Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.773
Filtrar
Más filtros

Colección SES
Publication year range
1.
Annu Rev Genet ; 54: 71-92, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228413

RESUMEN

Model organisms are extensively used in research as accessible and convenient systems for studying a particular area or question in biology. Traditionally, only a limited number of organisms have been studied in detail, but modern genomic tools are enabling researchers to extend beyond the set of classical model organisms to include novel species from less-studied phylogenetic groups. This review focuses on model species for an important group of multicellular organisms, the brown algae. The development of genetic and genomic tools for the filamentous brown alga Ectocarpus has led to it emerging as a general model system for this group, but additional models, such as Fucus or Dictyota dichotoma, remain of interest for specific biological questions. In addition, Saccharina japonica has emerged as a model system to directly address applied questions related to algal aquaculture. We discuss the past, present, and future of brown algal model organisms in relation to the opportunities and challenges in brown algal research.


Asunto(s)
Phaeophyceae/genética , Animales , Genoma/genética , Humanos , Modelos Biológicos , Filogenia
2.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38512707

RESUMEN

In many animals and flowering plants, sex determination occurs in the diploid phase of the life cycle with XX/XY or ZW/ZZ sex chromosomes. However, in early diverging plants and most macroalgae, sex is determined by female (U) or male (V) sex chromosomes in a haploid phase called the gametophyte. Once the U and V chromosomes unite at fertilization to produce a diploid sporophyte, sex determination no longer occurs, raising key questions about the fate of the U and V sex chromosomes in the sporophyte phase. Here, we investigate genetic and molecular interactions of the UV sex chromosomes in both the haploid and diploid phases of the brown alga Ectocarpus. We reveal extensive developmental regulation of sex chromosome genes across its life cycle and implicate the TALE-HD transcription factor OUROBOROS in suppressing sex determination in the diploid phase. Small RNAs may also play a role in the repression of a female sex-linked gene, and transition to the diploid sporophyte coincides with major reconfiguration of histone H3K79me2, suggesting a more intricate role for this histone mark in Ectocarpus development than previously appreciated.


Asunto(s)
Estadios del Ciclo de Vida , Phaeophyceae , Animales , Phaeophyceae/genética , Factores de Transcripción/genética , Cromosomas Sexuales/genética , Haploidia
3.
Development ; 150(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882832

RESUMEN

In most organisms, 3D growth takes place at the onset of embryogenesis. In some brown algae, 3D growth occurs later in development, when the organism consists of several hundred cells. We studied the cellular events that take place when 3D growth is established in the embryo of the brown alga Saccharina, a kelp species. Semi-thin sections, taken from where growth shifts from 2D to 3D, show that 3D growth first initiates from symmetrical cell division in the monolayered lamina, and then is enhanced through a series of asymmetrical cell divisions in a peripheral monolayer of cells called the meristoderm. Then, daughter cells rapidly differentiate into cortical and medullary cells, characterised by their position, size and shape. In essence, 3D growth in kelps is based on a series of differentiation steps that occur rapidly after the initiation of a bilayered lamina, followed by further growth of the established differentiated tissues. Our study depicts the cellular landscape necessary to study cell-fate programming in the context of a novel mode of 3D growth in an organism phylogenetically distant from plants and animals.


Asunto(s)
Escarabajos , Kelp , Phaeophyceae , Animales , División Celular , Diferenciación Celular , Desarrollo Embrionario
4.
Development ; 150(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36786333

RESUMEN

The first mitotic division of the initial cell is a key event in all multicellular organisms and is associated with the establishment of major developmental axes and cell fates. The brown alga Ectocarpus has a haploid-diploid life cycle that involves the development of two multicellular generations: the sporophyte and the gametophyte. Each generation deploys a distinct developmental programme autonomously from an initial cell, the first cell division of which sets up the future body pattern. Here, we show that mutations in the BASELESS (BAS) gene result in multiple cellular defects during the first cell division and subsequent failure to produce basal structures during both generations. BAS encodes a type B″ regulatory subunit of protein phosphatase 2A (PP2A), and transcriptomic analysis identified potential effector genes that may be involved in determining basal cell fate. The bas mutant phenotype is very similar to that observed in distag (dis) mutants, which lack a functional Tubulin-binding co-factor Cd1 (TBCCd1) protein, indicating that TBCCd1 and PP2A are two essential components of the cellular machinery that regulates the first cell division and mediates basal cell fate determination.


Asunto(s)
Phaeophyceae , Proteína Fosfatasa 2 , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Mutación/genética , Perfilación de la Expresión Génica , Procesamiento Proteico-Postraduccional , Phaeophyceae/genética , Phaeophyceae/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(1): e2210561119, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36584294

RESUMEN

Brown algae annually convert gigatons of carbon dioxide into carbohydrates, including the complex extracellular matrix polysaccharide fucoidan. Due to its persistence in the environment, fucoidan is potentially a pathway for marine carbon sequestration. Rates of fucoidan secretion by brown algae remain unknown due to the challenge of identifying and quantifying complex polysaccharides in seawater. We adapted the techniques of anion exchange chromatography, enzyme-linked immunosorbent assay, and biocatalytic enzyme-based assay for detection and quantification of fucoidan. We found the brown alga Fucus vesiculosus at the Baltic Sea coast of south-west Finland to secrete 0.3% of their biomass as fucoidan per day. Dissolved fucoidan concentrations in seawater adjacent to algae reached up to 0.48 mg L-1. Fucoidan accumulated during incubations of F. vesiculosus, significantly more in light than in darkness. Maximum estimation by acid hydrolysis indicated fucoidan secretion at a rate of 28 to 40 mg C kg-1 h-1, accounting for 44 to 50% of all exuded dissolved organic carbon. Composed only of carbon, oxygen, hydrogen, and sulfur, fucoidan secretion does not consume nutrients enabling carbon sequestration independent of algal growth. Extrapolated over a year, the algae sequester more carbon into secreted fucoidan than their biomass. The global utility of fucoidan secretion is an alternative pathway for carbon dioxide removal by brown algae without the need to harvest or bury algal biomass.


Asunto(s)
Dióxido de Carbono , Phaeophyceae , Dióxido de Carbono/metabolismo , Polisacáridos/metabolismo , Phaeophyceae/metabolismo , Océanos y Mares
6.
Semin Cell Dev Biol ; 134: 90-102, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35317961

RESUMEN

Brown algae are a group of multicellular, heterokont algae that have convergently evolved developmental complexity that rivals that of embryophytes, animals or fungi. Early in development, brown algal zygotes establish a basal and an apical pole, which will become respectively the basal system (holdfast) and the apical system (thallus) of the adult alga. Brown algae are interesting models for understanding the establishment of cell polarity in a broad evolutionary context, because they exhibit a large diversity of life cycles, reproductive strategies and, importantly, their zygotes are produced in large quantities free of parental tissue, with symmetry breaking and asymmetric division taking place in a highly synchronous manner. This review describes the current knowledge about the establishment of the apical-basal axis in the model brown seaweeds Ectocarpus, Dictyota, Fucus and Saccharina, highlighting the advantages and specific interests of each system. Ectocarpus is a genetic model system that allows access to the molecular basis of early development and life-cycle control over apical-basal polarity. The oogamous brown alga Fucus, together with emerging comparative models Dictyota and Saccharina, emphasize the diversity of strategies of symmetry breaking in determining a cell polarity vector in brown algae. A comparison with symmetry-breaking mechanisms in land plants, animals and fungi, reveals that the one-step zygote polarisation of Fucus compares well to Saccharomyces budding and Arabidopsis stomata development, while the two-phased symmetry breaking in the Dictyota zygote compares to Schizosaccharomyces fission, the Caenorhabditis anterior-posterior zygote polarisation and Arabidopsis prolate pollen polarisation. The apical-basal patterning in Saccharina zygotes on the other hand, may be seen as analogous to that of land plants. Overall, brown algae have the potential to bring exciting new information on how a single cell gives rise to an entire complex body plan.


Asunto(s)
Arabidopsis , Phaeophyceae , Animales , Cigoto , Phaeophyceae/genética , Phaeophyceae/metabolismo , Polaridad Celular , División Celular , Plantas
7.
Semin Cell Dev Biol ; 134: 103-111, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35396168

RESUMEN

Brown algae are complex multicellular eukaryotes whose cells possess a cell wall, which is an important structure that regulates cell size and shape. Alginate and fucose-containing sulfated polysaccharides (FCSPs) are two carbohydrate types that have major roles in influencing the mechanical properties of the cell wall (i.e. increasing or decreasing wall stiffness), which in turn regulate cell expansion, division, adhesion, and other processes; however, how brown algal cell wall structure regulates its mechanical properties, and how this relationship influences cellular growth and organismal development, is not well-understood. This chapter is focused on reviewing what we currently know about how the roles of alginates and FCSPs in brown algal developmental processes, as well as how they influence the structural and mechanical properties of cell walls. Additionally, we discuss how brown algal mutants may be leveraged to learn more about the underlying mechanisms that regulate cell wall structure, mechanics, and developmental processes, and finally we propose questions to guide future research with the use of emerging technologies.


Asunto(s)
Phaeophyceae , Phaeophyceae/genética , Phaeophyceae/química , Phaeophyceae/metabolismo , Pared Celular/química , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Proliferación Celular
8.
Semin Cell Dev Biol ; 134: 112-124, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35307283

RESUMEN

In brown algae, the extracellular matrix (ECM) and its constitutive polymers play crucial roles in specialized functions, including algal growth and development. In this review we offer an integrative view of ECM construction in brown algae. We briefly report the chemical composition of its main constituents, and how these are interlinked in a structural model. We examine the ECM assembly at the tissue and cell level, with consideration on its structure in vivo and on the putative subcellular sites for the synthesis of its main constituents. We further discuss the biosynthetic pathways of two major polysaccharides, alginates and sulfated fucans, and the progress made beyond the candidate genes with the biochemical validation of encoded proteins. Key enzymes involved in the elongation of the glycan chains are still unknown and predictions have been made at the gene level. Here, we offer a re-examination of some glycosyltransferases and sulfotransferases from published genomes. Overall, our analysis suggests novel investigations to be performed at both the cellular and biochemical levels. First, to depict the location of polysaccharide structures in tissues. Secondly, to identify putative actors in the ECM synthesis to be functionally studied in the future.


Asunto(s)
Phaeophyceae , Phaeophyceae/genética , Phaeophyceae/química , Phaeophyceae/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Genoma , Matriz Extracelular/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(38): e2203708119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095219

RESUMEN

Fucoxanthin is a major light-harvesting pigment in ecologically important algae such as diatoms, haptophytes, and brown algae (Phaeophyceae). Therefore, it is a major driver of global primary productivity. Species of these algal groups are brown colored because the high amounts of fucoxanthin bound to the proteins of their photosynthetic machineries enable efficient absorption of green light. While the structure of these fucoxanthin-chlorophyll proteins has recently been resolved, the biosynthetic pathway of fucoxanthin is still unknown. Here, we identified two enzymes central to this pathway by generating corresponding knockout mutants of the diatom Phaeodactylum tricornutum that are green due to the lack of fucoxanthin. Complementation of the mutants with the native genes or orthologs from haptophytes restored fucoxanthin biosynthesis. We propose a complete biosynthetic path to fucoxanthin in diatoms and haptophytes based on the carotenoid intermediates identified in the mutants and in vitro biochemical assays. It is substantially more complex than anticipated and reveals diadinoxanthin metabolism as the central regulatory hub connecting the photoprotective xanthophyll cycle and the formation of fucoxanthin. Moreover, our data show that the pathway evolved by repeated duplication and neofunctionalization of genes for the xanthophyll cycle enzymes violaxanthin de-epoxidase and zeaxanthin epoxidase. Brown algae lack diadinoxanthin and the genes described here and instead use an alternative pathway predicted to involve fewer enzymes. Our work represents a major step forward in elucidating the biosynthesis of fucoxanthin and understanding the evolution, biogenesis, and regulation of the photosynthetic machinery in algae.


Asunto(s)
Diatomeas , Phaeophyceae , Xantófilas , Vías Biosintéticas/genética , Carotenoides/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Phaeophyceae/metabolismo , Xantófilas/metabolismo
10.
Plant J ; 114(2): 246-261, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36738111

RESUMEN

Like other organisms, brown algae are subject to diseases caused by bacteria, fungi, and viruses. Brown algal immunity mechanisms are not well characterized; however, there is evidence suggesting that pathogen receptors exist in brown algae. One key protein family likely associated with brown algal innate immunity possesses an NB-ARC domain analogous to innate immune proteins in plants and animals. In this study, we conducted an extensive survey of NB-ARC genes in brown algae and obtained insights into the domain organization and evolutionary history of the encoded proteins. Our data show that brown algae possess an ancient NB-ARC-tetratricopeptide repeat (NB-TPR) domain architecture. We identified an N-terminal effector domain, the four-helix bundle, which was not previously found associated with NB-ARC domains. The phylogenetic tree including NB-ARC domains from all kingdoms of life suggests the three clades of brown algal NB-TPRs are likely monophyletic, whereas their TPRs seem to have distinct origins. One group of TPRs exhibit intense exon shuffling, with various alternative splicing and diversifying selection acting on them, suggesting exon shuffling is an important mechanism for evolving ligand-binding specificities. The reconciliation of gene duplication and loss events of the NB-ARC genes reveals that more independent gene gains than losses have occurred during brown algal evolution, and that tandem duplication has played a major role in the expansion of NB-ARC genes. Our results substantially enhance our understanding of the evolutionary history and exon shuffling mechanisms of the candidate innate immune repertoire of brown algae.


Asunto(s)
Empalme Alternativo , Phaeophyceae , Animales , Filogenia , Empalme Alternativo/genética , Proteínas/genética , Exones , Phaeophyceae/genética , Evolución Molecular
11.
BMC Genomics ; 25(1): 747, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39080531

RESUMEN

BACKGROUND: Organellar genomes have become increasingly essential for studying genetic diversity, phylogenetics, and evolutionary histories of seaweeds. The order Dictyotales (Dictyotophycidae), a highly diverse lineage within the Phaeophyceae, is long-term characterized by a scarcity of organellar genome datasets compared to orders of the brown algal crown radiation (Fucophycidae). RESULTS: We sequenced the organellar genomes of Padina usoehtunii, a representative of the order Dictyotales, to investigate the structural and evolutionary differences by comparing to five other major brown algal orders. Our results confirmed previously reported findings that the rate of structural rearrangements in chloroplast genomes is higher than that in mitochondria, whereas mitochondrial sequences exhibited a higher substitution rate compared to chloroplasts. Such evolutionary patterns contrast with land plants and green algae. The expansion and contraction of the inverted repeat (IR) region in the chloroplast correlated with the changes in the number of boundary genes. Specifically, the size of the IR region influenced the position of the boundary gene rpl21, with complete rpl21 genes found within the IR region in Dictyotales, Sphacelariales and Ectocarpales, while the rpl21 genes in Desmarestiales, Fucales, and Laminariales span both the IR and short single copy (SSC) regions. The absence of the rbcR gene in the Dictyotales may indicate an endosymbiotic transfer from the chloroplast to the nuclear genome. Inversion of the SSC region occurred at least twice in brown algae. Once in a lineage only represented by the Ectocarpales in the present study and once in a lineage only represented by the Fucales. Photosystem genes in the chloroplasts experienced the strongest signature of purifying selection, while ribosomal protein genes in both chloroplasts and mitochondria underwent a potential weak purifying selection. CONCLUSIONS: Variations in chloroplast genome structure among different brown algal orders are evolutionarily linked to their phylogenetic positions in the Phaeophyceae tree. Chloroplast genomes harbor more structural rearrangements than the mitochondria, despite mitochondrial genes exhibiting faster mutation rates. The position and the change in the number of boundary genes likely shaped the IR regions in the chloroplast, and the produced structural variability is important mechanistically to create gene diversity in brown algal chloroplast.


Asunto(s)
Evolución Molecular , Genoma del Cloroplasto , Phaeophyceae , Filogenia , Phaeophyceae/genética , Genoma Mitocondrial , Secuencias Invertidas Repetidas/genética , Cloroplastos/genética
12.
J Am Chem Soc ; 146(27): 18320-18330, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38916244

RESUMEN

Fucoidan, a sulfated polysaccharide found in algae, plays a central role in marine carbon sequestration and exhibits a wide array of bioactivities. However, the molecular diversity and structural complexity of fucoidan hinder precise structure-function studies. To address this, we present an automated method for generating well-defined linear and branched α-fucan oligosaccharides. Our syntheses include oligosaccharides with up to 20 cis-glycosidic linkages, diverse branching patterns, and 11 sulfate monoesters. In this study, we demonstrate the utility of these oligosaccharides by (i) characterizing two endo-acting fucoidan glycoside hydrolases (GH107), (ii) utilizing them as standards for NMR studies to confirm suggested structures of algal fucoidans, and (iii) developing a fucoidan microarray. This microarray enabled the screening of the molecular specificity of four monoclonal antibodies (mAb) targeting fucoidan. It was found that mAb BAM4 has cross-reactivity to ß-glucans, while mAb BAM2 has reactivity to fucoidans with 4-O-sulfate esters. Knowledge of the mAb BAM2 epitope specificity provided evidence that a globally abundant marine diatom, Thalassiosira weissflogii, synthesizes a fucoidan with structural homology to those found in brown algae. Automated glycan assembly provides access to fucoidan oligosaccharides. These oligosaccharides provide the basis for molecular level investigations into fucoidan's roles in medicine and carbon sequestration.


Asunto(s)
Oligosacáridos , Polisacáridos , Polisacáridos/química , Polisacáridos/síntesis química , Oligosacáridos/química , Oligosacáridos/síntesis química , Diatomeas/química , Diatomeas/metabolismo , Automatización , Anticuerpos Monoclonales/química , Phaeophyceae/química , Glicósido Hidrolasas/metabolismo
13.
Mol Biol Evol ; 40(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37140022

RESUMEN

The spontaneous mutation rate µ is a crucial parameter to understand evolution and biodiversity. Mutation rates are highly variable across species, suggesting that µ is susceptible to selection and drift and that species life cycle and life history may impact its evolution. In particular, asexual reproduction and haploid selection are expected to affect the mutation rate, but very little empirical data are available to test this expectation. Here, we sequence 30 genomes of a parent-offspring pedigree in the model brown alga Ectocarpus sp.7, and 137 genomes of an interspecific cross of the closely related brown alga Scytosiphon to have access to the spontaneous mutation rate of representative organisms of a complex multicellular eukaryotic lineage outside animals and plants, and to evaluate the potential impact of life cycle on the mutation rate. Brown algae alternate between a haploid and a diploid stage, both multicellular and free living, and utilize both sexual and asexual reproduction. They are, therefore, excellent models to empirically test expectations of the effect of asexual reproduction and haploid selection on mutation rate evolution. We estimate that Ectocarpus has a base substitution rate of µbs = 4.07 × 10-10 per site per generation, whereas the Scytosiphon interspecific cross had µbs = 1.22 × 10-9. Overall, our estimations suggest that these brown algae, despite being multicellular complex eukaryotes, have unusually low mutation rates. In Ectocarpus, effective population size (Ne) could not entirely explain the low µbs. We propose that the haploid-diploid life cycle, combined with extensive asexual reproduction, may be additional key drivers of the mutation rate in these organisms.


Asunto(s)
Diploidia , Phaeophyceae , Animales , Haploidia , Tasa de Mutación , Eucariontes , Estadios del Ciclo de Vida/genética , Plantas , Phaeophyceae/genética
14.
Environ Microbiol ; 26(1): e16564, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38151764

RESUMEN

Different marine seaweed species have been shown to harbour specific bacterial communities, however, the extent to which vertical symbiont transmission from parents to offspring contributes to host-specificity is unclear. Here we use fluorescence and electron microscopy as well as 16S rRNA gene-based community analysis to investigate symbiont transmission in members of the three major seaweed groups (green Chlorophyta, red Rhodophyta and brown Phaeophyceae). We found seaweeds employ diverse strategies to transfer symbionts to their progeny. For instance, the green Ulva australis does not appear to have the capacity for vertical transmission. In contrast, the brown Phyllospora comosa adopts a non-selective vertical transmission. The red Delisea pulchra demonstrates weak selectivity in symbiont transmission, while the brown Hormosira banksii exhibits a strongly selective symbiont transfer. Mucilage on the gametes appears to facilitate vertical transmission and transferred bacteria have predicted properties that could support early development of the seaweeds. Previous meta-analysis has indicated that vertical transmission is rare in aquatic compared to terrestrial environments, however, our results contribute to the growing evidence that this might not be the case and that instead vertical transmission with various degrees of symbiont selection occurs in the ecologically important group of seaweeds.


Asunto(s)
Chlorophyta , Phaeophyceae , Rhodophyta , Algas Marinas , ARN Ribosómico 16S/genética , Algas Marinas/microbiología , Rhodophyta/microbiología , Chlorophyta/genética , Bacterias/genética
15.
Annu Rev Genet ; 50: 133-154, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27617970

RESUMEN

The life cycles of eukaryotes alternate between haploid and diploid phases, which are initiated by meiosis and gamete fusion, respectively. In both ascomycete and basidiomycete fungi and chlorophyte algae, the haploid-to-diploid transition is regulated by a pair of paralogous homeodomain protein encoding genes. That a common genetic program controls the haploid-to-diploid transition in phylogenetically disparate eukaryotic lineages suggests this may be the ancestral function for homeodomain proteins. Multicellularity has evolved independently in many eukaryotic lineages in either one or both phases of the life cycle. Organisms, such as land plants, exhibiting a life cycle whereby multicellular bodies develop in both the haploid and diploid phases are often referred to as possessing an alternation of generations. We review recent progress on understanding the genetic basis for the land plant alternation of generations and highlight the roles that homeodomain-encoding genes may have played in the evolution of complex multicellularity in this lineage.


Asunto(s)
Evolución Biológica , Plantas/genética , Briófitas/genética , Chlorophyta/genética , Diploidia , Eucariontes , Hongos/genética , Haploidia , Proteínas de Homeodominio/genética , Magnoliopsida/genética , Phaeophyceae/genética , Filogenia , Rhodophyta/genética
16.
Proc Biol Sci ; 291(2015): 20232253, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228502

RESUMEN

Kelp forests are threatened by ocean warming, yet effects of co-occurring drivers such as CO2 are rarely considered when predicting their performance in the future. In Australia, the kelp Ecklonia radiata forms extensive forests across seawater temperatures of approximately 7-26°C. Cool-edge populations are typically considered more thermally tolerant than their warm-edge counterparts but this ignores the possibility of local adaptation. Moreover, it is unknown whether elevated CO2 can mitigate negative effects of warming. To identify whether elevated CO2 could improve thermal performance of a cool-edge population of E. radiata, we constructed thermal performance curves for growth and photosynthesis, under both current and elevated CO2 (approx. 400 and 1000 µatm). We then modelled annual performance under warming scenarios to highlight thermal susceptibility. Elevated CO2 had minimal effect on growth but increased photosynthesis around the thermal optimum. Thermal optima were approximately 16°C for growth and approximately 18°C for photosynthesis, and modelled performance indicated cool-edge populations may be vulnerable in the future. Our findings demonstrate that elevated CO2 is unlikely to offset negative effects of ocean warming on the kelp E. radiata and highlight the potential susceptibility of cool-edge populations to ocean warming.


Asunto(s)
Kelp , Phaeophyceae , Agua de Mar , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , Dióxido de Carbono , Cambio Climático , Temperatura , Océanos y Mares , Calentamiento Global
17.
Appl Environ Microbiol ; 90(2): e0202523, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38259074

RESUMEN

Marine bacteria play important roles in the degradation and cycling of algal polysaccharides. However, the dynamics of epiphytic bacterial communities and their roles in algal polysaccharide degradation during kelp decay are still unclear. Here, we performed metagenomic analyses to investigate the identities and predicted metabolic abilities of epiphytic bacterial communities during the early and late decay stages of the kelp Saccharina japonica. During kelp decay, the dominant epiphytic bacterial communities shifted from Gammaproteobacteria to Verrucomicrobia and Bacteroidetes. In the early decay stage of S. japonica, epiphytic bacteria primarily targeted kelp-derived labile alginate for degradation, among which the gammaproteobacterial Vibrionaceae (particularly Vibrio) and Psychromonadaceae (particularly Psychromonas), abundant in alginate lyases belonging to the polysaccharide lyase (PL) families PL6, PL7, and PL17, were key alginate degraders. More complex fucoidan was preferred to be degraded in the late decay stage of S. japonica by epiphytic bacteria, predominantly from Verrucomicrobia (particularly Lentimonas), Pirellulaceae of Planctomycetes (particularly Rhodopirellula), Pontiellaceae of Kiritimatiellota, and Flavobacteriaceae of Bacteroidetes, which depended on using glycoside hydrolases (GHs) from the GH29, GH95, and GH141 families and sulfatases from the S1_15, S1_16, S1_17, and S1_25 families to depolymerize fucoidan. The pathways for algal polysaccharide degradation in dominant epiphytic bacterial groups were reconstructed based on analyses of metagenome-assembled genomes. This study sheds light on the roles of different epiphytic bacteria in the degradation of brown algal polysaccharides.IMPORTANCEKelps are important primary producers in coastal marine ecosystems. Polysaccharides, as major components of brown algal biomass, constitute a large fraction of organic carbon in the ocean. However, knowledge of the identities and pathways of epiphytic bacteria involved in the degradation process of brown algal polysaccharides during kelp decay is still elusive. Here, based on metagenomic analyses, the succession of epiphytic bacterial communities and their metabolic potential were investigated during the early and late decay stages of Saccharina japonica. Our study revealed a transition in algal polysaccharide-degrading bacteria during kelp decay, shifting from alginate-degrading Gammaproteobacteria to fucoidan-degrading Verrucomicrobia, Planctomycetes, Kiritimatiellota, and Bacteroidetes. A model for the dynamic degradation of algal cell wall polysaccharides, a complex organic carbon, by epiphytic microbiota during kelp decay was proposed. This study deepens our understanding of the role of epiphytic bacteria in marine algal carbon cycling as well as pathogen control in algal culture.


Asunto(s)
Algas Comestibles , Flavobacteriaceae , Kelp , Laminaria , Microbiota , Phaeophyceae , Humanos , Metagenoma , Kelp/metabolismo , Polisacáridos/metabolismo , Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Carbono/metabolismo
18.
Annu Rev Microbiol ; 73: 267-291, 2019 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-31150584

RESUMEN

Algae are photosynthetic eukaryotes whose taxonomic breadth covers a range of life histories, degrees of cellular and developmental complexity, and diverse patterns of sexual reproduction. These patterns include haploid- and diploid-phase sex determination, isogamous mating systems, and dimorphic sexes. Despite the ubiquity of sexual reproduction in algae, their mating-type-determination and sex-determination mechanisms have been investigated in only a limited number of representatives. These include volvocine green algae, where sexual cycles and sex-determining mechanisms have shed light on the transition from mating types to sexes, and brown algae, which are a model for UV sex chromosome evolution in the context of a complex haplodiplontic life cycle. Recent advances in genomics have aided progress in understanding sexual cycles in less-studied taxa including ulvophyte, charophyte, and prasinophyte green algae, as well as in diatoms.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Chlorophyta/genética , Phaeophyceae/crecimiento & desarrollo , Phaeophyceae/genética , Recombinación Genética , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Reproducción , Caracteres Sexuales
19.
Crit Rev Biotechnol ; 44(3): 462-476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-36842998

RESUMEN

Nature derived compounds represent a valuable source of bioactive molecules with enormous potential. The sea is one of the richest environments, full of skilled organisms, where algae stand out due to their unique characteristics. Marine macroalgae adapt their phenotypic characteristics, such as chemical composition, depending on the environmental conditions where they live. The compounds produced by these organisms show tremendous potential to be used in the biomedical field, due to their antioxidant, anti-inflammatory, immunomodulatory, and anti-cancer properties.Cancer is one of the deadliest diseases in the world, and the lack of effective treatments highlights the urgent need for the development of new therapeutic strategies. This review provides an overview of the current advances regarding the anti-cancer activity of the three major groups of marine macroalgae, i.e., red algae (Rhodophyta), brown algae (Phaeophyceae), and green algae (Chlorophyta) on pancreatic, lung, breast, cervical, colorectal, liver, and gastric cancers as well as leukemia and melanoma. In addition, future perspectives, and limitations regarding this field of work are also discussed.


Asunto(s)
Chlorophyta , Phaeophyceae , Rhodophyta , Algas Marinas , Rhodophyta/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
20.
Chemistry ; 30(43): e202401632, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770615

RESUMEN

Ecklonialactones, Eiseniachlorides, and Egregiachlorides are synthesized in living organisms via the lipoxygenase-mediated oxidation of polyunsaturated fatty acids. Originally isolated and identified from brown seaweed (Ecklonia stolonifera, Eisenia bicyclis, and Egregia menziesii), and later replicated on milligram scale through chemical synthesis, the full biological activities of these compounds remain to be elucidated. To bridge this gap in knowledge, we propose a unified methodology to synthesize the 14-membered macrocyclic structures of Ecklonialactones, Eiseniachlorides and analogs using a versatile and convergent approach. This study delineates the synthesis of Ecklonialactone A, B, C, D, and Eiseniachlorides A and B, as well as ent-Ecklonialactone B, 16-epi-Ecklonialactone B and 12,13-diepi-Ecklonialactone B.


Asunto(s)
Lactonas , Lactonas/química , Lactonas/síntesis química , Phaeophyceae/química , Oxidación-Reducción , Algas Marinas/química , Estereoisomerismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/síntesis química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda