RESUMEN
Some tropical sea cucumbers of the family Holothuriidae can efficiently repel or even fatally ensnare predators by sacrificially ejecting a bioadhesive matrix termed the Cuvierian organ (CO), so named by the French zoologist Georges Cuvier who first described it in 1831. Still, the precise mechanisms for how adhesiveness genetically arose in CO and how sea cucumbers perceive and transduce danger signals for CO expulsion during defense have remained unclear. Here, we report the first high-quality, chromosome-level genome assembly of Holothuria leucospilota, an ecologically significant sea cucumber with prototypical CO. The H. leucospilota genome reveals characteristic long-repeat signatures in CO-specific outer-layer proteins, analogous to fibrous proteins of disparate species origins, including spider spidroin and silkworm fibroin. Intriguingly, several CO-specific proteins occur with amyloid-like patterns featuring extensive intramolecular cross-ß structures readily stainable by amyloid indicator dyes. Distinct proteins within the CO connective tissue and outer surface cooperate to give the expelled matrix its apparent tenacity and adhesiveness, respectively. Genomic evidence offers further hints that H. leucospilota directly transduces predator-induced mechanical pressure onto the CO surface through mediation by transient receptor potential channels, which culminates in acetylcholine-triggered CO expulsion in part or in entirety. Evolutionarily, innovative events in two distinct regions of the H. leucospilota genome have apparently spurred CO's differentiation from the respiratory tree to a lethal defensive organ against predators.
Asunto(s)
Holothuria , Pepinos de Mar , Animales , Holothuria/genética , Holothuria/química , Holothuria/metabolismo , Proteínas Amiloidogénicas/metabolismo , AdhesividadRESUMEN
Sea cucumbers have an extraordinary regenerative capability. Under stressful conditions, Holothuria glaberrima can eviscerate their internal organs, including the digestive tract. From the mesentery, a rudiment grows and gives rise to a new intestine within a few weeks. In the last decades, the cellular events that occur during intestinal regeneration have been characterized, including apoptosis, cell proliferation, and muscle cell dedifferentiation. Nevertheless, their contribution to the formation and early growth of the rudiment is still unknown. Furthermore, these cellular events' relationship and potential interdependence remain a mystery. Using modulators to inhibit apoptosis and cell proliferation, we tested whether rudiment growth or other regenerative cellular events like muscle cell dedifferentiation were affected. We found that inhibition of apoptosis by zVAD and cell proliferation by aphidicolin and mitomycin did not affect the overall size of the rudiment seven days post-evisceration (7-dpe). Interestingly, animals treated with aphidicolin showed higher levels of muscle cell dedifferentiation in the distal mesentery, which could act as a compensatory mechanism. On the other hand, inhibition of apoptosis led to a decrease in cell proliferation in the rudiment and a delay in the spatiotemporal progression of muscle cell dedifferentiation throughout the rudiment-mesentery structure. Our findings suggest that neither apoptosis nor cell proliferation significantly contributes to early rudiment growth during intestinal regeneration in the sea cucumber. Nevertheless, apoptosis may play an essential role in modulating cell proliferation in the rudiment (a process known as apoptosis-induced proliferation) and the timing for the progression of muscle cell dedifferentiation. These findings provide new insights into the role and relationship of cellular events during intestinal regeneration in an emerging regeneration model.
Asunto(s)
Pepinos de Mar , Animales , Pepinos de Mar/fisiología , Afidicolina , Intestinos , Proliferación Celular , Apoptosis , Desdiferenciación CelularRESUMEN
BACKGROUND: Over the past few years, it has been established that wnt genes are involved in the regenerative processes of holothurians. The wnt4 gene was identified as one of the most active genes in Eupentacta fraudatrix regeneration using differential gene expression analysis and qPCR of individual genes. Also, the wntA gene was found in holothurians, which is present only in invertebrates and can perform unique functions. RESULTS: In this regard, both these genes and proteins were studied in this work. During regeneration, the Wnt4 protein is found in the cells of the coelomic and ambulacral epithelium, retractor muscles, and radial nerves. Single cells with this protein are also found in the connective tissue of the developing aquapharyngeal bulb and in the hypoderm of the body wall. Cells with WntA are found exclusively in the hypoderm of the body wall. CONCLUSION: We assume that both genes are involved in regeneration, but Wnt4 coordinates the formation of the epithelial tissue structure, while WntA maintains the state of the intercellular substance of the body wall.
Asunto(s)
Pepinos de Mar , Animales , Proteína Wnt4/genética , Proteína Wnt4/metabolismo , Pepinos de Mar/metabolismo , EpitelioRESUMEN
BACKGROUND: The holothurians, commonly known as sea cucumbers, are marine organisms that possess significant dietary, nutritional, and medicinal value. However, the National Center for Biotechnology Information (NCBI) currently possesses only approximately 70 complete mitochondrial genome datasets of Holothurioidea, which poses limitations on conducting comprehensive research on their genetic resources and evolutionary patterns. In this study, a novel species of sea cucumber belonging to the genus Benthodytes, was discovered in the western Pacific Ocean. The genomic DNA of the novel sea cucumber was extracted, sequenced, assembled and subjected to thorough analysis. RESULTS: The mtDNA of Benthodytes sp. Gxx-2023 (GenBank No. OR992091) exhibits a circular structure spanning 17,386 bp, comprising of 13 protein-coding genes (PCGs), 24 non-coding RNAs (2 rRNA genes and 22 tRNA genes), along with two putative control regions measuring 882 bp and 1153 bp, respectively. It exhibits a high AT% content and negative AT-skew, which distinguishing it from the majority of sea cucumbers in terms of environmental adaptability evolution. The mitochondrial gene homology between Gxx-2023 and other sea cucumbers is significantly low, with less than 91% similarity to Benthodytes marianensis, which exhibits the highest level of homology. Additionally, its homology with other sea cucumbers is below 80%. The mitogenome of this species exhibits a unique pattern in terms of start and stop codons, featuring only two types of start codons (ATG and ATT) and three types of stop codons including the incomplete T. Notably, the abundance of AT in the Second position of the codons surpasses that of the First and Third position. The gene arrangement of PCGs exhibits a relatively conserved pattern, while there exists substantial variability in tRNA. Evolutionary analysis revealed that it formed a distinct cluster with B. marianensis and exhibited relatively distant phylogenetic relationships with other sea cucumbers. CONCLUSIONS: These findings contribute to the taxonomic diversity of sea cucumbers in the Elasipodida order, thereby holding significant implications for the conservation of biological genetic resources, evolutionary advancements, and the exploration of novel sea cucumber resources.
Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Filogenia , Pepinos de Mar , Animales , Pepinos de Mar/genética , ARN de Transferencia/genética , Composición de BaseRESUMEN
Soft-bodied slow-moving sea creatures such as sea stars and sea cucumbers lack an adaptive immune system and have instead evolved the ability to make specialized protective chemicals (glycosylated steroids and triterpenes) as part of their innate immune system. This raises the intriguing question of how these biosynthetic pathways have evolved. Sea star saponins are steroidal, while those of the sea cucumber are triterpenoid. Sterol biosynthesis in animals involves cyclization of 2,3-oxidosqualene to lanosterol by the oxidosqualene cyclase (OSC) enzyme lanosterol synthase (LSS). Here we show that sea cucumbers lack LSS and instead have two divergent OSCs that produce triterpene saponins and that are likely to have evolved from an ancestral LSS by gene duplication and neofunctionalization. We further show that sea cucumbers make alternate sterols that confer protection against self-poisoning by their own saponins. Collectively, these events have enabled sea cucumbers to evolve the ability to produce saponins and saponin-resistant sterols concomitantly.
Asunto(s)
Saponinas , Pepinos de Mar , Triterpenos , Animales , Glicosilación , EsterolesRESUMEN
Pattern recognition receptors (PRRs) are the first line of immune defense in invertebrates against pathogen infection; they recognize pathogens and transmit signals to downstream immune pathways. Among these, peptidoglycan recognition proteins (PGRPs) are an important family in invertebrates that generally comprise of complicated isoforms. A comprehensive understanding of PGRPs in evolutionarily and economically important marine invertebrates, such as the sea cucumber, Apostichopus japonicus, is crucial. Previous studies have identified two PGRPs in sea cucumber, AjPGRP-S and AjPGRP-S1, and another novel short-type PGRP, AjPGRP-S3, was additionally identified here. The full-length cDNA sequence of AjPGRP-S3 was obtained here by PCR-RACE, followed by which showed its gene expression analyses by in situ hybridization that showed it to be relatively highly expressed in coelomocytes and tube feet. Based on an analysis of the recombinant protein, rAjPGRP-S3, a board-spectrum pathogen recognition ability was noted that covered diverse Gram-negative and -positive bacteria, and fungi. Moreover, according to the results of yeast two-hybridization, it was suggested that rAJPGRP-S3 interacted with multiple immune-related factors, including proteins involved in the complement system, extracellular matrix, vesicle trafficking, and antioxidant system. These findings prove the important functions of AjPGRP-S3 in the transduction of pathogen signals to downstream immune effectors and help explore the functional differences in the AjPGRP isoforms.
Asunto(s)
Pepinos de Mar , Stichopus , Animales , Inmunidad Innata/genética , Polisacáridos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismoRESUMEN
Sea cucumbers frequently expel their guts in response to predators and an aversive environment, a behavior perceived as releasing repellents involved in chemical defense mechanisms. To investigate the chemical nature of the repellent, the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China were collected and chemically analyzed. Two novel non-holostane triterpene glycosides were isolated, and the chemical structures were elucidated as 3êµ-O-[êµ-D-glucopyranosyl-(1â2)-êµ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (1) and 3êµ-O-[êµ-D-quinovopyranosyl-(1â2)-êµ-D-xylopyranosyl]-(20S)-hydroxylanosta-7,25-diene-18(16)-lactone (2) by spectroscopic and mass-spectrometric analyses, exemplifying a triterpene glycoside constituent of an oligosaccharide containing two sugar-units and a non-holostane aglycone. Zebrafish embryos were exposed to various doses of 1 and 2 from 4 to 96 hpf. Compound 1 exposure showed 96 h-LC50 41.5 µM and an increased zebrafish mortality rates in roughly in a dose- and time-dependent manner. Compound 2, with different sugar substitution, exhibited no mortality and moderate teratogenic toxicity with a 96 h-EC50 of 173.5 µM. Zebrafish embryos exhibited teratogenic effects, such as reduced hatchability and total body length. The study found that triterpene saponin from A. japonicus viscera had acute toxicity in zebrafish embryos, indicating a potential chemical defense role in the marine ecosystem.
Asunto(s)
Glicósidos , Pepinos de Mar , Triterpenos , Vísceras , Pez Cebra , Animales , Pez Cebra/fisiología , Glicósidos/química , Glicósidos/toxicidad , Glicósidos/metabolismo , Vísceras/química , Vísceras/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacología , Triterpenos/metabolismo , Pepinos de Mar/química , Embrión no Mamífero/efectos de los fármacos , Toxinas Marinas/toxicidad , Toxinas Marinas/químicaRESUMEN
Bisphenols are emerging endocrine disrupting pollutant, and several studies have reported that they are already ubiquitous in various environmental matrices and intend to deposit in sediment. The primary sources of bisphenols are river and sewage discharge. Sea cucumber (Apostichopus japonicus), a typical deposit feeder, is one of the most important commercial marine species in Aisa. However, the effects of the bisphenol A (BPA) and its analogues bisphenol AF (BPAF) on sea cucumber was unclear. In this study, we carried out field survey in major sea cucumber farming areas in northern China, with the aim of determining which bisphenol analogue is the major bisphenol contamination in this aquaculture area. The results showed that the presence of BPAF was detected in four sampling sites (Dalian, Tangshan, Laizhou, and Longpan). The mean level of BPAF in Laizhou sediment samples was the highest which reached to 9.007 ± 4.702 µ g/kg. Among the seawater samples, the BPAF only have been detected in the samples collected at Longpan. (0.011 ± 0.003 µ g/L). Furthermore, we conducted an experiment to evaluate the single and combined toxicity of BPA and BPAF on sea cucumbers. The concentrations were informed by the findings based on the results of field research. (0.1, 1.0, and 10 µ g/L). After exposure, the body weight gain, and specific growth rate showed no significant changes (P > 0.05). We observed the histological alterations in respiratory tree of treated sea cucumbers including the fusion and detachment of lining epithelial tissue, and increase of lumen space. However, the catalase (CAT), malondialdehyde (MDA), and glutathione (GSH) activity was not significantly changed (P > 0.05). We evaluated the effects of BPA and BPAF through calculating the integrated biomarker response index (IBR), and the results indicated that the toxicity of combined treatment was higher than single treatment. Additionally, BPAF exposure to A. japonicus was more toxic than BPA.
Asunto(s)
Compuestos de Bencidrilo , Fenoles , Contaminantes Químicos del Agua , Animales , Fenoles/toxicidad , Fenoles/análisis , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , China , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/análisis , Stichopus/efectos de los fármacos , Agua de Mar/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Pepinos de Mar/efectos de los fármacos , Pepinos de Mar/química , Pruebas de Toxicidad Crónica , FluorocarburosRESUMEN
Echinoderms (starfish, sea-urchins and their close relations) possess a unique type of collagenous tissue that is innervated by the motor nervous system and whose mechanical properties, such as tensile strength and elastic stiffness, can be altered in a time frame of seconds. Intensive research on echinoderm 'mutable collagenous tissue' (MCT) began over 50 years ago, and over 20 years ago, MCT first inspired a biomimetic design. MCT, and sea-cucumber dermis in particular, is now a major source of ideas for the development of new mechanically adaptable materials and devices with applications in diverse areas including biomedical science, chemical engineering and robotics. In this review, after an up-to-date account of present knowledge of the structural, physiological and molecular adaptations of MCT and the mechanisms responsible for its variable tensile properties, we focus on MCT as a concept generator surveying biomimetic systems inspired by MCT biology, showing that these include both bio-derived developments (same function, analogous operating principles) and technology-derived developments (same function, different operating principles), and suggest a strategy for the further exploitation of this promising biological resource.
Asunto(s)
Materiales Biomiméticos , Pepinos de Mar , Animales , Equinodermos , Biomimética , Ingeniería QuímicaRESUMEN
Protein hydrolysates from sea cucumber (Apostichopus japonicus) gonads are rich in active materials with remarkable angiotensin-converting enzyme (ACE) inhibitory activity. Alcalase was used to hydrolyze sea cucumber gonads, and the hydrolysate was separated by the ultrafiltration membrane to produce a low-molecular-weight peptide component (less than 3 kDa) with good ACE inhibitory activity. The peptide component (less than 3 kDa) was isolated and purified using a combination method of ACE gel affinity chromatography and reverse high-performance liquid chromatography. The purified fractions were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the resulting products were filtered using structure-based virtual screening (SBVS) to obtain 20 peptides. Of those, three noncompetitive inhibitory peptides (DDQIHIF with an IC50 value of 333.5 µmol·L-1, HDWWKER with an IC50 value of 583.6 µmol·L-1, and THDWWKER with an IC50 value of 1291.8 µmol·L-1) were further investigated based on their favorable pharmacochemical properties and ACE inhibitory activity. Molecular docking studies indicated that the three peptides were entirely enclosed within the ACE protein cavity, improving the overall stability of the complex through interaction forces with the ACE active site. The total free binding energies (ΔGtotal) for DDQIHIF, HDWWKER, and THDWWKER were -21.9 Kcal·mol-1, -71.6 Kcal·mol-1, and -69.1 Kcal·mol-1, respectively. Furthermore, a short-term assay of antihypertensive activity in spontaneously hypertensive rats (SHRs) revealed that HDWWKER could significantly decrease the systolic blood pressure (SBP) of SHRs after intravenous administration. The results showed that based on the better antihypertensive activity of the peptide in SHRs, the feasibility of targeted affinity purification and computer-aided drug discovery (CADD) for the efficient screening and preparation of ACE inhibitory peptide was verified, which provided a new idea of modern drug development method for clinical use.
Asunto(s)
Antihipertensivos , Pepinos de Mar , Ratas , Animales , Antihipertensivos/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Pepinos de Mar/metabolismo , Espectrometría de Masas en Tándem , Péptidos/química , Ratas Endogámicas SHR , Cromatografía de Afinidad , Peptidil-Dipeptidasa A/química , Hidrolisados de Proteína/química , Gónadas/metabolismo , AngiotensinasRESUMEN
Fucosylated chondroitin sulfate is a unique glycosaminoglycan isolated from sea cucumbers, with excellent anticoagulant activity. The fucosyl branch in FCS is generally located at the 3-OH of D-glucuronic acid but, recently, a novel structure with α-L-fucose linked to the 6-OH of N-acetyl-galactosamine has been found. Here, using functionalized monosaccharide building blocks, we prepared novel FCS tetrasaccharides with fucosyl branches both at the 6-OH of GalNAc and 3-OH of GlcA. In the synthesis, the protective group strategy of selective O-sulfation, as well as stereoselective glycosylation, was established, which enabled the efficient synthesis of the specific tetrasaccharide compounds. This research enriches knowledge on the structural types of FCS oligosaccharides and facilitates the exploration of the structure-activity relationship in the future.
Asunto(s)
Sulfatos de Condroitina , Oligosacáridos , Pepinos de Mar , Sulfatos de Condroitina/química , Sulfatos de Condroitina/síntesis química , Sulfatos de Condroitina/farmacología , Animales , Oligosacáridos/síntesis química , Oligosacáridos/química , Pepinos de Mar/química , Glicosilación , Fucosa/química , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Relación Estructura-Actividad , Acetilgalactosamina/química , Acetilgalactosamina/análogos & derivadosRESUMEN
This study explores the potential of Cucumaria frondosa (C. frondosa) viscera as a natural source of omega-3 FAs using supercritical carbon dioxide (scCO2) extraction. The extraction conditions were optimized using a response surface design, and the optimal parameters were identified as 75 °C and 45 MPa, with a 20 min static and a 30 min dynamic extraction, and a 2:1 ethanol to feedstock mass ratio. Under these conditions, the scCO2 extraction yielded higher FAs than the solvent-based Bligh and Dyer method. The comparative analysis demonstrated that scCO2 extraction (16.30 g of FAs/100 g of dried samples) yielded more fatty acids than the conventional Bligh and Dyer method (9.02 g, or 13.59 g of FAs/100 g of dried samples with ultrasonic assistance), indicating that scCO2 extraction is a viable, green alternative to traditional solvent-based techniques for recovering fatty acids. The pre-treatment effects, including drying methods and ethanol-soaking, were investigated. Freeze-drying significantly enhanced FA yields to almost 100% recovery, while ethanol-soaked viscera tripled the FA yields compared to fresh samples, achieving similar EPA and DHA levels to hot-air-dried samples. These findings highlight the potential of sea cucumber viscera as an efficient source of omega-3 FA extraction and offer an alternative to traditional extraction procedures.
Asunto(s)
Dióxido de Carbono , Ácidos Grasos Omega-3 , Vísceras , Animales , Dióxido de Carbono/química , Ácidos Grasos Omega-3/aislamiento & purificación , Ácidos Grasos Omega-3/química , Vísceras/química , Cromatografía con Fluido Supercrítico/métodos , Cucumaria/química , Pepinos de Mar/química , LiofilizaciónRESUMEN
Breast cancer is the most prevalent form of cancer in women worldwide. Triple-negative breast cancer is the most unfavorable for patients, but it is also the most sensitive to chemotherapy. Triterpene glycosides from sea cucumbers possess a high therapeutic potential as anticancer agents. This study aimed to identify the pathways triggered and regulated in MDA-MB-231 cells (triple-negative breast cancer cell line) by the glycosides cucumarioside A0-1 (Cuc A0-1) and djakonovioside A (Dj A), isolated from the sea cucumber Cucumaria djakonovi. Using flow cytometry, fluorescence microscopy, immunoblotting, and ELISA, the effects of micromolar concentrations of the compounds on cell cycle arrest, induction of apoptosis, the level of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), and expression of anti- and pro-apoptotic proteins were investigated. The glycosides caused cell cycle arrest, stimulated an increase in ROS production, and decreased Δψm in MDA-MB-231 cells. The depolarization of the mitochondrial membrane caused by cucumarioside A0-1 and djakonovioside A led to an increase in the levels of APAF-1 and cytochrome C. This, in turn, resulted in the activation of caspase-9 and caspase-3 and an increase in the level of their cleaved forms. Glycosides also affected the expression of Bax and Bcl-2 proteins, which are associated with mitochondria-mediated apoptosis in MDA-MB-231 cells. These results indicate that cucumarioside A0-1 and djakonovioside A activate the intrinsic apoptotic pathway in triple-negative breast cancer cells. Additionally, it was found that treatment with Cuc A0-1 resulted in in vivo inhibition of tumor growth and metastasis of murine solid Ehrlich adenocarcinoma.
Asunto(s)
Apoptosis , Glicósidos , Potencial de la Membrana Mitocondrial , Especies Reactivas de Oxígeno , Pepinos de Mar , Neoplasias de la Mama Triple Negativas , Triterpenos , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Animales , Triterpenos/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Femenino , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Glicósidos/farmacología , Pepinos de Mar/química , Ratones , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Cucumaria/química , Saponinas/farmacología , Ratones Endogámicos BALB C , Ratones DesnudosRESUMEN
Eight sulfated triterpene glycosides, peronioside A (1) and psolusosides A (2), B (3), G (4), I (5), L (6), N (7) and P (8), were isolated from the sea cucumber Psolus peronii. Peronioside A (1) is a new glycoside, while compounds 2-8 were found previously in Psolus fabricii, indicating the phylogenetic and systematic closeness of these species of sea cucumbers. The activity of 1-8 against human erythrocytes and their cytotoxicity against the breast cancer cell lines MCF-7, T-47D and triple-negative MDA-MB-231 were tested. The most active against cancer cell compounds, psolusosides A (2) and L (6), which were not cytotoxic to the non-transformed cells of the mammary gland, were chosen to study the inhibition of the migration, formation and growth of colonies of the cancer cell lines. Glycoside 2 effectively inhibited the growth of colonies and the migration of the MDA-MB-231 cell line. Compound 6 blocked the growth of colonies of T-47D cells and showed a pronounced antimigration effect on MDA-MB-231 cells. The quantitative structure-activity relationships (QSAR) indicated the strong impact on the activity of the form and size of the molecules, which is connected to the length and architecture of the carbohydrate chain, the distribution of charge on the molecules' surface and various aspects of hydrogen bond formation, depending on the quantity and positions of the sulfate groups. The QSAR calculations were in good accordance with the observed SAR tendencies.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Glicósidos , Relación Estructura-Actividad Cuantitativa , Pepinos de Mar , Triterpenos , Humanos , Glicósidos/farmacología , Glicósidos/química , Glicósidos/aislamiento & purificación , Animales , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Pepinos de Mar/química , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Células MCF-7 , Movimiento Celular/efectos de los fármacos , Eritrocitos/efectos de los fármacosRESUMEN
Sea cucumber viscera contain various naturally occurring active substances, but they are often underutilized during sea cucumber processing. Polydeoxyribonucleotide (PDRN) is an adenosine A2A receptor agonist that activates the A2A receptor to produce various biological effects. Currently, most studies on the activity of PDRN have focused on its anti-inflammatory, anti-apoptotic, and tissue repair properties, yet relatively few studies have investigated its antioxidant activity. In this study, we reported for the first time that PDRN was extracted from the sperm of Apostichopus japonicus (AJS-PDRN), and we evaluated its antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), and hydroxyl radical scavenging assays. An in vitro injury model was established using H2O2-induced oxidative damage in RAW264.7 cells, and we investigated the protective effect of AJS-PDRN on these cells. Additionally, we explored the potential mechanism by which AJS-PDRN protects RAW264.7 cells from damage using iTRAQ proteomics analysis. The results showed that AJS-PDRN possessed excellent antioxidant activity and could significantly scavenge DPPH, ABTS, and hydroxyl radicals. In vitro antioxidant assays demonstrated that AJS-PDRN was cytoprotective and significantly enhanced the antioxidant capacity of RAW264.7 cells. The results of GO enrichment and KEGG pathway analysis indicate that the protective effects of AJS-PDRN pretreatment on RAW264.7 cells are primarily achieved through the regulation of immune and inflammatory responses, modulation of the extracellular matrix and signal transduction pathways, promotion of membrane repair, and enhancement of cellular antioxidant capacity. The results of a protein-protein interaction (PPI) network analysis indicate that AJS-PDRN reduces cellular oxidative damage by upregulating the expression of intracellular selenoprotein family members. In summary, our findings reveal that AJS-PDRN mitigates H2O2-induced oxidative damage through multiple pathways, underscoring its significant potential in the prevention and treatment of diseases caused by oxidative stress.
Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Estrés Oxidativo , Polidesoxirribonucleótidos , Proteómica , Espermatozoides , Animales , Ratones , Peróxido de Hidrógeno/toxicidad , Proteómica/métodos , Masculino , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Células RAW 264.7 , Polidesoxirribonucleótidos/farmacología , Stichopus/química , Pepinos de Mar/química , Sustancias Protectoras/farmacologíaRESUMEN
Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea cucumbers. The highly regular structure {3)-L-Fuc2S-(α1,}n of SnFS was determined via a detailed NMR analysis of its oxidative degradation product. By employing ß-elimination depolymerization of SnFG, tri-, penta-, octa-, hendeca-, tetradeca-, and heptadeca-saccharides were obtained from the low-molecular-weight product. Their well-defined structures confirmed that SnFG possessed the backbone of {D-GalNAc4S6S-ß(1,4)-D-GlcA}, and each GlcA residue was branched with Fuc2S4S. SnFS and SnFG are both structurally the simplest version of natural fucan sulfate and fucosylated glycosaminoglycan, facilitating the application of low-value sea cucumbers S. naso. Bioactivity assays showed that SnFG and its derived oligosaccharides exhibited potent anticoagulation and intrinsic factor Xase (iXase) inhibition. Moreover, a comparative analysis with the series of oligosaccharides solely branched with Fuc3S4S showed that in oligosaccharides with lower degrees of polymerization, such as octasaccharides, Fuc2S4S led to a greater increase in APTT prolongation and iXase inhibition. As the degree of polymerization increases, the influence from the sulfation pattern diminishes, until it is overshadowed by the effects of molecular weight.
Asunto(s)
Anticoagulantes , Peso Molecular , Oligosacáridos , Polisacáridos , Animales , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Oligosacáridos/farmacología , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Stichopus/química , Pepinos de Mar/química , Sulfatos/química , Espectroscopía de Resonancia Magnética , Coagulación Sanguínea/efectos de los fármacosRESUMEN
Sulfamethoxazole (SMZ) is a frequently detected antibiotic in the environment, and there is a growing concern about its potential toxic effects on aquatic organisms. sea cucumber (Apostichopus japonicas) is a benthic invertebrate whose gut acts as a primary immune defense and serves critical protective barrier. In this study, growth performance, histology, gut microbiota, and metabolomics analyses were performed to investigate the toxic response in the intestine of sea cucumber effects caused by SMZ stress for 56 d by evaluating with different concentrations of SMZ (0, 1.2×10-3, and 1.2â¯mg/L). The weight gain rate of sea cucumbers under SMZ stress showed significant decrease, indicating that the growth of sea cucumbers was hindered. Analysis of the intestinal morphological features indicated that SMZ stimulation resulted in atrophy of the sea cucumber gut. In the 1.2×10-3 mg/L concentration, the thickness of muscle and mucosal layers was reduced by 12.40% and 21.39%, while in the 1.2â¯mg/L concentration, the reductions were 35.08% and 26.98%. The abundance and diversity of sea cucumber intestinal bacteria decreased significantly (P < 0.05) under the influence of SMZ. Notably, the intestinal bacteria of sea cucumber became homogenized with the increase in SMZ concentration, and the relative abundance of Ralstonia reached 81.64% under the stress of 1.2â¯mg/L concentration. The SMZ stress significantly impacted host metabolism and disrupted balance, particularly in L-threonine, L-tyrosine, neuronic acid, piperine, and docosapentaenoic acid. SMZ leads to dysregulation of metabolites, resulting in growth inhibition and potential inflammatory responses that could adversely affect the normal activities of aquatic organisms. Further metabolic pathway enrichment analyses demonstrated that impaired biosynthesis of unsaturated fatty acids and aminoacyl-tRNA biosynthesis metabolic pathway were major reasons for SMZ stress-induced intestinal bacteria dysbiosis. This research aims to provide some theoretical evidence for the ecological hazard assessment of antibiotics in water.
Asunto(s)
Pepinos de Mar , Stichopus , Animales , Sulfametoxazol/toxicidad , Sulfametoxazol/metabolismo , Metabolómica , Bacterias/genéticaRESUMEN
The intra-ovarian presence of ootids, i.e. female gametes that have completed meiosis, is considered exceptional in the animal kingdom. The present study explores the first such case to be reported in a sea cucumber (Echinodermata: Holothuroidea). In the overwhelming majority of animals, including holothuroids, oocytes (i.e. immature female gametes) that are developing in the ovary undergo a primary arrest at the prophase stage of meiosis, which may last from days to decades. In free-spawning taxa, this arrest is normally lifted only during or shortly before transit in the gonoduct, when gamete release (spawning) is imminent. However, oocytes of the holothuroid Chiridota laevis were discovered to have resumed the second meiotic division including the completion of germinal vesicle breakdown and polar-body expulsion inside the ovary, effectively reaching the ootid stage concomitantly with ovulation (i.e. escape from follicle cells) prior to spawning. The potential drivers and significance of this exceptionally rare case of full intra-ovarian oogenic maturation are discussed.
Asunto(s)
Meiosis , Oocitos , Oogénesis , Ovario , Femenino , Animales , Oocitos/fisiología , Oocitos/citología , Ovario/citología , Pepinos de Mar/fisiologíaRESUMEN
Marine glycans of defined structures are unique representatives among all kinds of structurally complex glycans endowed with important biological actions. Besides their unique biological properties, these marine sugars also enable advanced structure-activity relationship (SAR) studies given their distinct and defined structures. However, the natural high molecular weights (MWs) of these marine polysaccharides, sometimes even bigger than 100 kDa, pose a problem in many biophysical and analytical studies. Hence, the preparation of low MW oligosaccharides becomes a strategy to overcome the problem. Regardless of the polymeric or oligomeric lengths of these molecules, structural elucidation is mandatory for SAR studies. For this, nuclear magnetic resonance (NMR) spectroscopy plays a pivotal role. Here, we revisit the NMR-based structural elucidation of a series of marine sulfated poly/oligosaccharides discovered in our laboratory within the last 2 years. This set of structures includes the α-glucan extracted from the bivalve Marcia hiantina; the two sulfated galactans extracted from the red alga Botryocladia occidentalis; the fucosylated chondroitin sulfate isolated from the sea cucumber Pentacta pygmaea; the oligosaccharides produced from the fucosylated chondroitin sulfates from this sea cucumber species and from another species, Holothuria floridana; and the sulfated fucan from this later species. Specific 1H and 13C chemical shifts, generated by various 1D and 2D homonuclear and heteronuclear NMR spectra, are exploited as the primary source of information in the structural elucidation of these marine glycans.
Asunto(s)
Anticoagulantes , Pepinos de Mar , Animales , Anticoagulantes/química , Polisacáridos/química , Galactanos/química , Espectroscopía de Resonancia Magnética , Oligosacáridos , Pepinos de Mar/químicaRESUMEN
Sea cucumbers release chemical repellents from their guts when they are in danger from predators or a hostile environment. To investigate the chemical structure of the repellent, we collected and chemically analyzed the viscera of stressed sea cucumbers (Apostichopus japonicus) in the Yellow Sea of China. Two undescribed triterpene glycosides (1 and 2), together with a known cladoloside A (3), were identified and elucidated as 3ß-O-{2-O-[ß-d-quinovopyranosyl]-4-O-[3-O-methyl-ß-d-glucopyranosyl-(1â3)-ß-d-glucopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (1), 3ß-O-{2-O-[ß-d-glucopyranosyl]-4-O-[3-O-methyl-ß-d-glucopyranosyl-(1â3)-ß-d-glucopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (2), 3ß-O-{2-O-[3-O-methyl-ß-d-glucopyranosyl-(1â3)-ß-d-xylopyranosyl-(1â4)-ß-d-quinovopyranosyl]-ß-d-xylopyranosyl}-holosta-9(11),25(26)-dien-16-one (3) by spectroscopic analysis, including HR-ESI-MS and NMR spectra. Compounds 1, 2, and 3 display embryonic toxicity, as indicated by their 96-hour post-fertilization lethal concentration (96 hpf-LC50) values of 0.289, 0.536, and 0.091â µM, respectively. Our study discovered a class of triterpene glycoside compounds consisting of an oligosaccharide with four sugar units and a holostane aglycone. These compounds possess embryotoxicity and may serve as chemical defense molecules in marine benthic ecosystems.