales/inmunología , Inmunidad Humoral/genética , Mycobacterium avium subsp. paratuberculosis/inmunología , Paratuberculosis/inmunología , Animales , Cruzamiento , Bovinos , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/genética , Susceptibilidad a Enfermedades , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Enfermedades Gastrointestinales/genética , Estudio de Asociación del Genoma Completo , Humanos , Modelos Lineales , Masculino , Paratuberculosis/genética , Paratuberculosis/microbiología , Fenotipo , Sitios de Carácter Cuantitativo
20.
Int J Mol Sci ; 20(11)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31159463

RESUMEN

M. avium subsp. paratuberculosis (MAP) is the causative pathogen of Johne's disease, a chronic granulomatous enteritis that principally affects ruminants and can survive, proliferate and disseminate in macrophages. MicroRNAs (miRNAs) are important regulators of gene expression and can impact the processes of cells. To investigate the role of miRNAs in monocyte-derived macrophages (MDMs) during MAP infection, we used high-throughput sequencing technology to analyze small RNA libraries of MAP-infected and control MDMs. The results showed that a total of 21 miRNAs were differentially expressed in MDMs after MAP infection, and 8864 target genes were predicted. A functional analysis showed that the target genes were mainly involved in the MAPK signaling pathway, Toll-like receptor signaling pathway, NF-kappa B signaling pathway and apoptosis. In addition, using a dual-luciferase reporter assay, flow cytometry, and a small interfering (si)RNA knockdown assay, the role of miR-150 in regulating macrophage apoptosis by targeting the programmed cell death protein-4 (PDCD4) was demonstrated. These results provide an experimental basis to reveal the regulatory mechanism of MAP infection and suggest the potential of miRNAs as biomarkers for the diagnosis of Johne's disease in bovines.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Macrófagos/metabolismo , Macrófagos/microbiología , MicroARNs/genética , Mycobacterium avium subsp. paratuberculosis/fisiología , Transcriptoma , Animales , Bovinos , Mapeo Cromosómico , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Macrófagos/inmunología , Ratones , Paratuberculosis/genética , Paratuberculosis/microbiología , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda