Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.908
Filtrar
1.
Vet Res ; 55(1): 122, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334220

RESUMEN

Bluetongue virus (BTV) infection induces profound and intricate changes in the transcriptional profile of the host to facilitate its survival and replication. However, there have been no whole-transcriptome studies on ovine lung microvascular endothelial cells (OLMECs) infected with BTV. In this study, we comprehensively analysed the whole-transcriptome sequences of BTV-1 serotype-infected and mock-infected OLMECs and subsequently performed bioinformatics differential analysis. Our analysis revealed 1215 differentially expressed mRNA transcripts, 82 differentially expressed long noncoding RNAs (lncRNAs) transcripts, 63 differentially expressed microRNAs (miRNAs) transcripts, and 42 differentially expressed circular RNAs (circRNAs) transcripts. Annotation from Gene Ontology, enrichment from the Kyoto Encyclopedia of Genes and Genomes, and construction of endogenous competing RNA network analysis revealed that the differentially expressed RNAs primarily participated in viral sensing and signal transduction pathways, antiviral and immune responses, inflammation, and extracellular matrix (ECM)-related pathways. Furthermore, protein‒protein interaction network analysis revealed that BTV may regulate the conformation of ECM receptor proteins and change their biological activity through a series of complex mechanisms. Finally, on the basis of real-time fluorescence quantitative polymerase chain reaction results, the expression trends of the differentially expressed RNA were consistent with the whole-transcriptome sequencing data, such as downregulation of the expression of COL4A1, ITGA8, ITGB5, and TNC and upregulation of the expression of CXCL10, RNASEL, IRF3, IRF7, and IFIHI. This study provides a novel perspective for further investigations of the mechanism of the ECM in the BTV-host interactome and the pathogenesis of lung microvascular endothelial cells.


Asunto(s)
Virus de la Lengua Azul , Células Endoteliales , Perfilación de la Expresión Génica , Pulmón , Animales , Virus de la Lengua Azul/fisiología , Virus de la Lengua Azul/genética , Células Endoteliales/virología , Pulmón/virología , Ovinos , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Lengua Azul/virología
2.
Vet Res ; 55(1): 125, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342330

RESUMEN

During parasite infections, the liver may prioritise immune-related pathways over its metabolic functions. Intestinal infections caused by Ascaridia galli and Heterakis gallinarum impair feed intake, nutrient absorption, and weight gain. Histomonas meleagridis, vectored by H. gallinarum, can also damage liver tissues, potentially impairing liver functions. This study examined the hepatic gene expression in three strains of chickens: Ross-308 (R), Lohmann Brown Plus (LB), and Lohmann Dual (LD), 2 weeks after an experimental infection (n = 18) with both A. galli and H. gallinarum or kept as uninfected control (n = 12). Furthermore, H. gallinarum infection led to a co-infection with H. meleagridis. The mixed infections reduced feed intake and the average daily weight gain (P < 0.001). The infections also increased the plasma concentrations of alpha (1)-acid glycoprotein and the antibody titre against H. meleagridis (P = 0.049), with no strain differences (P > 0.05). For host molecular response, 1887 genes were differentially expressed in LD, while 275 and 25 genes were differentially expressed in R and LB, respectively. The up-regulated genes in R and LD were mostly related to inflammatory and adaptive immune responses, while down-regulated genes in LD were involved in metabolic pathways, including gluconeogenesis. Despite performance differences among the strains, worm burdens were similar, but hepatic molecular responses differed significantly. Moreover, there was an indication of a shift in hepatic functions towards immune-related pathways. We, therefore, conclude that the liver shifts its functions from metabolic to immune-related activities in chickens when challenged with mixed parasite species.


Asunto(s)
Pollos , Hígado , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/parasitología , Enfermedades de las Aves de Corral/inmunología , Hígado/parasitología , Hígado/metabolismo , Coinfección/veterinaria , Coinfección/parasitología , Coinfección/inmunología , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Regulación de la Expresión Génica
3.
Vet Res ; 55(1): 13, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38303095

RESUMEN

Mastitis, inflammation of the mammary gland, is the costliest disease in dairy cattle and a major animal welfare concern. Mastitis is usually caused by bacteria, of which staphylococci, streptococci and Escherichia coli are most frequently isolated from bovine mastitis. Bacteria activate the mammary immune system in variable ways, thereby influencing the severity of the disease. Escherichia coli is a common cause of mastitis in cattle causing both subclinical and clinical mastitis. Understanding of the molecular mechanisms that activate and regulate the host response would be central to effective prevention of mastitis and breeding of cows more resistant to mastitis. We used primary bovine mammary epithelial cell cultures extracted noninvasively from bovine milk samples to monitor the cellular responses to Escherichia coli challenge. Differences in gene expression between control and challenged cells were studied by total RNA-sequencing at two time points post-challenge. In total, 150 and 440 (Padj < 0.05) differentially expressed genes were identified at 3 h and 24 h post-challenge, respectively. The differentially expressed genes were mostly upregulated at 3 h (141/150) and 24 h (424/440) post-challenge. Our results are in line with known effects of E. coli infection, with a strong early inflammatory response mediated by pathogen receptor families. Among the most significantly enriched early KEGG pathways were the TNF signalling pathway, the cytokine-cytokine receptor interaction, and the NF-kappa B signalling pathway. At 24 h post-challenge, most significantly enriched were the Influenza A, the NOD-like receptor signalling, and the IL-17 signaling pathway.


Asunto(s)
Enfermedades de los Bovinos , Infecciones por Escherichia coli , Mastitis Bovina , Femenino , Bovinos , Animales , Escherichia coli/genética , Leche/microbiología , Glándulas Mamarias Animales/microbiología , Perfilación de la Expresión Génica/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Células Epiteliales/microbiología , Mastitis Bovina/microbiología , Enfermedades de los Bovinos/metabolismo
4.
Fish Shellfish Immunol ; 148: 109504, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508539

RESUMEN

Aeromonas hydrophila is a commonly pathogenic bacterium in cultivated eels, but its pathogenicity to American eel (Anguilla rostrata) and the molecular mechanism of host anti-A. hydrophila infection remains uncertain. In this study, LD50 of A. hydrophila to American eels was determined and bacterial load in the liver and kidney of eels was assessed post 2.56 doses of LD50 of A. hydrophila infection. The results showed that the LD50 of A. hydrophila to American eels was determined to be 3.9 × 105 cfu/g body weight (7.8 × 106 cfu/fish), and the bacterial load peaked at 36 h post the infection (hpi) in the liver. Then, the histopathology was highlighted by congestion in splenic blood vessels, atrophied glomeruli, and necrotic hepatocytes. Additionally, the results of qRT-PCR revealed that 18 host immune-related genes showed significantly up or downregulated post-infection compare to that of pre-infection. Finally, results of the RNA-seq revealed 10 hub DEGs and 7 encoded proteins play essential role to the anti-A. hydrophila infection in American eels. Pathogenicity of A. hydrophila to American eels and RNA-seq of host anti-A. hydrophila infection were firstly reported in this study, shedding new light on our understanding of the A. hydrophila pathogenesis and the host immune response to the A. hydrophila infection strategies in gene transcript.


Asunto(s)
Anguilla , Enfermedades de los Peces , Animales , Aeromonas hydrophila , Virulencia , Proteínas de la Membrana Bacteriana Externa , Perfilación de la Expresión Génica/veterinaria
5.
Fish Shellfish Immunol ; 144: 109260, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043874

RESUMEN

To explore the immune defense mechanisms of the ancient crustacean fairy shrimp (B.kugenumaensis) and uncover antibacterial-related gene resources, the present study analyzed the pathological changes in B. kugenumaensis infected with E. anguillarum. Differential gene expression changes between the infected and uninfected groups were investigated through comparative transcriptome sequencing to elucidate the molecular responses to the infection. Under transmission electron microscopy, the intestinal mucosal structure of B. kugenumaensis was damaged, the microvilli disappeared, the number of mitochondria and endoplasmic reticulum increased, mitochondria vacuolated and arranged disordered. The transcriptome data indicated that a total of 250,520,580 clean reads were assembled into 66,502 unigenes, with an average length of 789 bp and an N50 length of 1326 bp. Following bacterial infection, approximately 2678 differentially expressed genes (DEGs) were identified, with 1732 genes upregulated and 946 genes downregulated. The detected DEGs related to immune responses, particularly involving apoptosis, lysosome, autophagy, phagosome, and MAPK signaling pathways. Moreover, 9 immunity-related genes with different expressions were confirmed by using real-time quantitative PCR (RT-qPCR). This study first reports the pathogenicity of E. anguillarum on B. kugenumaensis and speculates that immune effectors such as lysozyme and lectin, as well as apoptosis, lysosome, and the MAPK signaling pathway, play crucial roles in the innate immunity of fairy shrimp. These findings deepen our understanding of fairy shrimp immune regulatory mechanisms and provide a theoretical foundation for disease prevention and control.


Asunto(s)
Anostraca , Perfilación de la Expresión Génica , Animales , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Inmunidad Innata/genética
6.
Fish Shellfish Immunol ; 144: 109251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040133

RESUMEN

nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that play an important role in the homeostatic regulation of physiological functions. Our previous studies showed that nAChRs in the genome of pearl oyster Pinctada fucata martensii (PmnAChRs) were expanded through tandem duplication. This study aimed to analyze the function of five tandemly duplicated PmnAChRs in the transplantation immunity in P. f. martensii. Transcriptome analysis reveals that the differentially expressed genes (DEGs) shared between PmnAChR-RNAi and the control group were functionally involved in Signal transduction, Immune system et al., and most of the related genes were down-regulated in the PmnAChR-RNAi group. The different copies of PmnAChR may regulate transplantation immunity through various pathways, such as Wnt, protein digestion and absorption, Hippo, and gap junction pathway. The inflammation factor interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α) were down-regulated in PmnAChR-1, 4, 5-RNAi group, and the serum from the pearl oysters in the PmnAChR-1-4-RNAi group could promote the proliferation of the Vibrio harveyi, indicating the immunosuppressive function after down-regulation of PmnAChRs. The different responses of antioxidant enzymes and diverse signal pathways after down-regulation of PmnAChRs suggested that the five tandemly duplicated PmnAChRs may cooperate with different α type PmnAChRs and constitute the functional ion channel in the membrane. Results of this study not only provide insight for the effective regulation of the transplantation immunity, but also provide a theoretical reference for the study of the adaptive evolutionary mechanism of repeating genes.


Asunto(s)
Pinctada , Receptores Nicotínicos , Animales , Transcriptoma , Receptores Nicotínicos/metabolismo , Perfilación de la Expresión Génica/veterinaria , Genoma
7.
Fish Shellfish Immunol ; 148: 109505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521144

RESUMEN

The E11 cell line, derived from striped snakehead fish (Channa striata), possesses a distinctive feature: it is persistently infected with a C-type retrovirus. Notably, it exhibits high permissiveness to piscine nodavirus and the emerging tilapia lake virus (TiLV). Despite its popularity in TiLV research, the absence of genome assembly for the E11 cell line and Channa striata has constrained research on host-virus interactions. This study aimed to fill this gap by sequencing, assembling, and annotating the E11 cell line genome. Our efforts yielded a 600.5 Mb genome including 24 chromosomes with a BUSCO score of 98.8%. In addition, the complete proviral DNA sequence of snakehead retrovirus (SnRV) was identified in the E11 cell genome. Comparative genomic analysis between the E11 cell line and another snakehead species Channa argus revealed the loss of many immune-related gene families in the E11 cell genome, indicating a compromised immune response. We also conducted transcriptome analysis of mock- and TiLV-infected E11 cells, unveiling new perspectives on virus-virus and host-virus interactions. The TiLV infection suppressed the high expression of SnRV in E11 cells, and activated some other endogenous retroviruses. The protein-coding gene comparison revealed a pronounced up-regulation of genes involved in immune response, alongside a down-regulation of genes associated with specific metabolic processes. In summary, the genome assembly and annotation of the E11 cell line provide valuable resources to understand the SnRV and facilitate further studies on nodavirus and TiLV. The RNA-seq profiles shed light on the cellular mechanisms employed by fish cells in response to viral challenges, potentially guiding the development of therapeutic strategies against TiLV in aquaculture. This study also provides the first insights into the viral transcriptome profiles of endogenous SnRV and evading TiLV, enhancing our understanding of host-virus interactions in fish.


Asunto(s)
Enfermedades de los Peces , Tilapia , Virus , Animales , Retroviridae , Cromosomas , Perfilación de la Expresión Génica/veterinaria
8.
Fish Shellfish Immunol ; 146: 109420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325592

RESUMEN

The impact of carbonate alkalinity in saline-alkaline water on aquatic organisms, particularly Penaeus vannamei, a significant species in aquaculture, remains a critical area of study. To elucidate the acute response mechanisms of P. vannamei to elevated carbonate alkalinity environments, we utilized 16S rRNA gene and transcriptome sequencing technologies to analyze intestinal bacteria and gene expressions within various tissues. Our investigation revealed notable changes in specific intestinal bacterial OTUs, whose abundances varied preceding the overall bacterial community, indicating the sensitivity to carbonate alkalinity exposure. These shifts are accompanied by a simplification in bacterial networks and alterations in pathogenic OTUs, notably Aeromonas OTU. Concurrently, gene expression variations were observed across the hepatopancreas, gills, muscles, and intestines, with decreasing numbers of DEGs in the mentioned order. Annotation of these DEGs revealed enrichments in pathways related to transport, catabolism, immune responses, circulatory functions, and lipid metabolism. Notably, correlations between specific intestinal bacterial OTUs and gene expression shifts were identified across these tissues. Several OTUs, attributed to Rhizobiales, Saccharimonadales, Acidovora, and Aeromona, exhibited a correlation with DEGs in all four tissues, primarily associated with amino acid metabolism, signal transduction, and transport and catabolism pathways. Our study provides comprehensive insights into the dynamic responses of P. vannamei to elevated carbonate alkalinity stress. These findings contribute crucial knowledge for effective P. vannamei cultivation in saline-alkaline water, advancing our understanding in this field.


Asunto(s)
Penaeidae , Animales , ARN Ribosómico 16S , Perfilación de la Expresión Génica/veterinaria , Carbonatos , Bacterias , Agua , Transcriptoma
9.
Fish Shellfish Immunol ; 144: 109258, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042226

RESUMEN

Large yellow croaker (Larimichthys crocea) is the most productive marine fish in China. Cryptocaryon irritans is an extremely destructive parasite that causes great economic losses in large yellow croaker aquaculture industry. Therefore, it is very necessary to study the immune response of large yellow croaker in response to C. irritans infection. In this study, the transcriptomic profiles of large yellow croaker were sequenced and analyzed in the brain and head kidney at 72 h after C. irritans infection. Cytokines and chemokines related terms were significantly enriched based on the GO enrichment of down-regulated differentially expressed genes (DEGs) from the head kidney. Meanwhile, cytokine-cytokine receptor interaction was significantly enriched based on the KEGG enrichment of up-regulated DEGs from the brain and down-regulated DEGs from the head kidney, respectively. Moreover, the majority of inflammation-related DEGs were significantly up-regulated in the brain, but distinctly down-regulated in the head kidney. These results showed that the brain and head kidney might play different roles against C. irritans infection, and the inflammatory response of large yellow croaker may be restrained during C. irritans infection. Taken together, the transcriptomic analyses will be helpful to more comprehensively understand the immune mechanism of teleost against C. irritans infection, and provide a theoretical basis for the prevention and treatment of Cryptosporidiosis.


Asunto(s)
Infecciones por Cilióforos , Cilióforos , Enfermedades de los Peces , Hymenostomatida , Perciformes , Animales , Cilióforos/fisiología , Proteínas de Peces/genética , Perfilación de la Expresión Génica/veterinaria
10.
Fish Shellfish Immunol ; 144: 109301, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110106

RESUMEN

Mytilus unguiculatus is an important economic bivalve species with wide consumption and aquaculture value. Disease is one of the primary limiting factors in mussel aquaculture, thus understanding the response of different tissues of M. unguiculatus to pathogens is crucial for disease prevention and control. In this study, we investigated the physiological and transcriptomic responses of the gills, adductor muscle, and mantle of M. unguiculatus infected with Vibrio alginolyticus. The results showed that V. alginolyticus infection caused inflammation and tissue structure changes in the gill, adductor muscle and mantle of M. unguiculatus. Meanwhile, the activities of superoxide dismutase and catalase in the three tissues increased, while the total antioxidant capacity decreased, suggesting that M. unguiculatus have an activated defense mechanism against infection-induced oxidative stress, despite a compromised total antioxidant capacity. Transcriptomic studies reveal that infected M. unguiculatus exhibits upregulation of endocytosis, lysosome activity, cellular apoptosis, and immune-related signaling pathways, indicating that M. unguiculatus responds to pathogen invasion by upregulating efferocytosis. Compared with the gill and adductor muscle, the mantle had a higher level of mytimycin, mytilin and myticin, and the three tissues also increased the expression of mytimycin to cope with the invasion of pathogens. In addition, the analysis of genes related to taste transduction pathways and muscle contraction and relaxation found that after infection with V. alginolyticus, M. unguiculatus may reduce appetite by inhibiting taste transduction in the gill, while improving muscle contraction of the adductor muscle and keeping the shell closed, to resist further invasion of pathogens and reduce the risk of pathogen transmission in the population.


Asunto(s)
Mytilus , Vibriosis , Vibrio , Animales , Mytilus/genética , Vibrio alginolyticus/fisiología , Antioxidantes , Vibriosis/veterinaria , Perfilación de la Expresión Génica/veterinaria , Vibrio/fisiología
11.
Fish Shellfish Immunol ; 148: 109472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438059

RESUMEN

The shrimp industry has historically been affected by viral and bacterial diseases. One of the most recent emerging diseases is Acute Hepatopancreatic Necrosis Disease (AHPND), which causes severe mortality. Despite its significance to sanitation and economics, little is known about the molecular response of shrimp to this disease. Here, we present the cellular and transcriptomic responses of Litopenaeus vannamei exposed to two Vibrio parahaemolyticus strains for 98 h, wherein one is non-pathogenic (VpN) and the other causes AHPND (VpP). Exposure to the VpN strain resulted in minor alterations in hepatopancreas morphology, including reductions in the size of R and B cells and detachments of small epithelial cells from 72 h onwards. On the other hand, exposure to the VpP strain is characterized by acute detachment of epithelial cells from the hepatopancreatic tubules and infiltration of hemocytes in the inter-tubular spaces. At the end of exposure, RNA-Seq analysis revealed functional enrichment in biological processes, such as the toll3 receptor signaling pathway, apoptotic processes, and production of molecular mediators involved in the inflammatory response of shrimp exposed to VpN treatment. The biological processes identified in the VpP treatment include superoxide anion metabolism, innate immune response, antimicrobial humoral response, and toll3 receptor signaling pathway. Furthermore, KEGG enrichment analysis revealed metabolic pathways associated with survival, cell adhesion, and reactive oxygen species, among others, for shrimp exposed to VpP. Our study proves the differential immune responses to two strains of V. parahaemolyticus, one pathogenic and the other nonpathogenic, enlarges our knowledge on the evolution of AHPND in L. vannamei, and uncovers unique perspectives on establishing genomic resources that may function as a groundwork for detecting probable molecular markers linked to the immune system in shrimp.


Asunto(s)
Penaeidae , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Hepatopáncreas/patología , Necrosis/microbiología , Enfermedad Aguda
12.
Fish Shellfish Immunol ; 146: 109357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38181891

RESUMEN

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.


Asunto(s)
Salmo salar , Animales , Salmo salar/genética , Regulación de la Expresión Génica , Riñón Cefálico , Células Endoteliales , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , ARN Nuclear Pequeño , Mamíferos
13.
Fish Shellfish Immunol ; 153: 109867, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39214263

RESUMEN

The study of mussels (Mytilus galloprovincialis) has grown in importance in recent years due to their high economic value and resistance to pathogens. Because of the biological characteristics revealed by mussel genome sequencing, this species is a valuable research model. The high genomic variability and diversity, particularly in immune genes, may be responsible for their resistance to pathogens found in seawater and continuously filtered and internalized by them. These facts, combined with the lack of proven mussel susceptibility to viruses in comparison to other bivalves such as oysters, result in a lack of studies on mussel antiviral response. We used RNA-seq to examine the genomic response of mussel hemocytes after they were exposed to poly I:C, simulating immune cell contact with viral dsRNA. Apoptosis and the molecular axis IRFs/STING-IFI44/IRGC1 were identified as the two main pathways in charge of the response but we also found a modulation of lncRNAs. Finally, in order to obtain new information about the response of mussels to putative natural challenges, we used VHSV virus (Viral Hemorrhagic Septicemia Virus) to run some functional analysis and confirm poly I:C's activity as an immunomodulator in a VHSV waterborne stimulation. Both, poly I:C as well as an injury stimulus (filtered sea water injection) accelerated the viral clearance by hemocytes and altered the expression of several immune genes, including IL-17, IRF1 and viperin.


Asunto(s)
Inmunidad Innata , Mytilus , Poli I-C , Transcriptoma , Animales , Poli I-C/farmacología , Mytilus/inmunología , Mytilus/genética , Mytilus/virología , Inmunidad Innata/genética , Novirhabdovirus/fisiología , Hemocitos/inmunología , Perfilación de la Expresión Génica/veterinaria
14.
Fish Shellfish Immunol ; 153: 109843, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181522

RESUMEN

Takifugu obscurus is a farmed fish of great economic importance in China. The rapid development of T. obscurus aquaculture industry has been accompanied by disease and low-temperature stress, resulting in huge economic losses. Cell lines are used extensively in teleost physiology and pathology as the most cost-effective platform for in vitro research. A novel gill cell line of T. obscurus (named TOG) was first successfully established, and passed through 52 generations. The optimal conditions for TOG growth were 20 % FBS concentration and 24 °C, TOG could be grown in both hypotonic (150 mOsmol-kg-1) and hypertonic (600 mOsmol-kg-1) environments. TOG was determined to be derived from T. obscurus by sequencing the mitochondrial COI gene. Karyotype analysis revealed that the chromosome number of TOG was 44 (2n = 44). Transfection experiment showed that TOG was able to express foreign genes. Furthermore, several immune-related genes were significantly up-regulated in TOG after LPS and poly (I:C) stimulation, including tlr3, isg15, il1ß and il10. Additionally, transcriptome analysis of TOG under low-temperature stress (24 °C, 18 °C, 12 °C, 10 °C and 8 °C) found that differentially expressed genes (DEGs) were significantly clustered in several immunological and energy metabolic pathways, and cold stress could disrupt the immune barrier and reduce immunity by downregulating the immune-related pathways. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that bule module and turquoise module, which were closely correlated with low temperature and the degree of fish damage, were both predominantly found in PPAR, NOD-like receptor and Toll-like receptor signaling pathway. Hub genes were identified in these two modules, including mre11, clpb, dhx15, ddx18 and utp15. TOG cell line will become an effective experimental platform for genetic and immunological research, and our results would help us gain a deeper insight into the molecular mechanism of cold tolerance in teleost.


Asunto(s)
Frío , Perfilación de la Expresión Génica , Branquias , Takifugu , Transcriptoma , Animales , Takifugu/genética , Branquias/metabolismo , Línea Celular , Perfilación de la Expresión Génica/veterinaria , Frío/efectos adversos , Inmunidad Innata/genética , Proteínas de Peces/genética
15.
Fish Shellfish Immunol ; 151: 109696, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871144

RESUMEN

The hepatopancreas is the biggest digestive organ in Amphioctopus fangsiao (A. fangsiao), but also undertakes critical functions like detoxification and immune defense. Generally, pathogenic bacteria or endotoxin from the gut microbiota would be arrested and detoxified in the hepatopancreas, which could be accompanied by the inevitable immune responses. In recent years, studies related to cephalopods immune have been increasing, but the molecular mechanisms associated with the hepatopancreatic immunity are still unclear. In this study, lipopolysaccharide (LPS), a major component of the cell wall of Gram-negative bacteria, was used for imitating bacteria infection to stimulate the hepatopancreas of A. fangsiao. To investigate the immune process happened in A. fangsiao hepatopancreas, we performed transcriptome analysis of hepatopancreas tissue after LPS injection, and identified 2615 and 1943 differentially expressed genes (DEGs) at 6 and 24 h post-injection, respectively. GO and KEGG enrichment analysis showed that these DEGs were mainly involved in immune-related biological processes and signaling pathways, including ECM-receptor interaction signaling pathway, Phagosome signaling pathway, Lysosome signaling pathway, and JAK-STAT signaling pathways. The function relationships between these DEGs were further analyzed through protein-protein interaction (PPI) networks. It was found that Mtor, Mapk14 and Atm were the three top interacting DEGs under LPS stimulation. Finally, 15 hub genes involving multiple KEGG signaling pathways and PPI relationships were selected for qRT-PCR validation. In this study, for the first time we explored the molecular mechanisms associated with hepatopancreatic immunity in A. fangsiao using a PPI networks approach, and provided new insights for understanding hepatopancreatic immunity in A. fangsiao.


Asunto(s)
Perfilación de la Expresión Génica , Hepatopáncreas , Lipopolisacáridos , Transcriptoma , Animales , Lipopolisacáridos/farmacología , Hepatopáncreas/inmunología , Perfilación de la Expresión Génica/veterinaria , Inmunidad Innata/genética , Transducción de Señal
16.
Fish Shellfish Immunol ; 148: 109473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458502

RESUMEN

Japanese flounder (Paralichthys olivaceus) is an economically crucial marine species, but diseases like hemorrhagic septicemia caused by Edwardsiella tarda have resulted in significant economic losses. E. tarda infects various hosts, and its pathogenicity in fish is not fully understood. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and are representative of typical PAMP molecules that cause activation of the immune system. The PoIEC cell line is a newly established intestinal epithelial cell line from P. olivaceus. In order to investigate whether it can be used as an in vitro model for studying the pathogenesis of E. tarda and LPS stimulation, we conducted RNA-seq experiments for the PoIECs model of E. tarda infection and LPS stimulation. In this study, transcriptome sequencing was carried out in the PoIEC cell line after treatment with LPS and E. tarda. A total of 62.52G of high-quality data from transcriptome sequencing results were obtained in nine libraries, of which an average of 87.96% data could be aligned to the P. olivaceus genome. Data analysis showed that 283 and 414 differentially expressed genes (DEGs) in the LPS versus Control (LPS-vs-Con) and E. tarda versus Control groups (Et-vs-Con), respectively, of which 60 DEGs were shared in two comparation groups. The GO terms were predominantly enriched in the extracellular space, inflammatory response, and cytokine activity in the LPS-vs-Con group, whereas GO terms were predominantly enriched in nucleus and positive regulation of transcription by RNA polymerase II in the Et-vs-Con group. KEGG analysis revealed that three immune-related pathways were co-enriched in both comparison groups, including the Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway, and Cytokine-cytokine receptor interaction. Five genes were randomly screened to confirm the validity and accuracy of the transcriptome data. These results suggest that PoIEC cell line can be an ideal in vitro model for studies of marine fish gut immunity and pathogenesis of Edwardsiellosis.


Asunto(s)
Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Lenguado , Animales , Lenguado/genética , Lipopolisacáridos/farmacología , Perfilación de la Expresión Génica/veterinaria , Citocinas/genética , Edwardsiella tarda/fisiología , Inmunidad
17.
Fish Shellfish Immunol ; 146: 109386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242261

RESUMEN

Red drum (Sciaenops ocellatus), as an important economical marine fish, has been affected by various bacterial diseases in recent years. Vibrio harveyi cause fatal vibriosis in S. ocellatus, leading to massive mortality and causing significant setbacks in aquaculture. However, the regulatory mechanisms of S. ocellatus response to V. harveyi infection are poorly understood. In this regard, we performed transcriptomic analysis with head kidney tissues of S. ocellatus after V. harveyi infection from 12 h to 48 h to reveal genes, gene expression profiles, and pathways involved in immune and inflammation responses. Specifically, a total of 9,599, 5,728, and 7144 differentially expressed genes (DEGs) were identified after V. harveyi infection at 12 h, 24 h, and 48 h, respectively, and 1,848 shared DEGs have been identified from the above three comparison groups. Subsequent pathway analysis revealed that the shared DEGs following V. harveyi were involved in complement and coagulation cascades (C1R, C1QC, C3, C4, C5, C7, C8A, C8B, C8G, C9, CFB, CFH, and CFI), MAPK signaling pathway, chemokine signaling pathway (CCL19, CXCL8, CXCL12, CXCL14, CCR4, CCR7, and CXCR2), PPAR signaling pathway (PPAR-α, PPAR-γ and PPAR-ß), and TNF signaling pathway. Finally, the expression patterns of DEGs in head kidney tissues and S. ocellatus macrophages were validated by qRT-PCR, suggesting the reliability of RNA sequencing for gene expression analysis. This dynamic transcriptome analyses provided insights into gene expression regulation and immune related pathways involved in S. ocellatus after V. harveyi infection, and provides useful information for further study on the immune defense mechanisms in S. ocellatus as well as other teleost species.


Asunto(s)
Enfermedades de los Peces , Perciformes , Vibriosis , Vibrio , Animales , Transcriptoma , Receptores Activados del Proliferador del Peroxisoma/genética , Reproducibilidad de los Resultados , Vibrio/fisiología , Perfilación de la Expresión Génica/veterinaria , Perciformes/genética
18.
Fish Shellfish Immunol ; 144: 109275, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081443

RESUMEN

MicroRNAs play crucial roles in various biological processes, including but not limited to differentiation, development, disease, and immunity. However, their immunoregulatory roles in half-smooth tongue sole are lacking. Our previous studies indicated that miR-722 could target C5aR1 to modulate the complement pathway to alleviate inflammatory response and even affect the mortality after the bacterial infection with Vibrio anguillarum. Driven by the purpose of revealing the underlying mechanisms, in this study, we investigated the effects of miR-722 on the gene expression and alternative splicing (AS) in the liver of half-smooth tongue sole after Vibrio anguillarum infection, with the approach of miR-722 overexpression/silencing and subsequent RNA-seq. Among the different comparisons, the I group (miR-722 inhibitor and V. anguillarum) versus blank control (PBS) exhibited the highest number of differentially expressed genes (DEGs), suggesting that the immune response was overactivated after inhibiting the miR-722. In addition, enrichment analyses were performed to reveal the functions of DEGs and differential AS (DAS) genes, reflecting the enrichment of RNA splicing and immune-related pathways including NF-κB and T cell receptor signaling pathway. Comparing the M group (miR-722 mimic and V. anguillarum) with the negative control (random sequence and V. anguillarum), two immune-related genes, cd48 and mapk8, were differentially expressed, of which mapk8 was also differentially spliced, indicating their importance in the immune response. Furthermore, representative gene analysis was performed, suggesting their corresponding functional changes due to AS. To verify the RNA-seq data, quantitative real-time PCR was employed with twenty pairs of primers for DEGs and DAS events. Overall, our results demonstrated that miR-722 could mediate the transcriptome-wide changes of gene expression and AS in half-smooth tongue sole, and provided insights into the regulatory role of miR-722 in immune responses, laying the foundation for further functional analyses and practical applications in aquaculture.


Asunto(s)
Enfermedades de los Peces , Peces Planos , MicroARNs , Vibriosis , Vibrio , Animales , Empalme Alternativo , Vibrio/fisiología , Transcriptoma , Hígado/metabolismo , Peces/genética , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica/veterinaria
19.
Fish Shellfish Immunol ; 153: 109801, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096983

RESUMEN

Ichthyophthirius multifiliis is a parasite that poses a considerable threat to aquaculture and the ornamental fish industry, but with limited effective treatment options available. This study employed RT-qPCR to detect and analyze the expression changes of partial toll-like receptor (TLR) genes (TLR1 and TLR21), adapter protein and signal transduction molecule genes (MyD88, TRIF, NF-κB, IRAK4, and IRF3), and cytokines (IL-6, IL-8, IL-13, CXC-α and CXCR1), as well as complement C3, in the skin, gill, fin, liver, head kidney and spleen of Rhinogobio ventralis under different infection conditions. Additionally, tissue sections and scanning electron microscopy were utilized to observe the pathological changes in the gills and fins of R. ventralis after infection with I. multifiliis. The expression patterns of TLR-related DEGs (differentially expressed genes) in diseased wild fish were analyzed, revealing upregulation of TLR1, TLR21, MyD88, NF-κB, IRAK4, TRIF, IRF3, IL-6, IL-8, IL-13, CXC-α, CXCR1, and C3 genes in various tissues, indicating that these genes may be involved in the immune response of R. ventralis to I. multifiliis infection. To further analyze the gene expression of sampled from the field, an artificial infection model of R. ventralis was established under laboratory conditions, with additional sampling from the skin and fins. These genes continued to show varying degrees of upregulation, but the results were not entirely consistent with those from Wudongde samples, which may be due to the more complex environment in the wild or differences in the degree of I. multifiliis infection in wild fish. The infection of I. multifiliis caused severe damage to the gills and fins of R. ventralis, characterized by extensive secretions on the gill and fin surfaces, with the presence of attached I. multifiliis trophonts, including damage and loss of gill filaments, swollen gill lamellae, and deformed gill plates, as well as cell proliferation and necrosis of gill epithelial cells. This study sheds light on the role of the TLR signaling pathway in resisting I. multifiliis infection and its associated histopathological changes in R. ventralis, providing valuable insights for the prevention and treatment of I. multifiliis infection in R. ventralis.


Asunto(s)
Infecciones por Cilióforos , Enfermedades de los Peces , Proteínas de Peces , Hymenostomatida , Inmunidad Innata , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Hymenostomatida/fisiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Infecciones por Cilióforos/veterinaria , Infecciones por Cilióforos/inmunología , Inmunidad Innata/genética , Perfilación de la Expresión Génica/veterinaria , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
20.
Fish Shellfish Immunol ; 153: 109827, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39134232

RESUMEN

MicroRNAs (miRNAs) are a category of small non-coding RNAs regarded as vital regulatory factors in various biological processes, especially immune regulation. The differently expressed miRNAs in Macrobrachium rosenbergii after the challenge of Vibrio parahaemolyticus were identified using high-throughput sequencing. A total of 18 known as well as 12 novel miRNAs were markedly differently expressed during the bacterial infection. The results of the target gene prediction and enrichment analysis indicated that a total of 230 target genes involved in a large variety of signaling pathways and biological processes were mediated by the miRNAs identified in the current research. Additionally, the effects of novel-miR-56, a representative differentially expressed miRNA identified in the previous infection experiment, on the immune-related gene expression in M. rosenbergii were explored. The expression of the immune-related genes including Spätzle1(Spz1), Spz4, Toll-like receptor 1 (TLR1), TLR2, TLR3, immune deficiency (IMD), myeloid differentiation factor 88 (MyD88), anti-lipopolysaccharide factor 1 (ALF1), crustin1, as well as prophenoloxidase (proPO) was significantly repressed in the novel-miR-56-overexpressed prawns. The expression of these genes tested in the novel-miR-56-overexpressed M. rosenbergii was still signally lower than the control in the subsequent V. parahaemolyticus challenge, despite the gene expression in each treatment increased significantly after the infection. Additionally, the cumulative mortality of the agomiR-56-treated prawns was significantly higher than the other treatments post the bacterial challenge. These results suggested that novel-miR-56 might function as a negative regulator of the immune-related gene expression of M. rosenbergii in the innate immune defense against V. parahaemolyticus.


Asunto(s)
Inmunidad Innata , MicroARNs , Palaemonidae , Vibrio parahaemolyticus , Animales , Vibrio parahaemolyticus/fisiología , Palaemonidae/inmunología , Palaemonidae/genética , MicroARNs/genética , MicroARNs/inmunología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda