Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
J Fish Dis ; 47(6): e13913, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38421380

RESUMEN

Piscirickettsiosis is the main cause of mortality in salmonids of commercial importance in Chile, which is caused by Piscirickettsia salmonis, a Gram-negative, γ-proteobacteria that can produce biofilm as one of its virulence factors. The Chilean salmon industry uses large amounts of antibiotics to control piscirickettsiosis outbreaks, which has raised concern about its environmental impact and the potential to induce antibiotic resistance. Thus, the use of phytogenic feed additives (PFA) with antibacterial activity emerges as an interesting alternative to antimicrobials. Our study describes the antimicrobial action of an Andrographis paniculate-extracted PFA on P. salmonis planktonic growth and biofilm formation. We observed complete inhibition of planktonic and biofilm growth with 500 and 400 µg/mL of PFA for P. salmonis LF-89 and EM-90-like strains, respectively. Furthermore, 500 µg/mL of PFA was bactericidal for both evaluated bacterial strains. Sub-inhibitory doses of PFA increase the transcript levels of stress (groEL), biofilm (pslD), and efflux pump (acrB) genes for both P. salmonis strains in planktonic and sessile conditions. In conclusion, our results demonstrate the antibacterial effect of PFA against P. salmonis in vitro, highlighting the potential of PFA as an alternative to control Piscirickettsiosis.


Asunto(s)
Alimentación Animal , Biopelículas , Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Piscirickettsia/efectos de los fármacos , Piscirickettsia/fisiología , Enfermedades de los Peces/microbiología , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología , Animales , Alimentación Animal/análisis , Antibacterianos/farmacología , Suplementos Dietéticos/análisis , Extractos Vegetales/farmacología , Dieta/veterinaria , Chile
2.
J Fish Dis ; 47(1): e13862, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776076

RESUMEN

Piscirickettsiosis is the most prevalent bacterial disease affecting seawater salmon in Chilean salmon industry. Antibiotic therapy is the first alternative to counteract infections caused by Piscirickettsia salmonis. The presence of bacterial biofilms on materials commonly used in salmon farming may be critical for understanding the bacterial persistence in the environment. In the present study, the CDC Biofilm Reactor® was used to investigate the effect of sub- and over-MIC of florfenicol on both the pre-formed biofilm and the biofilm formation by P. salmonis under the antibiotic stimuli on Nylon and high-density polyethylene (HDPE) surfaces. This study demonstrated that FLO, at sub- and over-MIC doses, decreases biofilm-embedded live bacteria in the P. salmonis isolates evaluated. However, it was shown that in the P. salmonis Ps007 strain the presence of sub-MIC of FLO reduced its biofilm formation on HDPE surfaces; however, biofilm persists on Nylon surfaces. These results demonstrated that P. salmonis isolates behave differently against FLO and also, depending on the surface materials. Therefore, it remains a challenge to find an effective strategy to control the biofilm formation of P. salmonis, and certainly other marine pathogens that affect the sustainability of the Chilean salmon industry.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmonidae , Animales , Polietileno/farmacología , Nylons/farmacología , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Antibacterianos/farmacología , Salmón , Biopelículas , Infecciones por Piscirickettsiaceae/veterinaria , Infecciones por Piscirickettsiaceae/microbiología
3.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928053

RESUMEN

The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.


Asunto(s)
Enfermedades de los Peces , Inmunidad Innata , Filogenia , Piscirickettsia , Infecciones por Piscirickettsiaceae , Renibacterium , Salmo salar , Animales , Piscirickettsia/genética , Inmunidad Innata/genética , Salmo salar/microbiología , Salmo salar/genética , Salmo salar/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/genética , Infecciones por Piscirickettsiaceae/veterinaria , Renibacterium/genética , Renibacterium/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Evolución Molecular
4.
Microb Pathog ; 180: 106122, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094756

RESUMEN

Piscirickettsia salmonis is one of the main pathogens causing considerable economic losses in salmonid farming. The DNA gyrase of several pathogenic bacteria has been the target of choice for antibiotic design and discovery for years, due to its key function during DNA replication. In this study, we carried out a combined in silico and in vitro approach to antibiotic discovery targeting the GyrA subunit of Piscirickettsia salmonis. The in silico results of this work showed that flumequine (-6.6 kcal/mol), finafloxacin (-7.2 kcal/mol), rosoxacin (-6.6 kcal/mol), elvitegravir (-6.4 kcal/mol), sarafloxacin (-8.3 kcal/mol), orbifloxacin (-7.9 kcal/mol), and sparfloxacin (-7.2 kcal/mol) are docked with good affinities in the DNA binding domain of the Piscirickettsia salmonis GyrA subunit. In the in vitro inhibition assay, it was observed that most of these molecules inhibit the growth of Piscirickettsia salmonis, except for elvitegravir. We believe that this methodology could help to significantly reduce the time and cost of antibiotic discovery trials to combat Piscirickettsia salmonis within the salmonid farming industry.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Animales , Antibacterianos/farmacología , Piscirickettsia/genética , Girasa de ADN/genética , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/microbiología
5.
Fish Shellfish Immunol ; 139: 108887, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37290611

RESUMEN

Piscirickettsiosis outbreaks due to Piscirickettsia salmonis occur globally in the Chilean salmon aquaculture generating significant monetary losses in the industry. P. salmonis secretes outer membrane vesicles (OMVs) which are naturally non-replicating and highly immunogenic spherical nanoparticles. P. salmonis OMVs has been shown to induce immune response in zebrafish; however, the immune response induced by these vesicles in salmonids has not been evaluated. In this study, we inoculated Atlantic salmon with 10 and 30 µg doses of P. salmonis OMVs and took samples for 12 days. qPCR analysis indicated an inflammatory response. Thus, the inflammatory genes evaluated were up- or down-regulated at several times in liver, head kidney and spleen. In addition, the liver was the organ most immune-induced, mainly in the 30 µg-dose. Interestingly, co-expression of pro- and anti-inflammatory cytokines was evidenced by the prominent expression of il-10 at day 1 in spleen and also in head kidney on days 3, 6 and 12, while il-10 and tgf-ß were up-regulated on days 3, 6 and 12 in liver. Importantly, we detected the production of IgM against proteins of P. salmonis in the serum collected from immunized fish after 14 days. Thus, 40 and 400 µg OMVs induced the production of highest IgM levels; however, no statistical difference in the immunoglobulin levels produced by these OMVs doses were detected. The current study provides evidence that OMVs released by P. salmonis induced a pro-inflammatory responses and IgM production in S. salar, while regulatory genes were induced in order to regulate their effects and achieve the balance of the inflammatory response.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Salmo salar/genética , Interleucina-10 , Pez Cebra , Piscirickettsia/fisiología , Inmunoglobulina M , Infecciones por Piscirickettsiaceae/veterinaria
6.
Fish Shellfish Immunol ; 136: 108711, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004895

RESUMEN

The salmonid rickettsial syndrome (SRS) is a systemic bacterial infection caused by Piscirickettsia salmonis that generates significant economic losses in Atlantic salmon (Salmo salar) aquaculture. Despite this disease's relevance, the mechanisms involved in resistance against P. salmonis infection are not entirely understood. Thus, we aimed at studying the pathways explaining SRS resistance using different approaches. First, we determined the heritability using pedigree data from a challenge test. Secondly, a genome-wide association analysis was performed following a complete transcriptomic profile of fish from genetically susceptible and resistant families within the challenge infection with P. salmonis. We found differentially expressed transcripts related to immune response, pathogen recognition, and several new pathways related to extracellular matrix remodelling and intracellular invasion. The resistant background showed a constrained inflammatory response, mediated by the Arp2/3 complex actin cytoskeleton remodelling polymerization pathway, probably leading to bacterial clearance. A series of biomarkers of SRS resistance, such as the beta-enolase (ENO-ß), Tubulin G1 (TUBG1), Plasmin (PLG) and ARP2/3 Complex Subunit 4 (ARPC4) genes showed consistent overexpression in resistant individuals, showing promise as biomarkers for SRS resistance. All these results together with the differential expression of several long non-coding RNAs show the complexity of the host-pathogen interaction of S. salar and P. salmonis. These results provide valuable information on new models describing host-pathogen interaction and its role in SRS resistance.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Salmo salar/genética , Estudio de Asociación del Genoma Completo , Piscirickettsia/fisiología , Transcriptoma , Interacciones Huésped-Patógeno , Citoesqueleto
7.
Fish Shellfish Immunol ; 142: 109127, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813155

RESUMEN

Piscirickettsia salmonis, an intracellular bacterium in salmon aquaculture, is a big challenge because it is responsible for 54.2% of Atlantic salmon mortalities. In recent years, the high relevance of Alternative Splicing (AS) as a molecular mechanism associated with infectious conditions and host-pathogen interaction processes, especially in host immune activation, has been observed. Several studies have highlighted the role of AS in the host's immune response during viral, bacterial, and endoparasite infection. In the present study, we evaluated AS transcriptome profiles during P. salmonis infection in the two most used study models, SHK-1 cell line and salmon head kidney tissue. First, the SHK-1 cell line was exposed to P. salmonis infection at 0-, 7-, and 14-days post-infection (dpi). Following, total RNA was extracted for Illumina sequencing. On the other hand, RNA-Seq datasets of Atlantic salmon head kidney infected with the same P. salmonis strayingwase used. For both study models, the highest number of differentially alternative splicing (DAS) events was observed at 7 dpi, 16,830 DAS events derived from 9213 DAS genes in SHK-1 cells, and 13,820 DAS events from 7684 DAS genes in salmon HK. Alternative first exon (AF) was the most abundant AS type in the three infection times analyzed, representing 31% in SHK-1 cells and 228.6 in salmon HK; meanwhile, mutually exclusive exon (MX) was the least abundant. Notably, functional annotation of DAS genes in SHK-1 cells infected with P. salmonis showed a high presence of genes related to nucleotide metabolism. In contrast, the salmon head kidney exhibited many GO terms associated with immune response. Our findings reported the role of AS during P. salmonis infection in Atlantic salmon. These studies would contribute to a better understanding of the molecular bases that support the pathogen-host interaction, evidencing the contribution of AS regulating the transcriptional host response.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Transcriptoma , Salmo salar/genética , Riñón Cefálico , Empalme Alternativo , Piscirickettsia/fisiología , Línea Celular , Infecciones por Piscirickettsiaceae/genética , Infecciones por Piscirickettsiaceae/veterinaria
8.
J Fish Dis ; 46(12): 1337-1342, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37675858

RESUMEN

Recently, we showed that Atlantic salmon vaccinated against Piscirickettsia salmonis lose their protection upon coinfection with Caligus rogercresseyi (sea lice). However, the causes of the overriding effect of C. rogercresseyi infection have not been elucidated, and the molecular basis of the cellular and humoral immune responses upon C. rogercresseyi infection has not been described for vaccinated salmon. Therefore, we studied changes in the transcription of immune genes in vaccinated Atlantic salmon that were experimentally challenged by co-infecting them with C. rogercresseyi and P. salmonis. In general, coinfection treatments showed immune gene expression similar to treatments with a single P. salmonis infection, showing a decreased cellular response. However, a high variance was found between individual fish in the case of crucial cellular immune genes, with a few fish reacting overwhelmingly highly compared to the majority. This supports our previous findings on vaccination response variation and reinforces the idea that vaccination failures in the field might be caused by an overwhelming amount of vaccinated fish that display a deficient immune response to the infection.


Asunto(s)
Coinfección , Copépodos , Enfermedades de los Peces , Phthiraptera , Piscirickettsia , Salmo salar , Animales , Copépodos/fisiología , Coinfección/veterinaria , Inmunidad
9.
J Fish Dis ; 46(5): 591-596, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36639965

RESUMEN

Public health is facing a new challenge due to the increased bacterial resistance to most of the conventional antibacterial agents. Inadequate use of antibiotics in the Chilean aquaculture industry leads to the generation of multidrug resistance bacteria. Many fish pathogenic bacteria produce biofilm upon various sources of stress such as antibiotics, which provides several survival advantages for the bacterial life in community and can constitute a reservoir of pathogens in the marine environment. Being florfenicol a broad-spectrum antibiotic commonly used to treat infections in aquaculture, the aim of this study was to assess whether this antibiotic modulates in vitro the biofilm formation in several isolates of Piscirickettsia salmonis. Standard antibiotic-micro broth 96-flat well plates were used to determinate the minimal inhibitory concentration of florfenicol in eight different P. salmonis isolates. In vitro findings, with P. salmonis growing in the presence and absence of the antibiotic, exhibited a statistically significantly increase (p < .05) in biofilm formation in all the bacterial isolates cultivated with sub-MIC (defined as the half of the minimal inhibitory concentration in the presence of antibiotic) of florfenicol compared with controls (antibiotic-free broth). In conclusion, sub-MIC of florfenicol induced an increased biofilm formation in all P. salmonis isolates tested.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Tianfenicol , Animales , Enfermedades de los Peces/microbiología , Tianfenicol/farmacología , Antibacterianos/farmacología , Biopelículas , Infecciones por Piscirickettsiaceae/microbiología
10.
Fish Shellfish Immunol ; 125: 120-127, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35537671

RESUMEN

The intensive salmon farming is associated with massive outbreaks of infections. The use of antibiotics for their prevention and control is related to damage to the environment and human health. Antimicrobial peptides (AMPs) have been proposed as an alternative to the use of antibiotics for their antimicrobial and immunomodulatory activities. However, one of the main challenges for its massive clinical application is the high production cost and the complexity of chemical synthesis. Thus, recombinant DNA technology offers a more sustainable, scalable, and profitable option. In the present study, using an AMPs function prediction methodology, we designed a chimeric peptide consisting of sequences derived from cathelicidin fused with the immunomodulatory peptide derived from flagellin. The designed peptide, CATH-FLA was produced by recombinant expression using an easy pre-purification system. The chimeric peptide was able to induce IL-1ß and IL-8 expression in Salmo salar head kidney leukocytes, and prevented Piscirickettsia salmonis-induced cytotoxicity in SHK-1 cells. These results suggest that pre-purification of a recombinant AMP-based chimeric peptide designed in silico allow obtaining a peptide with immunomodulatory activity in vitro. This could solve the main obstacle of AMPs for massive clinical applications.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Salmo salar , Animales , Antibacterianos , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Flagelina , Riñón Cefálico , Piscirickettsia/genética , Infecciones por Piscirickettsiaceae/veterinaria , Salmón
11.
Fish Shellfish Immunol ; 121: 387-394, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34998987

RESUMEN

The membrane-anchored and soluble Toll-like Receptor 5 -TLR5M and TLR5S, respectively-from teleost recognize bacterial flagellin and induce the pro-inflammatory cytokines expression in a MyD88-dependent manner such as the TLR5 mammalian orthologous receptor. However, it has not been demonstrated whether the induced signaling pathway by these receptors activate innate effector mechanisms MyD88-dependent in salmonids. Therefore, in this work we study the MyD88 dependence on the induction of TLR5M/TLR5S signaling pathway mediated by flagellin as ligand on the activation of some innate effector mechanisms. The intracellular and extracellular Reactive Oxygen Species (ROS) production and conditioned supernatants production were evaluated in RTS11 cells, while the challenge with Piscirickettsia salmonis was evaluated in SHK-1 cells. Our results demonstrate that flagellin directly stimulates ROS production and indirectly stimulates it through the production of conditioned supernatants, both in a MyD88-dependent manner. Additionally, flagellin stimulation prevents the cytotoxicity induced by infection with P. salmonis in a MyD88-dependent manner. In conclusion we demonstrate that MyD88 is an essential adapter protein in the activation of the TLR5M/TLR5S signaling pathway mediated by flagellin in salmonids, which leads downstream to the induction of innate effector mechanisms, promoting immuno-protection against a bacterial challenge with P. salmonis.


Asunto(s)
Proteínas de Peces , Factor 88 de Diferenciación Mieloide , Infecciones por Piscirickettsiaceae/veterinaria , Salmonidae , Receptor Toll-Like 5 , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Flagelina , Regulación de la Expresión Génica , Inmunidad Innata , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Piscirickettsia/patogenicidad , Infecciones por Piscirickettsiaceae/inmunología , Especies Reactivas de Oxígeno , Salmonidae/genética , Salmonidae/inmunología , Salmonidae/microbiología , Transducción de Señal , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/metabolismo
12.
J Fish Dis ; 45(8): 1099-1107, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543448

RESUMEN

Research into Piscirickettsia salmonis biofilms on materials commonly used in salmon farming is crucial for understanding its persistence and virulence. We used the CDC Biofilm Reactor to investigate P. salmonis (LF-89 and EM-90) biofilm formation on Nylon, Stainless steel (316L), Polycarbonate and High-Density Polyethylene (HDPE) surfaces. After 144 h of biofilm visualization by scanning confocal laser microscopy under batch growth conditions, Nylon coupons generated the greatest biofilm formation and coverage compared to Stainless steel (316L), Polycarbonate and HDPE. Additionally, P. salmonis biofilm formation on Nylon was significantly greater (p ≤ .01) than Stainless steel (316L), Polycarbonate and HDPE at 288 h. We used Nylon coupons to determine the kinetic parameters of the planktonic and biofilm phases of P. salmonis. The two strains had similar latencies in the planktonic phase; however, LF-89 maximum growth was 2.5 orders of magnitude higher (Log cell ml-1 ). Additionally, LF-89 had a specified growth rate (µmax) of 0.0177 ± 0.006 h-1 and a generation time of 39.2 h. This study contributes to a deeper understanding of the biofilm formation by P. salmonis and elucidates the impact of the biofilm on aquaculture systems.


Asunto(s)
Enfermedades de los Peces , Piscirickettsia , Infecciones por Piscirickettsiaceae , Animales , Biopelículas , Centers for Disease Control and Prevention, U.S. , Enfermedades de los Peces/microbiología , Nylons , Infecciones por Piscirickettsiaceae/microbiología , Polietileno , Acero Inoxidable , Estados Unidos
13.
BMC Genomics ; 22(1): 156, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676414

RESUMEN

BACKGROUND: Salmon Rickettsial Syndrome (SRS), caused by Piscirickettsia salmonis, is one of the primary causes of morbidity and mortality in Atlantic salmon aquaculture, particularly in Chile. Host resistance is a heritable trait, and functional genomic studies have highlighted genes and pathways important in the response of salmon to the bacteria. However, the functional mechanisms underpinning genetic resistance are not yet well understood. In the current study, a large population of salmon pre-smolts were challenged with P. salmonis, with mortality levels recorded and samples taken for genotyping. In parallel, head kidney and liver samples were taken from animals of the same population with high and low genomic breeding values for resistance, and used for RNA-Sequencing to compare their transcriptome profile both pre and post infection. RESULTS: A significant and moderate heritability (h2 = 0.43) was shown for the trait of binary survival. Genome-wide association analyses using 38 K imputed SNP genotypes across 2265 animals highlighted that resistance is a polygenic trait. Several thousand genes were identified as differentially expressed between controls and infected samples, and enriched pathways related to the host immune response were highlighted. In addition, several networks with significant correlation with SRS resistance breeding values were identified, suggesting their involvement in mediating genetic resistance. These included apoptosis, cytoskeletal organisation, and the inflammasome. CONCLUSIONS: While resistance to SRS is a polygenic trait, this study has highlighted several relevant networks and genes that are likely to play a role in mediating genetic resistance. These genes may be future targets for functional studies, including genome editing, to further elucidate their role underpinning genetic variation in host resistance.


Asunto(s)
Enfermedades de los Peces , Salmo salar , Animales , Enfermedades de los Peces/genética , Estudio de Asociación del Genoma Completo , Piscirickettsia , Salmo salar/genética , Análisis de Secuencia de ARN
14.
Vet Res ; 52(1): 111, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425904

RESUMEN

Salmonid rickettsial septicaemia (SRS) is a contagious disease caused by Piscirickettsia salmonis, an intracellular bacterium. SRS causes an estimated economic loss of $700 million USD to the Chilean industry annually. Vaccination and antibiotic therapy are the primary prophylactic and control measures used against SRS. Unfortunately, commercially available SRS vaccines have not been shown to have a significant effect on reducing mortality. Most vaccines contain whole inactivated bacteria which results in decreased efficacy due to the limited ability of the vaccine to evoke a cellular mediated immune response that can eliminate the pathogen or infected cells. In addition, SRS vaccine efficacy has been evaluated primarily with Salmo salar (Atlantic salmon). Vaccine studies using Oncorhynchus mykiss (rainbow trout) are scarce, despite SRS being the leading cause of infectious death for this species. In this study, we evaluate an injectable vaccine based on P. salmonis proteoliposome; describing the vaccine security profile, capacity to induce specific anti-P. salmonis IgM and gene expression of immune markers related to T CD8 cell-mediated immunity. Efficacy was determined by experimental challenge with P. salmonis intraperitoneally. Our findings indicate that a P. salmonis proteoliposome-based vaccine is able to protect O. mykiss against challenge with a P. salmonis Chilean isolate and causes a specific antibody response. The transcriptional profile suggests that the vaccine is capable of inducing cellular immunity. This study provides new insights into O. mykiss protection and the immune response induced by a P. salmonis proteoliposome-based vaccine.


Asunto(s)
Vacunas Bacterianas/administración & dosificación , Enfermedades de los Peces/prevención & control , Oncorhynchus mykiss , Infecciones por Piscirickettsiaceae/veterinaria , Proteolípidos/uso terapéutico , Sepsis/veterinaria , Vacunación/veterinaria , Animales , Chile , Enfermedades de los Peces/microbiología , Piscirickettsia/inmunología , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/prevención & control , Sepsis/microbiología , Sepsis/prevención & control
15.
Vet Res ; 52(1): 64, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933136

RESUMEN

Salmonid Rickettsial Septicaemia (SRS), caused by Piscirickettsia salmonis, is the most important infectious disease in the Chilean salmon farming industry. An opportunity to control this disease is to use functional micronutrients to modulate host mechanisms of response to the infection. Since P. salmonis may affect the host antioxidant system in salmonids, particularly that dependent on selenium (Se), we hypothesized that fish's dietary selenium supplementation could improve the response to the bacterial infection. To address this, we defined a non-antibiotic, non-cytotoxic concentration of selenium to evaluate its effect on the response to in vitro infections of SHK-1 cells with P. salmonis. The results indicated that selenium supplementation reduced the cytopathic effect, intracellular bacterial load, and cellular mortality of SHK-1 by increasing the abundance and activity of host glutathione peroxidase. We then prepared diets supplemented with selenium up to 1, 5, and 10 mg/kg to feed juvenile trout for 8 weeks. At the end of this feeding period, we obtained their blood plasma and evaluated its ability to protect SHK-1 cells from infection with P. salmonis in ex vivo assays. These results recapitulated the observed ability of selenium to protect against infection with P. salmonis by increasing the concentration of selenium and the antioxidant capacity in fish's plasma. To the best of our knowledge, this is the first report of the protective capacity of selenium against P. salmonis infection in salmonids, becoming a potential effective host-directed dietary therapy for SRS and other infectious diseases in animals at a non-antibiotic concentration.


Asunto(s)
Antioxidantes/metabolismo , Resistencia a la Enfermedad , Enfermedades de los Peces/microbiología , Oncorhynchus mykiss/inmunología , Infecciones por Piscirickettsiaceae/veterinaria , Selenio/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Piscirickettsia/fisiología , Infecciones por Piscirickettsiaceae/microbiología , Plasma/química , Distribución Aleatoria , Selenio/administración & dosificación
16.
BMC Vet Res ; 17(1): 155, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33849522

RESUMEN

BACKGROUND: Vertebrate hosts limit the availability of iron to microbial pathogens in order to nutritionally starve the invaders. The impact of iron deficiency induced by the iron chelator deferoxamine mesylate (DFO) was investigated in Atlantic salmon SHK-1 cells infected with the facultative intracellular bacterium Piscirickettsia salmonis. RESULTS: Effects of the DFO treatment and P. salmonis on SHK-1 cells were gaged by assessing cytopathic effects, bacterial load and activity, and gene expression profiles of eight immune biomarkers at 4- and 7-days post infection (dpi) in the control group, groups receiving single treatments (DFO or P. salmonis) and their combination. The chelator appears to be well-tolerated by host cells, while it had a negative impact on the number of bacterial cells and associated cytotoxicity. DFO alone had minor effects on gene expression of SHK-1 cells, including an early activation of IL-1ß at 4 dpi. In contrast to few moderate changes induced by single treatments (either infection or chelator), most genes had highest upregulation in the infected groups receiving DFO. The mildest induction of hepcidin-1 (antimicrobial peptide precursor and regulator of iron homeostasis) was observed in cells exposed to DFO alone, followed by P. salmonis infected cells while the addition of DFO to infected cells further increased the mRNA abundance of this gene. Transcripts encoding TNF-α (immune signaling) and iNOS (immune effector) showed sustained increase at both time points in this group while cathelicidin-1 (immune effector) and IL-8 (immune signaling) were upregulated at 7 dpi. The stimulation of protective gene responses seen in infected cultures supplemented with DFO coincided with the reduction of bacterial load and activity (judged by the expression of P. salmonis 16S rRNA), and damage to cultured host cells. CONCLUSION: The absence of immune gene activation under normal iron conditions suggests modulation of host responses by P. salmonis. The negative effect of iron deficiency on bacteria likely allowed host cells to respond in a more protective manner to the infection, further decreasing its progression. Presented findings encourage in vivo exploration of iron chelators as a promising strategy against piscirickettsiosis.


Asunto(s)
Enfermedades de los Peces/microbiología , Deficiencias de Hierro , Piscirickettsia/efectos de los fármacos , Infecciones por Piscirickettsiaceae/veterinaria , Animales , Carga Bacteriana , Línea Celular , Quelantes/farmacología , Deferoxamina/farmacología , Regulación de la Expresión Génica , Hepcidinas/genética , Hepcidinas/metabolismo , Piscirickettsia/patogenicidad , Infecciones por Piscirickettsiaceae/microbiología , ARN Mensajero/metabolismo , Salmo salar
17.
J Fish Dis ; 44(5): 495-504, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33455005

RESUMEN

Piscirickettsia salmonis is the causative agent of Piscirickettsiosis, a systemic disease generating high mortality rates in farmed salmon cultures of southern Chile. Proteolytic enzymes are important virulence factors since they play a key role in bacterial invasion and proliferation within the host. Bacteria growing in muscle tissues are known to secrete proteases, but no proteolytic enzymes have been described in P. salmonis to date. A battery of putative protease genes was found in the genomes and available strains of P. salmonis by bioinformatics analyses, and their identity was established through comparison with protease genes in databases. The transcript levels of five candidate genes were analysed by in vitro infection and qPCR. All strains were found to generate protease activity to varying degrees, and this was significantly increased when bacteria infected a salmon cell line. Gene expression of several types of proteases was also evidenced, with the highest levels corresponding to the type 1 secretion system (T1SS), which is also involved in the transport of haemolysin A, although transcripts with significant levels of peptidase M4 (thermolysin) and CLP protease were also found.


Asunto(s)
Enfermedades de los Peces/microbiología , Genes Bacterianos/genética , Piscirickettsia/genética , Infecciones por Piscirickettsiaceae/veterinaria , Salmo salar , Factores de Virulencia/genética , Animales , Infecciones por Piscirickettsiaceae/microbiología
18.
J Fish Dis ; 44(2): 181-190, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33006764

RESUMEN

Piscirickettsiosis is a fish disease caused by the facultative intracellular bacterium, Piscirickettsia salmonis. Even though entry routes of P. salmonis in fish are not fully clear yet, the skin seems to be the main portal in some salmonid species. Despite the importance of fish mucous skin barrier in fighting waterborne pathogens, the interaction between salmonid skin mucus and the bacterium is unknown. This study seeks to determine the in vitro changes in the growth of two Chilean P. salmonis strains (LF-89-like and EM-90-like genotypes) and the type strain LF-89T under exposures to skin mucus from Salmo salar and Oncorhynchus mykiss, as well as changes in the cytotoxic effect of P. salmonis on the SHK-1 cells following exposures. The results suggest that the growth of three P. salmonis strains was not significantly negatively affected under exposures to skin mucus (adjusted at 100 µg total protein ml-1 ) of O. mykiss (69 ± 18 U lysozyme ml-1 ) and S. salar (48 ± 33 U lysozyme ml-1 ) over time. However, the cytotoxic effect of P. salmonis, pre-exposed to salmonid skin mucus, on the SHK-1 cell line was reliably identified only towards the end of the incubation period, suggesting that the mucus had a delaying effect on the cytotoxic response of the cell line to the bacterium. These results represent a baseline knowledge to open new avenues of research intended to understand how P. salmonis faces the fish mucous skin barrier.


Asunto(s)
Moco/inmunología , Piscirickettsia/crecimiento & desarrollo , Infecciones por Piscirickettsiaceae/veterinaria , Animales , Línea Celular , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Genotipo , Moco/microbiología , Oncorhynchus mykiss/inmunología , Piscirickettsia/genética , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/microbiología , Salmo salar/inmunología , Piel/inmunología , Piel/microbiología
19.
J Fish Dis ; 44(7): 993-1004, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33675091

RESUMEN

Piscirickettsia salmonis is the aetiological agent of piscirickettsiosis, a bacterial disease that affects farmed salmonids, causing high mortalities and significant economic losses in the Chilean salmon farm industry. Given the Chilean native fish species Patagonian blenny, Eleginops maclovinus, lives in the vicinity of salmon farms, it is relevant to clarify the epidemiological role that this species could play in the transmission and/or dissemination of this pathogen. This study aimed to evaluate the bidirectional transmission of P. salmonis between the Patagonian blenny and Oncorhynchus mykiss (rainbow trout), via a cohabitation challenge model. The results of this study demonstrated the transmission of the bacteria from Patagonian blennies to rainbow trout, considering the specific mortality in cohabitant rainbow trout, reaching 46%: the necropsy of these specimens, evidencing the characteristic pathological lesions of the disease and the positive results of the qPCR analysis for P. salmonis, in the same individuals. In contrast, no mortalities of Patagonian blenny specimens were recorded in the challenged experimental groups. This study is the first report showing the horizontal transmission of P. salmonis from a native non-salmonid species, such as the Patagonian blenny, to a salmonid species, generating the disease and specific mortality in rainbow trout, using a cohabitation challenge.


Asunto(s)
Infecciones Bacterianas/veterinaria , Enfermedades de los Peces/microbiología , Oncorhynchus mykiss/microbiología , Perciformes/microbiología , Piscirickettsia , Animales , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/mortalidad , Derrame de Bacterias , Enfermedades de los Peces/transmisión , Factores de Tiempo
20.
J Fish Dis ; 44(1): 1-9, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33067883

RESUMEN

Piscirickettsia salmonis, the aetiological agent of salmonid rickettsial septicaemia (SRS), is a global pathogen of wild and cultured marine salmonids. Here, we describe the development and application of a reproducible, standardized immersion challenge model to induce clinical SRS in juvenile pink (Oncorhynchus gorbuscha), Atlantic (Salmo salar) and sockeye salmon (O. nerka). Following a 1-hr immersion in 105 colony-forming units/ml, cumulative mortality in Atlantic salmon was 63.2% while mortality in sockeye salmon was 10%. Prevalence and levels of the bacterium in kidney prior to onset of mortality were lower in sockeye compared with Atlantic or pink salmon. The timing and magnitude of bacterial shedding were estimated from water samples collected during the exposure trials. Shedding was estimated to be 82-fold higher in Atlantic salmon as compared to sockeye salmon and peaked in the Atlantic salmon trial at 36 d post-immersion. These data suggest sockeye salmon are less susceptible to P. salmonis than Atlantic or pink salmon. Finally, skin lesions were observed on infected fish during all trials, often in the absence of detectable infection in kidney. As a result, we hypothesize that skin is the primary point of entry for P. salmonis during the immersion challenge.


Asunto(s)
Susceptibilidad a Enfermedades , Enfermedades de los Peces/microbiología , Oncorhynchus/microbiología , Piscirickettsia , Infecciones por Piscirickettsiaceae/veterinaria , Salmo salar/microbiología , Animales , Derrame de Bacterias , Enfermedades de los Peces/mortalidad , Inmersión , Infecciones por Piscirickettsiaceae/mortalidad , Piel/microbiología , Piel/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda