Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Plant Biotechnol J ; 22(7): 1812-1832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38339894

RESUMEN

In maize, two pyruvate orthophosphate dikinase (PPDK) regulatory proteins, ZmPDRP1 and ZmPDRP2, are respectively specific to the chloroplast of mesophyll cells (MCs) and bundle sheath cells (BSCs). Functionally, ZmPDRP1/2 catalyse both phosphorylation/inactivation and dephosphorylation/activation of ZmPPDK, which is implicated as a major rate-limiting enzyme in C4 photosynthesis of maize. Our study here showed that maize plants lacking ZmPDRP1 or silencing of ZmPDRP1/2 confer resistance to a prevalent potyvirus sugarcane mosaic virus (SCMV). We verified that the C-terminal domain (CTD) of ZmPDRP1 plays a key role in promoting viral infection while independent of enzyme activity. Intriguingly, ZmPDRP1 and ZmPDRP2 re-localize to cytoplasmic viral replication complexes (VRCs) following SCMV infection. We identified that SCMV-encoded cytoplasmic inclusions protein CI targets directly ZmPDRP1 or ZmPDRP2 or their CTDs, leading to their re-localization to cytoplasmic VRCs. Moreover, we found that CI could be degraded by the 26S proteasome system, while ZmPDRP1 and ZmPDRP2 could up-regulate the accumulation level of CI through their CTDs by a yet unknown mechanism. Most importantly, with genetic, cell biological and biochemical approaches, we provide evidence that BSCs-specific ZmPDRP2 could accumulate in MCs of Zmpdrp1 knockout (KO) lines, revealing a unique regulatory mechanism crossing different cell types to maintain balanced ZmPPDK phosphorylation, thereby to keep maize normal growth. Together, our findings uncover the genetic link of the two cell-specific maize PDRPs, both of which are co-opted to VRCs to promote viral protein accumulation for robust virus infection.


Asunto(s)
Enfermedades de las Plantas , Proteínas de Plantas , Potyvirus , Replicación Viral , Zea mays , Potyvirus/fisiología , Zea mays/virología , Zea mays/genética , Zea mays/metabolismo , Replicación Viral/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Enfermedades de las Plantas/virología , Fotosíntesis/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Piruvato Ortofosfato Diquinasa/genética , Cloroplastos/metabolismo , Cloroplastos/virología
2.
Appl Environ Microbiol ; 88(4): e0185721, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936842

RESUMEN

The atypical glycolysis of Clostridium thermocellum is characterized by the use of pyrophosphate (PPi) as a phosphoryl donor for phosphofructokinase (Pfk) and pyruvate phosphate dikinase (Ppdk) reactions. Previously, biosynthetic PPi was calculated to be stoichiometrically insufficient to drive glycolysis. This study investigates the role of a H+-pumping membrane-bound pyrophosphatase, glycogen cycling, a predicted Ppdk-malate shunt cycle, and acetate cycling in generating PPi. Knockout studies and enzyme assays confirmed that clo1313_0823 encodes a membrane-bound pyrophosphatase. Additionally, clo1313_0717-0718 was confirmed to encode ADP-glucose synthase by knockouts, glycogen measurements in C. thermocellum, and heterologous expression in Escherichia coli. Unexpectedly, individually targeted gene deletions of the four putative PPi sources did not have a significant phenotypic effect. Although combinatorial deletion of all four putative PPi sources reduced the growth rate by 22% (0.30 ± 0.01 h-1) and the biomass yield by 38% (0.18 ± 0.00 gbiomass gsubstrate-1), this change was much smaller than what would be expected for stoichiometrically essential PPi-supplying mechanisms. Growth-arrested cells of the quadruple knockout readily fermented cellobiose, indicating that the unknown PPi-supplying mechanisms are independent of biosynthesis. An alternative hypothesis that ATP-dependent Pfk activity circumvents a need for PPi altogether was falsified by enzyme assays, heterologous expression of candidate genes, and whole-genome sequencing. As a secondary outcome, enzymatic assays confirmed functional annotation of clo1313_1832 as ATP- and GTP-dependent fructokinase. These results indicate that the four investigated PPi sources individually and combined play no significant PPi-supplying role, and the true source(s) of PPi, or alternative phosphorylating mechanisms, that drive(s) glycolysis in C. thermocellum remain(s) elusive. IMPORTANCE Increased understanding of the central metabolism of C. thermocellum is important from a fundamental as well as from a sustainability and industrial perspective. In addition to showing that H+-pumping membrane-bound PPase, glycogen cycling, a Ppdk-malate shunt cycle, and acetate cycling are not significant sources of PPi supply, this study adds functional annotation of four genes and availability of an updated PPi stoichiometry from biosynthesis to the scientific domain. Together, this aids future metabolic engineering attempts aimed to improve C. thermocellum as a cell factory for sustainable and efficient production of ethanol from lignocellulosic material through consolidated bioprocessing with minimal pretreatment. Getting closer to elucidating the elusive source of PPi, or alternative phosphorylating mechanisms, for the atypical glycolysis is itself of fundamental importance. Additionally, the findings of this study directly contribute to investigations into trade-offs between thermodynamic driving force versus energy yield of PPi- and ATP-dependent glycolysis.


Asunto(s)
Clostridium thermocellum , Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Pirofosfatasa Inorgánica/metabolismo , Fosfatos/metabolismo , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Ácido Pirúvico/metabolismo
3.
Biochem J ; 478(8): 1515-1524, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33881486

RESUMEN

In the conditions of [Mg2+] elevation that occur, in particular, under low oxygen stress and are the consequence of the decrease in [ATP] and increase in [ADP] and [AMP], pyrophosphate (PPi) can function as an alternative energy currency in plant cells. In addition to its production by various metabolic pathways, PPi can be synthesized in the combined reactions of pyruvate, phosphate dikinase (PPDK) and pyruvate kinase (PK) by so-called PK/PPDK substrate cycle, and in the reverse reaction of membrane-bound H+-pyrophosphatase, which uses the energy of electrochemical gradients generated on tonoplast and plasma membrane. The PPi can then be consumed in its active forms of MgPPi and Mg2PPi by PPi-utilizing enzymes, which require an elevated [Mg2+]. This ensures a continuous operation of glycolysis in the conditions of suppressed ATP synthesis, keeping metabolism energy efficient and less dependent on ATP.


Asunto(s)
Difosfatos/metabolismo , Metabolismo Energético/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Pirofosfatasas/metabolismo , Piruvato Quinasa/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Membranas Intracelulares/metabolismo , Magnesio/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Plantas/genética , Pirofosfatasas/genética , Piruvato Quinasa/genética , Piruvato Ortofosfato Diquinasa/genética
4.
Plant Biotechnol J ; 19(3): 575-588, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33016576

RESUMEN

Introduction of a C4 photosynthetic mechanism into C3 crops offers an opportunity to improve photosynthetic efficiency, biomass and yield in addition to potentially improving nitrogen and water use efficiency. To create a two-cell metabolic prototype for an NADP-malic enzyme type C4 rice, we transformed Oryza sativa spp. japonica cultivar Kitaake with a single construct containing the coding regions of carbonic anhydrase, phosphoenolpyruvate (PEP) carboxylase, NADP-malate dehydrogenase, pyruvate orthophosphate dikinase and NADP-malic enzyme from Zea mays, driven by cell-preferential promoters. Gene expression, protein accumulation and enzyme activity were confirmed for all five transgenes, and intercellular localization of proteins was analysed. 13 CO2 labelling demonstrated a 10-fold increase in flux though PEP carboxylase, exceeding the increase in measured in vitro enzyme activity, and estimated to be about 2% of the maize photosynthetic flux. Flux from malate via pyruvate to PEP remained low, commensurate with the low NADP-malic enzyme activity observed in the transgenic lines. Physiological perturbations were minor and RNA sequencing revealed no substantive effects of transgene expression on other endogenous rice transcripts associated with photosynthesis. These results provide promise that, with enhanced levels of the C4 proteins introduced thus far, a functional C4 pathway is achievable in rice.


Asunto(s)
Oryza , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Zea mays/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(1): E24-E33, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255019

RESUMEN

Maize opaque2 (o2) mutations are beneficial for endosperm nutritional quality but cause negative pleiotropic effects for reasons that are not fully understood. Direct targets of the bZIP transcriptional regulator encoded by o2 include pdk1 and pdk2 that specify pyruvate phosphate dikinase (PPDK). This enzyme reversibly converts AMP, pyrophosphate, and phosphoenolpyruvate to ATP, orthophosphate, and pyruvate and provides diverse functions in plants. This study addressed PPDK function in maize starchy endosperm where it is highly abundant during grain fill. pdk1 and pdk2 were inactivated individually by transposon insertions, and both genes were simultaneously targeted by endosperm-specific RNAi. pdk2 accounts for the large majority of endosperm PPDK, whereas pdk1 specifies the abundant mesophyll form. The pdk1- mutation is seedling-lethal, indicating that C4 photosynthesis is essential in maize. RNAi expression in transgenic endosperm eliminated detectable PPDK protein and enzyme activity. Transgenic kernels weighed the same on average as nontransgenic siblings, with normal endosperm starch and total N contents, indicating that PPDK is not required for net storage compound synthesis. An opaque phenotype resulted from complete PPDK knockout, including loss of vitreous endosperm character similar to the phenotype conditioned by o2-. Concentrations of multiple glycolytic intermediates were elevated in transgenic endosperm, energy charge was altered, and starch granules were more numerous but smaller on average than normal. The data indicate that PPDK modulates endosperm metabolism, potentially through reversible adjustments to energy charge, and reveal that o2- mutations can affect the opaque phenotype through regulation of PPDK in addition to their previously demonstrated effects on storage protein gene expression.


Asunto(s)
Endospermo/enzimología , Metabolismo Energético/fisiología , Proteínas de Plantas/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Zea mays/enzimología , Endospermo/genética , Mutación , Proteínas de Plantas/genética , Piruvato Ortofosfato Diquinasa/genética , Almidón/biosíntesis , Almidón/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética
6.
Ecotoxicol Environ Saf ; 214: 112096, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33647854

RESUMEN

Nicosulfuron is an ingredient in photosynthesis-inhibiting herbicides and has been widely used in corn post-emergence weed control. In the current study, a pair of sister lines, HK301 (nicosulfuron-tolerence, NT) and HK320 (nicosulfuron-sensitive, NS), was used to study the effect of nicosulfuron in sweet maize seedlings on C4 photosynthetic enzymes and non-enzymatic substances, expression levels of key enzymes, and chloroplast structure. Nicosulfuron was sprayed at the four-leaf stage, and water was sprayed as a control. After nicosulfuron treatment, phosphoenolpyruvate carboxylase (PEPC), NADP-malic dehydrogenase (NADP-MDH), NADP-malic enzyme (NADP-ME), pyruvate orthophosphate dikinase (PPDK), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities of NT were significantly higher than those of NS. Compared to NT, malate, oxaloacetic acid, and pyruvic acid significantly decreased as exposure time increased in NS. Compared to NS, nicosulfuron treatment significantly increased the expression levels of PEPC, NADP-MDH, NADP-ME, PPDK, and Rubisco genes in NT. Under nicosulfuron treatment, chloroplast ultrastructure of NS, compared to that of NT, nicosulfuron induced swelling of the chloroplast volume and reduced starch granules in NS. In general, our results indicate that in different resistant sweet maize, C4 photosynthetic enzymes activity and key genes expression play a critical role in enhancing the adaptability of plants to nicosulfuron stress at a photosynthetic physiological level.


Asunto(s)
Piridinas/toxicidad , Compuestos de Sulfonilurea/toxicidad , Zea mays/fisiología , Aclimatación , Adaptación Fisiológica , Malato Deshidrogenasa , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Plantones/metabolismo , Zea mays/metabolismo
7.
BMC Plant Biol ; 20(1): 132, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228460

RESUMEN

BACKGROUND: NADP-malic enzyme (NAPD-ME), and pyruvate orthophosphate dikinase (PPDK) are important enzymes that participate in C4 photosynthesis. However, the evolutionary history and forces driving evolution of these genes in C4 plants are not completely understood. RESULTS: We identified 162 NADP-ME and 35 PPDK genes in 25 species and constructed respective phylogenetic trees. We classified NADP-ME genes into four branches, A1, A2, B1 and B2, whereas PPDK was classified into two branches in which monocots were in branch I and dicots were in branch II. Analyses of selective pressure on the NAPD-ME and PPDK gene families identified four positively selected sites, including 94H and 196H in the a5 branch of NADP-ME, and 95A and 559E in the e branch of PPDK at posterior probability thresholds of 95%. The positively selected sites were located in the helix and sheet regions. Quantitative RT-PCR (qRT-PCR) analyses revealed that expression levels of 6 NADP-ME and 2 PPDK genes from foxtail millet were up-regulated after exposure to light. CONCLUSION: This study revealed that positively selected sites of NADP-ME and PPDK evolution in C4 plants. It provides information on the classification and positive selection of plant NADP-ME and PPDK genes, and the results should be useful in further research on the evolutionary history of C4 plants.


Asunto(s)
Malato Deshidrogenasa/genética , Filogenia , Plantas/genética , Piruvato Ortofosfato Diquinasa/genética , Evolución Biológica , Briófitas/genética , Briófitas/metabolismo , Chlorophyta/genética , Chlorophyta/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Lycopodiaceae/genética , Lycopodiaceae/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Malato Deshidrogenasa/metabolismo , Hojas de la Planta/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo
8.
Vet Res ; 51(1): 101, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795361

RESUMEN

Brucella ovis is a non-zoonotic rough Brucella that causes genital lesions, abortions and increased perinatal mortality in sheep and is responsible for important economic losses worldwide. Research on virulence factors of B. ovis is necessary for deciphering the mechanisms that enable this facultative intracellular pathogen to establish persistent infections and for developing a species-specific vaccine, a need in areas where the cross-protecting ovine smooth B. melitensis Rev1 vaccine is banned. Although several B. ovis virulence factors have been identified, there is little information on its metabolic abilities and their role in virulence. Here, we report that deletion of pyruvate phosphate dikinase (PpdK, catalyzing the bidirectional conversion pyruvate ⇌ phosphoenolpyruvate) in B. ovis PA (virulent and CO2-dependent) impaired growth in vitro. In cell infection experiments, although showing an initial survival higher than that of the parental strain, this ppdK mutant was unable to multiply. Moreover, when inoculated at high doses in mice, it displayed an initial spleen colonization higher than that of the parental strain followed by a marked comparative decrease, an unusual pattern of attenuation in mice. A homologous mutant was also obtained in a B. ovis PA CO2-independent construct previously proposed for developing B. ovis vaccines to solve the problem that CO2-dependence represents for large scale production. This CO2-independent ppdK mutant reproduced the growth defect in vitro and the multiplication/clearance pattern in mouse spleens, and is thus an interesting vaccine candidate for the immunoprophylaxis of B. ovis ovine brucellosis.


Asunto(s)
Proteínas Bacterianas/genética , Brucella ovis/genética , Brucelosis/microbiología , Dióxido de Carbono/metabolismo , Eliminación de Gen , Piruvato Ortofosfato Diquinasa/genética , Animales , Proteínas Bacterianas/metabolismo , Brucella ovis/enzimología , Femenino , Genes Bacterianos , Ratones , Ratones Endogámicos BALB C , Piruvato Ortofosfato Diquinasa/metabolismo
9.
J Bacteriol ; 200(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30275278

RESUMEN

Pyruvate kinase plays a central role in glucose catabolism in bacteria, and efficient utilization of this hexose has been linked to the virulence of Brucella strains in mice. The brucellae produce a single pyruvate kinase which is an ortholog of the Bradyrhizobium manganese (Mn)-dependent pyruvate kinase PykM. A biochemical analysis of the Brucella pyruvate kinase and phenotypic analysis of a Brucella abortus mutant defective in high-affinity Mn import indicate that this enzyme is an authentic PykM ortholog which functions as a Mn-dependent enzyme in vivo The loss of PykM has a negative impact on the capacity of the parental 2308 strain to utilize glucose, fructose, and galactose but not on its ability to utilize ribose, xylose, arabinose, or erythritol, and a pykM mutant displays significant attenuation in C57BL/6 mice. Although the enzyme pyruvate phosphate dikinase (PpdK) can substitute for the loss of pyruvate kinase in some bacteria and is also an important virulence determinant in Brucella, a phenotypic analysis of B. abortus 2308 and isogenic pykM, ppdK, and pykM ppdK mutants indicates that PykM and PpdK make distinctly different contributions to carbon metabolism and virulence in these bacteria.IMPORTANCE Mn plays a critical role in the physiology and virulence of Brucella strains, and the results presented here suggest that one of the important roles that the high-affinity Mn importer MntH plays in the pathogenesis of these strains is supporting the function of the Mn-dependent kinase PykM. A better understanding of how the brucellae adapt their physiology and metabolism to sustain their intracellular persistence in host macrophages will provide knowledge that can be used to design improved strategies for preventing and treating brucellosis, a disease that has a significant impact on both the veterinary and public health communities worldwide.


Asunto(s)
Brucella abortus/patogenicidad , Glucosa/metabolismo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brucella abortus/genética , Brucella abortus/metabolismo , Brucelosis , Manganeso/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Mol Genet Genomics ; 293(5): 1151-1158, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29744589

RESUMEN

Pyruvate orthophosphate dikinase (PPDK) is a component of glycolysis to mediate endosperm energy charge by adjusting the ratio of ATP to ADP and AMP that proposed to balance the flow of carbon into starch, protein, fatty acid and amino acid biosynthesis. However, these were inconsistent with the first report of a T-DNA insertional knockout mutant of the rice PPDK gene (flo4) showed that rice with inactivated PPDK gene failed to produce a opaque seeds. Therefore, the PPDK might have multifaceted functions in grain filling stage, which in some ways might depend on the direction of the reversible catalysis. Suweon 542 is a rice (Oryza sativa L.) mutant developed from Oryza sativa ssp. japonica cv. Namil. Suweon 542 has a milky-white floury endosperm suitable for dry filling, with low starch damage, low grain hardness, and fine flour particle size. The mutant locus on chromosome 5 controls the floury endosperm phenotype of Suweon 542. Fine mapping of this locus is required for efficient breeding of rice germplasm suitable for dry milling. In this study, whole genome of Suweon 542 and Milyang 23 were re-sequenced using Illumina HiSeq 2500. Co-segregation analysis of F3:4 family populations derived from Suweon 542/Milyang 23 was performed using eight CAPS markers and phenotypic evaluation of the endosperm. The target region was mapped to a 33 kb region and identified to encode cytosolic pyruvate orthophosphate dikinase protein (cyOsPPDK). A G→A SNP in exon 8 of cyOsPPDK resulting in a missense mutation from Gly to Asp at amino acid position 404 was responsible for the floury endosperm of Suweon 542. qRT-PCR experiments revealed that FLO4-4 was expressed to a considerably higher level in Suweon 542 than in Namil during the grain filling stage. Overall, fine mapping of FLO4-4 and candidate gene analysis provided further insight into the floury endosperm of rice, and reveal a novel SNP in cyOsPPDK gene can affect the floury endosperm phenotype through active PPDK gene during grain filling stage.


Asunto(s)
Grano Comestible/genética , Endospermo/genética , Oryza/genética , Piruvato Ortofosfato Diquinasa/genética , Grano Comestible/crecimiento & desarrollo , Harina , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Mutación , Oryza/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Almidón/genética
11.
J Exp Bot ; 69(5): 1171-1181, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29281064

RESUMEN

In C4 plants, the pyruvate phosphate dikinase regulatory protein (PDRP) regulates the C4 pathway enzyme pyruvate phosphate dikinase (PPDK) in response to changes in incident light intensity. In maize (Zea mays) leaves, two distinct isoforms of PDRP are expressed, ZmPDRP1 and ZmPDRP2. The properties and C4 function of the ZmPDRP1 isoform are well understood. However, the PDRP2 isoform has only recently been identified and its properties and function(s) in maize leaves are unknown. We therefore initiated an investigation into the maize PDRP2 isoform by performing a side by side comparison of its enzyme properties and cell-specific distribution with PDRP1. In terms of enzyme functionality, PDRP2 was found to possess the same protein kinase-specific activity as PDRP1. However, the PDRP2 isoform was found to lack the phosphotransferase activity of the bifunctional PDRP1 isoform except when PDRP2 in the assays is elevated 5- to 10-fold. A primarily immuno-based approach was used to show that PDRP1 is strictly expressed in mesophyll cells and PDRP2 is strictly expressed in bundle sheath strand cells (BSCs). Additionally, using in situ immunolocalization, we establish a regulatory target for PDRP2 by showing a significant presence of C4 PPDK in BSC chloroplasts. However, a metabolic role for PPDK in this compartment is obscure, assuming PPDK accumulating in this compartment would be irreversibly inactivated each dark cycle by a monofunctional PDRP2.


Asunto(s)
Cloroplastos/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Piruvato Ortofosfato Diquinasa/genética , Zea mays/genética , Secuencia de Aminoácidos , Cloroplastos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Piruvato Ortofosfato Diquinasa/química , Piruvato Ortofosfato Diquinasa/metabolismo , Alineación de Secuencia , Zea mays/metabolismo
12.
Biotechnol Lett ; 40(4): 667-672, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29359235

RESUMEN

OBJECTIVE: We explored the co-localization of multiple enzymes on a DNA backbone via a DNA-binding protein, Gene-A* (A*-tag) to increase the efficiency of cascade enzymatic reactions. RESULTS: Firefly luciferase (FLuc) and pyruvate orthophosphate dikinase (PPDK) were genetically fused with A*-tag and modified with single-stranded (ss) DNA via A*-tag. The components were assembled on ssDNA by hybridization, thereby enhancing the efficiency of the cascading bioluminescent reaction producing light emission from pyrophosphate. The activity of A*-tag in each enzyme was investigated with dye-labeled DNA. Co-localization of the enzymes via hybridization was examined using a gel shift assay. The multi-enzyme complex showed significant improvement in the overall efficiency of the cascading reaction in comparison to a mixture of free enzymes. CONCLUSION: A*-tag is highly convenient for ssDNA modification of versatile enzymes, and it can be used for construction of functional DNA-enzyme complexes.


Asunto(s)
ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Piruvato Ortofosfato Diquinasa/genética , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Difosfatos/química , Luciferasas de Luciérnaga/química , Luciferasas de Luciérnaga/genética , Mediciones Luminiscentes , Piruvato Ortofosfato Diquinasa/química
13.
Int J Mol Sci ; 19(8)2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-30072633

RESUMEN

Starch, as a main energy storage substance, plays an important role in plant growth and human life. Despite the fact that several enzymes and regulators involved in starch biosynthesis have been identified, the regulating mechanism of starch synthesis is still unclear. In this study, we isolated a rice floury endosperm mutant M14 from a mutant pool induced by 60Co. Both total starch content and amylose content in M14 seeds significantly decreased, and starch thermal and pasting properties changed. Compound starch granules were defected in the floury endosperm of M14 seeds. Map-based cloning and a complementation test showed that the floury endosperm phenotype was determined by a gene of OsPPDKB, which encodes pyruvate orthophosphate dikinase (PPDK, EC 2.7.9.1). Subcellular localization analysis demonstrated that PPDK was localized in chloroplast and cytoplasm, the chOsPPDKB highly expressed in leaf and leaf sheath, and the cyOsPPDKB constitutively expressed with a high expression in developing endosperm. Moreover, the expression of starch synthesis-related genes was also obviously altered in M14 developing endosperm. The above results indicated that PPDK played an important role in starch metabolism and structure in rice endosperm.


Asunto(s)
Sustitución de Aminoácidos , Endospermo/genética , Oryza/genética , Proteínas de Plantas/genética , Piruvato Ortofosfato Diquinasa/genética , Almidón/metabolismo , Endospermo/metabolismo , Endospermo/ultraestructura , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Oryza/ultraestructura , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Piruvato Ortofosfato Diquinasa/análisis , Piruvato Ortofosfato Diquinasa/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/ultraestructura , Almidón/ultraestructura
14.
Plant Physiol ; 170(2): 732-41, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26620526

RESUMEN

Pyruvate orthophosphate dikinase (PPDK) is one of the most important enzymes in C4 photosynthesis. PPDK regulatory protein (PDRP) regulates the inorganic phosphate-dependent activation and ADP-dependent inactivation of PPDK by reversible phosphorylation. PDRP shares no significant sequence similarity with other protein kinases or phosphatases. To investigate the molecular mechanism by which PDRP carries out its dual and competing activities, we determined the crystal structure of PDRP from maize (Zea mays). PDRP forms a compact homo-dimer in which each protomer contains two separate N-terminal (NTD) and C-terminal (CTD) domains. The CTD includes several key elements for performing both phosphorylation and dephosphorylation activities: the phosphate binding loop (P-loop) for binding the ADP and inorganic phosphate substrates, residues Lys-274 and Lys-299 for neutralizing the negative charge, and residue Asp-277 for protonating and deprotonating the target Thr residue of PPDK to promote nucleophilic attack. Surprisingly, the NTD shares the same protein fold as the CTD and also includes a putative P-loop with AMP bound but lacking enzymatic activities. Structural analysis indicated that this loop may participate in the interaction with and regulation of PPDK. The NTD has conserved intramolecular and intermolecular disulfide bonds for PDRP dimerization. Moreover, PDRP is the first structure of the domain of unknown function 299 enzyme family reported. This study provides a structural basis for understanding the catalytic mechanism of PDRP and offers a foundation for the development of selective activators or inhibitors that may regulate photosynthesis.


Asunto(s)
Modelos Moleculares , Proteínas de Plantas/química , Piruvato Ortofosfato Diquinasa/química , Zea mays/enzimología , Luz , Mutagénesis Sitio-Dirigida , Fosfatos/metabolismo , Fosforilación , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Piruvatos/metabolismo , Zea mays/genética , Zea mays/fisiología
15.
Plant Physiol ; 167(1): 44-59, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25378692

RESUMEN

Mitochondrial NAD-malic enzyme (ME) and/or cytosolic/plastidic NADP-ME combined with the cytosolic/plastidic pyruvate orthophosphate dikinase (PPDK) catalyze two key steps during light-period malate decarboxylation that underpin secondary CO(2) fixation in some Crassulacean acid metabolism (CAM) species. We report the generation and phenotypic characterization of transgenic RNA interference lines of the obligate CAM species Kalanchoë fedtschenkoi with reduced activities of NAD-ME or PPDK. Transgenic line rNAD-ME1 had 8%, and rPPDK1 had 5% of the wild-type level of activity, and showed dramatic changes in the light/dark cycle of CAM CO(2) fixation. In well-watered conditions, these lines fixed all of their CO(2) in the light; they thus performed C(3) photosynthesis. The alternative malate decarboxylase, NADP-ME, did not appear to compensate for the reduction in NAD-ME, suggesting that NAD-ME was the key decarboxylase for CAM. The activity of other CAM enzymes was reduced as a consequence of knocking out either NAD-ME or PPDK activity, particularly phosphoenolpyruvate carboxylase (PPC) and PPDK in rNAD-ME1. Furthermore, the circadian clock-controlled phosphorylation of PPC in the dark was reduced in both lines, especially in rNAD-ME1. This had the consequence that circadian rhythms of PPC phosphorylation, PPC kinase transcript levels and activity, and the classic circadian rhythm of CAM CO(2) fixation were lost, or dampened toward arrhythmia, under constant light and temperature conditions. Surprisingly, oscillations in the transcript abundance of core circadian clock genes also became arrhythmic in the rNAD-ME1 line, suggesting that perturbing CAM in K. fedtschenkoi feeds back to perturb the central circadian clock.


Asunto(s)
Descarboxilación/genética , Descarboxilación/fisiología , Kalanchoe/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Deshidratación/metabolismo , Técnicas de Inactivación de Genes , Kalanchoe/genética , Kalanchoe/crecimiento & desarrollo , Kalanchoe/fisiología , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Malatos/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Fotosíntesis/genética , Fotosíntesis/fisiología , Plantas Modificadas Genéticamente , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Almidón/metabolismo
16.
Exp Parasitol ; 165: 81-7, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27003459

RESUMEN

Trypanosoma cruzi, like other trypanosomatids analyzed so far, can use both glucose and amino acids as carbon and energy source. In these parasites, glycolysis is compartmentalized in glycosomes, authentic but specialized peroxisomes. The major part of this pathway, as well as a two-branched glycolytic auxiliary system, are present in these organelles. The first enzyme of one branch of this auxiliary system is the PPi-dependent pyruvate phosphate dikinase (PPDK) that converts phosphoenolpyruvate (PEP), inorganic pyrophosphate (PPi) and AMP into pyruvate, inorganic phosphate (Pi) and ATP, thus contributing to the ATP/ADP balance within the glycosomes. In this work we cloned, expressed and purified the T. cruzi PPDK. It kinetic parameters were determined, finding KM values for PEP, PPi and AMP of 320, 70 and 17 µM, respectively. Using molecular exclusion chromatography, two native forms of the enzyme were found with estimated molecular weights of 200 and 100 kDa, corresponding to a homodimer and monomer, respectively. It was established that T. cruzi PPDK's specific activity can be enhanced up to 2.6 times by the presence of ammonium in the assay mixture. During growth of epimastigotes in batch culture an apparent decrease in the specific activity of PPDK was observed. However, when its activity is normalized for the presence of ammonium in the medium, no significant modification of the enzyme activity per cell in time was found.


Asunto(s)
Piruvato Ortofosfato Diquinasa/metabolismo , Trypanosoma cruzi/enzimología , Cloruro de Amonio/metabolismo , Animales , Enfermedad de Chagas/parasitología , Clonación Molecular , Escherichia coli , Regulación Enzimológica de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Cinética , Magnesio/metabolismo , Microcuerpos/metabolismo , Peso Molecular , Cloruro de Potasio/metabolismo , Piruvato Ortofosfato Diquinasa/química , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/aislamiento & purificación , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloruro de Sodio/metabolismo , Trypanosoma cruzi/genética
17.
J Biol Chem ; 289(25): 17365-78, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24794874

RESUMEN

Trypanosoma brucei belongs to a group of protists that sequester the first six or seven glycolytic steps inside specialized peroxisomes, named glycosomes. Because of the glycosomal membrane impermeability to nucleotides, ATP molecules consumed by the first glycolytic steps need to be regenerated in the glycosomes by kinases, such as phosphoenolpyruvate carboxykinase (PEPCK). The glycosomal pyruvate phosphate dikinase (PPDK), which reversibly converts phosphoenolpyruvate into pyruvate, could also be involved in this process. To address this question, we analyzed the metabolism of the main carbon sources used by the procyclic trypanosomes (glucose, proline, and threonine) after deletion of the PPDK gene in the wild-type (Δppdk) and PEPCK null (Δppdk/Δpepck) backgrounds. The rate of acetate production from glucose is 30% reduced in the Δppdk mutant, whereas threonine-derived acetate production is not affected, showing that PPDK function in the glycolytic direction with production of ATP in the glycosomes. The Δppdk/Δpepck mutant incubated in glucose as the only carbon source showed a 3.8-fold reduction of the glycolytic rate compared with the Δpepck mutant, as a consequence of the imbalanced glycosomal ATP/ADP ratio. The role of PPDK in maintenance of the ATP/ADP balance was confirmed by expressing the glycosomal phosphoglycerate kinase (PGKC) in the Δppdk/Δpepck cell line, which restored the glycolytic flux. We also observed that expression of PGKC is lethal for procyclic trypanosomes, as a consequence of ATP depletion, due to glycosomal relocation of cytosolic ATP production. This illustrates the key roles played by glycosomal and cytosolic kinases, including PPDK, to maintain the cellular ATP/ADP homeostasis.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Homeostasis/fisiología , Proteínas Protozoarias/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Trypanosoma brucei brucei/enzimología , Adenosina Difosfato/genética , Adenosina Trifosfato/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Proteínas Protozoarias/genética , Piruvato Ortofosfato Diquinasa/genética , Trypanosoma brucei brucei/genética
18.
J Biol Chem ; 289(47): 32989-3000, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288791

RESUMEN

Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans.


Asunto(s)
Gluconeogénesis , Glicerol Quinasa/metabolismo , Leishmania mexicana/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas Protozoarias/metabolismo , Piruvato Ortofosfato Diquinasa/metabolismo , Vías Biosintéticas/efectos de los fármacos , Southern Blotting , Western Blotting , ADN Protozoario/genética , Glucosa/metabolismo , Glucosa/farmacología , Glicerol Quinasa/genética , Humanos , Leishmania mexicana/genética , Leishmania mexicana/crecimiento & desarrollo , Estadios del Ciclo de Vida , Mutación , Fosfoenolpiruvato Carboxilasa/genética , Proteínas Protozoarias/genética , Piruvato Ortofosfato Diquinasa/genética
19.
New Phytol ; 206(1): 36-56, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25472708

RESUMEN

Anoxia tolerance in plants is distinguished by direction of the sparse supply of energy to processes crucial to cell maintenance and sometimes to growth, as in rice seedlings. In anoxic rice coleoptiles energy is used to synthesise proteins, take up K(+) , synthesise cell walls and lipids, and in cell maintenance. Maintenance of electrochemical H(+) gradients across the tonoplast and plasma membrane is crucial for solute compartmentation and thus survival. These gradients sustain some H(+) -solute cotransport and regulate cytoplasmic pH. Pyrophosphate (PPi ), the alternative energy donor to ATP, allows direction of energy to the vacuolar H(+) -PPi ase, sustaining H(+) gradients across the tonoplast. When energy production is critically low, operation of a biochemical pHstat allows H(+) -solute cotransport across plasma membranes to continue for at least for 18 h. In active (e.g. growing) cells, PPi produced during substantial polymer synthesis allows conversion of PPi to ATP by PPi -phosphofructokinase (PFK). In quiescent cells with little polymer synthesis and associated PPi formation, the PPi required by the vacuolar H(+) -PPi ase and UDPG pyrophosphorylase involved in sucrose mobilisation via sucrose synthase might be produced by conversion of ATP to PPi through reversible glycolytic enzymes, presumably pyruvate orthophosphate dikinase. These hypotheses need testing with species characterised by contrasting anoxia tolerance.


Asunto(s)
Adenosina Trifosfato/metabolismo , Difosfatos/metabolismo , Metabolismo Energético , Oryza/fisiología , Oxígeno/metabolismo , Plantones/fisiología , Cotiledón/enzimología , Cotiledón/fisiología , Germinación , Glucólisis , Oryza/enzimología , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Plantones/enzimología
20.
Biotechnol Lett ; 37(1): 109-14, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25216646

RESUMEN

The feasibility of assembling enzymes, catalyzing consecutive reactions, on to a double-stranded DNA (dsDNA) scaffold utilizing zinc finger motifs is described. The catalytic activities of two zinc finger motif-fused enzymes catalyzing a bioluminescence reaction with energy recycling, namely pyruvate phosphate dikinase and firefly luciferase, have been evaluated. Bioluminescence measurements with dsDNA scaffolds coding a different distance between the binding sites for each zinc finger motif-fused enzyme confirmed the effect of the distance, proving the proximity effect of ATP recycling presumed to be the result of efficient intermediate diffusion. Thus, fusion to zinc finger motifs offers a promising option for the assembly of bi-enzymes, catalyzing a consecutive reaction, onto a dsDNA scaffold with a proximity effect.


Asunto(s)
ADN/química , Proteínas Recombinantes de Fusión/metabolismo , Dedos de Zinc/genética , Adenosina Trifosfato/metabolismo , ADN/metabolismo , Luciferasas de Luciérnaga/química , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Ingeniería de Proteínas , Piruvato Ortofosfato Diquinasa/química , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda