Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Malar J ; 20(1): 426, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715864

RESUMEN

BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies. METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor. RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km. CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.


Asunto(s)
Anopheles/fisiología , Erradicación de la Enfermedad/estadística & datos numéricos , Malaria/epidemiología , Mosquitos Vectores/parasitología , Plasmodium knowlesi/fisiología , Distribución Animal , Animales , Malasia/epidemiología
2.
Malar J ; 20(1): 486, 2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-34969401

RESUMEN

BACKGROUND: Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. METHODS: Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. RESULTS: As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. CONCLUSIONS: Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3-5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.


Asunto(s)
Resistencia a la Enfermedad , Macaca fascicularis , Malaria/veterinaria , Enfermedades de los Monos/parasitología , Parasitemia/veterinaria , Plasmodium knowlesi/fisiología , Animales , Estudios Longitudinales , Malaria/parasitología , Masculino , Parasitemia/parasitología
3.
Malar J ; 20(1): 97, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33593383

RESUMEN

BACKGROUND: Plasmodium falciparum malaria increases plasma levels of the cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), a haematopoietic factor associated with dendritic cell (DC) expansion. It is unknown if the zoonotic parasite Plasmodium knowlesi impacts Flt3L or DC in human malaria. This study investigated circulating DC and Flt3L associations in adult malaria and in submicroscopic experimental infection. METHODS: Plasma Flt3L concentration and blood CD141+ DC, CD1c+ DC and plasmacytoid DC (pDC) numbers were assessed in (i) volunteers experimentally infected with P. falciparum and in Malaysian patients with uncomplicated (ii) P. falciparum or (iii) P. knowlesi malaria. RESULTS: Plasmodium knowlesi caused a decline in all circulating DC subsets in adults with malaria. Plasma Flt3L was elevated in acute P. falciparum and P. knowlesi malaria with no increase in a subclinical experimental infection. Circulating CD141+ DCs, CD1c+ DCs and pDCs declined in all adults tested, for the first time extending the finding of DC subset decline in acute malaria to the zoonotic parasite P. knowlesi. CONCLUSIONS: In adults, submicroscopic Plasmodium infection causes no change in plasma Flt3L but does reduce circulating DCs. Plasma Flt3L concentrations increase in acute malaria, yet this increase is insufficient to restore or expand circulating CD141+ DCs, CD1c+ DCs or pDCs. These data imply that haematopoietic factors, yet to be identified and not Flt3L, involved in the sensing/maintenance of circulating DC are impacted by malaria and a submicroscopic infection. The zoonotic P. knowlesi is similar to other Plasmodium spp in compromising DC in adult malaria.


Asunto(s)
Células Dendríticas/metabolismo , Malaria/parasitología , Proteínas de la Membrana/sangre , Enfermedad Aguda , Adulto , Femenino , Humanos , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasma/química , Plasmodium falciparum/fisiología , Plasmodium knowlesi/fisiología , Adulto Joven
4.
Korean J Parasitol ; 59(2): 113-119, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33951766

RESUMEN

The computer vision diagnostic approach currently generates several malaria diagnostic tools. It enhances the accessible and straightforward diagnostics that necessary for clinics and health centers in malaria-endemic areas. A new computer malaria diagnostics tool called the malaria scanner was used to investigate living malaria parasites with easy sample preparation, fast and user-friendly. The cultured Plasmodium parasites were used to confirm the sensitivity of this technique then compared to fluorescence-activated cell sorting (FACS) analysis and light microscopic examination. The measured percentage of parasitemia by the malaria scanner revealed higher precision than microscopy and was similar to FACS. The coefficients of variation of this technique were 1.2-6.7% for Plasmodium knowlesi and 0.3-4.8% for P. falciparum. It allowed determining parasitemia levels of 0.1% or higher, with coefficient of variation smaller than 10%. In terms of the precision range of parasitemia, both high and low ranges showed similar precision results. Pearson's correlation test was used to evaluate the correlation data coming from all methods. A strong correlation of measured parasitemia (r2=0.99, P<0.05) was observed between each method. The parasitemia analysis using this new diagnostic tool needs technical improvement, particularly in the differentiation of malaria species.


Asunto(s)
Pruebas Diagnósticas de Rutina/métodos , Malaria Falciparum/diagnóstico , Malaria/diagnóstico , Plasmodium falciparum/química , Plasmodium knowlesi/química , Computadores , Pruebas Diagnósticas de Rutina/instrumentación , Eritrocitos/química , Eritrocitos/parasitología , Humanos , Malaria/parasitología , Malaria Falciparum/parasitología , Parasitemia/parasitología , Plasmodium falciparum/aislamiento & purificación , Plasmodium falciparum/fisiología , Plasmodium knowlesi/aislamiento & purificación , Plasmodium knowlesi/fisiología
5.
Proc Biol Sci ; 286(1894): 20182351, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30963872

RESUMEN

The complex transmission ecologies of vector-borne and zoonotic diseases pose challenges to their control, especially in changing landscapes. Human incidence of zoonotic malaria ( Plasmodium knowlesi) is associated with deforestation although mechanisms are unknown. Here, a novel application of a method for predicting disease occurrence that combines machine learning and statistics is used to identify the key spatial scales that define the relationship between zoonotic malaria cases and environmental change. Using data from satellite imagery, a case-control study, and a cross-sectional survey, predictive models of household-level occurrence of P. knowlesi were fitted with 16 variables summarized at 11 spatial scales simultaneously. The method identified a strong and well-defined peak of predictive influence of the proportion of cleared land within 1 km of households on P. knowlesi occurrence. Aspect (1 and 2 km), slope (0.5 km) and canopy regrowth (0.5 km) were important at small scales. By contrast, fragmentation of deforested areas influenced P. knowlesi occurrence probability most strongly at large scales (4 and 5 km). The identification of these spatial scales narrows the field of plausible mechanisms that connect land use change and P. knowlesi, allowing for the refinement of disease occurrence predictions and the design of spatially-targeted interventions.


Asunto(s)
Monitoreo Epidemiológico , Bosques , Aprendizaje Automático , Malaria/epidemiología , Zoonosis/epidemiología , Animales , Estudios de Casos y Controles , Estudios Transversales , Agricultura Forestal , Humanos , Malasia/epidemiología , Modelos Estadísticos , Modelos Teóricos , Plasmodium knowlesi/fisiología , Tecnología de Sensores Remotos , Nave Espacial , Análisis Espacial
6.
Parasitology ; 145(1): 32-40, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27222102

RESUMEN

Plasmodium knowlesi a simian malaria parasite is currently affecting humans in Southeast Asia. Malaysia has reported the most number of cases and P. knowlesi is the predominant species occurring in humans. The vectors of P. knowlesi belong to the Leucosphyrus group of Anopheles mosquitoes. These are generally described as forest-dwelling mosquitoes. With deforestation and changes in land-use, some species have become predominant in farms and villages. However, knowledge on the distribution of these vectors in the country is sparse. From a public health point of view it is important to know the vectors, so that risk factors towards knowlesi malaria can be identified and control measures instituted where possible. Here, we review what is known about the knowlesi malaria vectors and ascertain the gaps in knowledge, so that future studies could concentrate on this paucity of data in-order to address this zoonotic problem.


Asunto(s)
Anopheles/fisiología , Malaria/transmisión , Mosquitos Vectores/fisiología , Plasmodium knowlesi/fisiología , Animales , Anopheles/parasitología , Asia Sudoriental , Mosquitos Vectores/parasitología , Salud Pública
7.
Parasitology ; 145(1): 85-100, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28712361

RESUMEN

Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these variant antigen families are regulated. Importantly, the longitudinal dynamics and molecular mechanisms that govern variant antigen expression can be studied with P. knowlesi infection of its mammalian and vector hosts. Synchronous infections can be initiated with established clones and studied at multi-omic levels, with the benefit of computational tools from systems biology that permit the integration of datasets and the design of explanatory, predictive mathematical models. Here we provide an historical account of this topic, while highlighting the potential for maximizing the use of P. knowlesi - macaque model systems and summarizing exciting new progress in this area of research.


Asunto(s)
Variación Antigénica/inmunología , Macaca/inmunología , Malaria/inmunología , Plasmodium knowlesi/fisiología , Proteínas Protozoarias/inmunología , Animales , Modelos Animales de Enfermedad , Malaria/parasitología , Biología de Sistemas
8.
Parasitology ; 145(1): 101-110, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28345507

RESUMEN

Plasmodium knowlesi is increasingly recognized as a major cause of malaria in Southeast Asia. Anopheles leucosphyrous group mosquitoes transmit the parasite and natural hosts include long-tailed and pig-tailed macaques. Despite early laboratory experiments demonstrating successful passage of infection between humans, the true role that humans play in P. knowlesi epidemiology remains unclear. The threat posed by its introduction into immunologically naïve populations is unknown despite being a public health priority for this region. A two-host species mathematical model was constructed to analyse this threat. Global sensitivity analysis using Monte Carlo methods highlighted the biological processes of greatest influence to transmission. These included parameters known to be influential in classic mosquito-borne disease models (e.g. vector longevity); however, interesting ecological components that are specific to this system were also highlighted: while local vectors likely have intrinsic preferences for certain host species, how plastic these preferences are, and how this is shaped by local conditions, are key determinants of parasite transmission potential. Invasion analysis demonstrates that this behavioural plasticity can qualitatively impact the probability of an epidemic sparked by imported infection. Identifying key vector sub/species and studying their biting behaviours constitute important next steps before models can better assist in strategizing disease control.


Asunto(s)
Anopheles/fisiología , Macaca , Malaria/transmisión , Malaria/veterinaria , Enfermedades de los Monos/transmisión , Mosquitos Vectores/fisiología , Plasmodium knowlesi/fisiología , Animales , Anopheles/parasitología , Interacciones Huésped-Parásitos , Humanos , Malaria/parasitología , Modelos Biológicos , Enfermedades de los Monos/parasitología , Método de Montecarlo , Mosquitos Vectores/parasitología
9.
Parasitology ; 145(1): 18-31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28122651

RESUMEN

Plasmodium knowlesi is a simian malaria of primarily the macaque species of South East Asia. While it was known that human infections could be induced during the years of malariotherapy, naturally occurring P. knowlesi human infections were thought to be rare. However, in 2004, knowlesi infections became recognized as an important infection amongst human populations in Sarawak, Malaysian Borneo. Since then, it has become recognized as a disease affecting people living and visiting endemic areas across South East Asia. Over the last 12 years, clinical studies have improved our understanding of this potentially fatal disease. In this review article the current literature is reviewed to give a comprehensive description of the disease and treatment.


Asunto(s)
Malaria , Plasmodium knowlesi/fisiología , Asia Sudoriental/epidemiología , Humanos , Malaria/diagnóstico , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/parasitología , Prevalencia , Factores de Riesgo
10.
Parasitology ; 145(1): 6-17, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27829470

RESUMEN

In recent years, a malaria infection of humans in South East Asia, originally diagnosed as a known human-infecting species, Plasmodium malariae, has been identified as a simian parasite, Plasmodium knowlesi. This species had been subject to considerable investigation in monkeys since the 1930s. With the development of continuous culture of the erythrocytic stages of the human malarial parasite, Plasmodium falciparum in 1976, the emphasis in research shifted away from knowlesi. However, its importance as a human pathogen has provoked a renewed interest in P. knowlesi, not least because it too can be maintained in continuous culture and thus provides an experimental model. In fact, this parasite species has a long history in malaria research, and the purpose of this chapter is to outline approximately the first 50 years of this history.


Asunto(s)
Macaca mulatta , Malaria/historia , Enfermedades de los Monos/historia , Plasmodium knowlesi/fisiología , Animales , Modelos Animales de Enfermedad , Historia del Siglo XX , Humanos , Malaria/inmunología , Malaria/parasitología , Malaria/patología , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/parasitología , Enfermedades de los Monos/patología
11.
Parasitology ; 145(1): 56-70, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27938428

RESUMEN

The primate malaria Plasmodium knowlesi has a long-standing history as an experimental malaria model. Studies using this model parasite in combination with its various natural and experimental non-human primate hosts have led to important advances in vaccine development and in our understanding of malaria invasion, immunology and parasite-host interactions. The adaptation to long-term in vitro continuous blood stage culture in rhesus monkey, Macaca fascicularis and human red blood cells, as well as the development of various transfection methodologies has resulted in a highly versatile experimental malaria model, further increasing the potential of what was already a very powerful model. The growing evidence that P. knowlesi is an important human zoonosis in South-East Asia has added relevance to former and future studies of this parasite species.


Asunto(s)
Modelos Animales de Enfermedad , Haplorrinos , Interacciones Huésped-Parásitos , Malaria/parasitología , Plasmodium knowlesi/fisiología , Adaptación Biológica , Animales , Eritrocitos/parasitología , Humanos , Macaca fascicularis , Macaca mulatta , Malaria/inmunología , Malaria/prevención & control , Malaria/veterinaria , Vacunas contra la Malaria/análisis , Vacunas contra la Malaria/farmacología , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/parasitología , Enfermedades de los Monos/prevención & control , Plasmodium knowlesi/inmunología , Zoonosis/inmunología , Zoonosis/parasitología , Zoonosis/prevención & control
12.
Proc Natl Acad Sci U S A ; 112(42): 13027-32, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26438871

RESUMEN

Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10(-3)) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (FST) = 0.21, with 9,293 SNPs having fixed differences of FST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean FST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.


Asunto(s)
Genoma de Protozoos , Plasmodium knowlesi/genética , Adaptación Fisiológica , Animales , Genética de Población , Plasmodium knowlesi/fisiología , Polimorfismo de Nucleótido Simple
13.
Parasitol Res ; 116(3): 839-845, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28019000

RESUMEN

It has been claimed that infectious agents transmitted by mosquitoes (Diptera: Culicidae) may have a greater connection to cancer then hitherto supposed and that the immune system struggles to recognize and fight some of these infectious agents. One of the claims made is that there is a connection between human malaria and brain cancers in the USA. However, the USA declared itself free of human malaria in the last century, yet cancer incidences remain high, suggesting any overall cancer connection is slight. Two fundamental questions arise from the possible mosquito-cancer connection. Firstly, if mosquitoes are able to vector some pathogens and parasites linked with cancer pathogenesis, why has the fact not been discovered decades ago? Secondly, if there is a connection (other than in relation to Burkett's lymphoma), what is its extent? The answers may well lie with the various types of malarias known to exist. The discovery in humans of the simian malaria, caused by Plasmodium knowlesi, suggests that other forms of simian or even avian malaria may be capable of survival in humans, albeit at low levels of parasitemia, and humans may be a dead-end host. Other carcinogenic infectious agents transmitted by mosquitoes may also go undetected because either no one is looking for them, or they are looking in wrong anatomical locations and/or with inadequate tools. Research on false negative test results with respect to many infectious agents is sadly lacking, so its extent is unknown. However, electronic and other media provide numerous instances of patients failing to be diagnosed for both human malaria and Lyme's disease, to take just two examples. This review suggests that to shed light on a potential mosquito-cancer connection, more research is required to establish whether other simian and avian forms of malaria play a part. If so, then they potentially provide unique markers for early cancer detection.


Asunto(s)
Malaria Aviar/parasitología , Malaria/parasitología , Neoplasias/parasitología , Plasmodium knowlesi/fisiología , Animales , Aves , Culicidae/parasitología , Humanos , Malaria/transmisión , Malaria Aviar/transmisión , Plasmodium knowlesi/genética , Plasmodium knowlesi/aislamiento & purificación
14.
New Microbiol ; 40(4): 291-294, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28675245

RESUMEN

Plasmodium knowlesi is a simian parasite responsible for most human cases of malaria in Malaysian Borneo. A timely recognition of infection is crucial because of the risk of severe disease due to the rapid increase in parasitemia. We report a case of P. knowlesi infection in a traveller who developed fever and thrombocytopenia after returning from the Philippines in 2016. Rapid antigen test was negative, microscopy examination showed parasites similar to Plasmodium malariae, with a parasite count of 10,000 parasites per µL blood, while molecular testing identified P. knowlesi infection. Treatment with atovaquone-proguanil led to resolution of fever and restoration of platelet count in two days. P. knowlesi infection should be suspected in febrile travellers returning from South East Asia. Due to the low sensitivity of rapid antigen tests and the low specificity of microscopy, confirmation by molecular tests is recommended.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium knowlesi/aislamiento & purificación , Atovacuona , Diagnóstico Diferencial , Combinación de Medicamentos , Humanos , Italia , Malaria/microbiología , Filipinas , Plasmodium knowlesi/fisiología , Proguanil , Viaje
15.
Parasitology ; 143(4): 389-400, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26817785

RESUMEN

The public health threat posed by zoonotic Plasmodium knowlesi appears to be growing: it is increasingly reported across South East Asia, and is the leading cause of malaria in Malaysian Borneo. Plasmodium knowlesi threatens progress towards malaria elimination as aspects of its transmission, such as spillover from wildlife reservoirs and reliance on outdoor-biting vectors, may limit the effectiveness of conventional methods of malaria control. The development of new quantitative approaches that address the ecological complexity of P. knowlesi, particularly through a focus on its primary reservoir hosts, will be required to control it. Here, we review what is known about P. knowlesi transmission, identify key knowledge gaps in the context of current approaches to transmission modelling, and discuss the integration of these approaches with clinical parasitology and geostatistical analysis. We highlight the need to incorporate the influences of fine-scale spatial variation, rapid changes to the landscape, and reservoir population and transmission dynamics. The proposed integrated approach would address the unique challenges posed by malaria as a zoonosis, aid the identification of transmission hotspots, provide insight into the mechanistic links between incidence and land use change and support the design of appropriate interventions.


Asunto(s)
Ecología/tendencias , Macaca/parasitología , Malaria/transmisión , Enfermedades de los Monos/parasitología , Plasmodium knowlesi , Zoonosis/parasitología , Animales , Asia Sudoriental/epidemiología , Culicidae/parasitología , Demografía , Reservorios de Enfermedades/parasitología , Actividades Humanas , Humanos , Insectos Vectores/parasitología , Malaria/epidemiología , Malaria/parasitología , Modelos Biológicos , Enfermedades de los Monos/epidemiología , Enfermedades de los Monos/transmisión , Plasmodium knowlesi/patogenicidad , Plasmodium knowlesi/fisiología , Factores de Riesgo , Zoonosis/epidemiología , Zoonosis/transmisión
16.
Parasitol Res ; 115(6): 2139-48, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27079460

RESUMEN

Malaria recurrences after an initially successful therapy and malarial fever occurring a long time after infection are well-known problems in malariology. Currently, two distinct types of malaria recurrences are defined: recrudescence and relapse. A recrudescence is thought to originate from circulating Plasmodium blood stages which do not cause fever before a certain level of a microscopically detectable parasitemia is reached. Contrary, a relapse is thought to originate from quiescent intracellular hepatic parasite stages called hypnozoites. Recrudescences would typically occur in infections due to Plasmodium falciparum. Plasmodium knowlesi, and Plasmodium malariae, whereas relapses would be caused exclusively by Plasmodium vivax and Plasmodium ovale. This schematic view is, however, insufficiently supported by experimental evidence. For instance, hypnozoites of P. ovale have never been experimentally documented. On the other hand, the nonfinding of P. malariae hypnozoites turned into the proof for the nonexistence of P. malariae hypnozoites. Clinical relapse-type recurrences have been observed in both P. ovale and P. malariae infections, and decade-long incubation times have also been reported in P. falciparum infections. We propose a gradual hypothesis in accordance with the continuity concept of biological evolution: both, relapse and recrudescence may be potentially caused by all Plasmodium spp. We hypothesize that the difference between the various Plasmodium spp. is quantitative rather than qualitative: there are Plasmodium spp. which frequently cause relapses such as P. vivax, particularly the P.v. Chesson strain, species which cause relapses less frequently, such as P. ovale and sometimes P. malariae, and species which may exceptionally cause relapses such as P. falciparum. All species may cause recrudescences. As clinical consequences, we propose that 8-aminquinolines may be considered in a relapse-type recrudescence regardless of the causal Plasmodium sp., whereas primaquine relapse prevention might not be routinely indicated in malaria due to P. ovale.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria/veterinaria , Plasmodium/fisiología , Aminoquinolinas/uso terapéutico , Humanos , Hígado/parasitología , Malaria/tratamiento farmacológico , Malaria/parasitología , Parasitemia , Plasmodium/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/fisiología , Plasmodium knowlesi/efectos de los fármacos , Plasmodium knowlesi/fisiología , Plasmodium malariae/efectos de los fármacos , Plasmodium malariae/fisiología , Plasmodium ovale/efectos de los fármacos , Plasmodium ovale/fisiología , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/fisiología , Primaquina/uso terapéutico , Recurrencia , Especificidad de la Especie
17.
Commun Dis Intell Q Rep ; 40(1): E17-47, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27080023

RESUMEN

This report describes the epidemiology of mosquito-borne diseases of public health importance in Australia during the 2012-13 season (1 July 2012 to 30 June 2013) and includes data from human notifications, sentinel chicken, vector and virus surveillance programs. The National Notifiable Diseases Surveillance System received notifications for 9,726 cases of disease transmitted by mosquitoes during the 2012-13 season. The Australasian alphaviruses Barmah Forest virus and Ross River virus accounted for 7,776 (80%) of total notifications. However, over-diagnosis and possible false positive diagnostic test results for these 2 infections mean that the true burden of infection is likely overestimated, and as a consequence, the case definitions were revised, effective from 1 January 2016. There were 96 notifications of imported chikungunya virus infection. There were 212 notifications of dengue virus infection acquired in Australia and 1,202 cases acquired overseas, with an additional 16 cases for which the place of acquisition was unknown. Imported cases of dengue were most frequently acquired in Indonesia. No locally-acquired malaria was notified during the 2012-13 season, though there were 415 notifications of overseas-acquired malaria. There were no cases of Murray Valley encephalitis virus infection in 2012-13. In 2012-13, arbovirus and mosquito surveillance programs were conducted in most jurisdictions with a risk of vectorborne disease transmission. Surveillance for exotic mosquitoes at the border continues to be a vital part of preventing the spread of mosquito-borne diseases such as dengue to new areas of Australia, and in 2012-13, there were 7 detections of exotic mosquitoes at the border.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Malaria/epidemiología , Vigilancia en Salud Pública , Comités Consultivos , Animales , Arbovirus/patogenicidad , Arbovirus/fisiología , Vectores Artrópodos/microbiología , Vectores Artrópodos/parasitología , Vectores Artrópodos/virología , Australia/epidemiología , Culicidae/parasitología , Notificación de Enfermedades/estadística & datos numéricos , Humanos , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/fisiología , Plasmodium knowlesi/patogenicidad , Plasmodium knowlesi/fisiología , Plasmodium ovale/patogenicidad , Plasmodium ovale/fisiología , Plasmodium vivax/patogenicidad , Plasmodium vivax/fisiología
18.
Cell Microbiol ; 16(5): 612-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24506567

RESUMEN

Plasmodium knowlesi is a simian malaria parasite primarily infecting macaque species in Southeast Asia. Although its capacity to infect humans has been recognized since the early part of the last century, it has recently become evident that human infections are widespread and potentially life threatening. Historically, P. knowlesi has proven to be a powerful tool in early studies of malaria parasites, providing key breakthroughs in understanding many aspects of Plasmodium biology. However, the necessity to grow the parasite either in macaques or in vitro using macaque blood restricted research to laboratories with access to these resources. The recent adaptation of P. knowlesi to grow and proliferate in vitro in human red blood cells (RBCs) is therefore a substantial step towards revitalizing and expanding research on P. knowlesi. Furthermore, the development of a highly efficient transfection system to genetically modify the parasite makes P. knowlesi an ideal model to study parasite biology. In this review, we elaborate on the importance of P. knowlesi in earlier phases of malaria research and highlight the future potential of the newly available human adapted P. knowlesi parasite lines.


Asunto(s)
Adaptación Biológica , Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Plasmodium knowlesi/fisiología , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Macaca , Parasitología/historia , Parasitología/métodos
19.
Malar J ; 14: 118, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25889709

RESUMEN

BACKGROUND: Placental malaria (PM) causes adverse pregnancy outcomes in the mother and her foetus. It is difficult to study PM directly in humans due to ethical challenges. This study set out to bridge this gap by determining the outcome of PM in non-immune baboons in order to develop a non-human primate model for the disease. METHODS: Ten pregnant baboons were acquired late in their third trimester (day 150) and randomly grouped as seven infected and three non-infected. Another group of four nulligravidae (non-pregnant) infected was also included in the analysis of clinical outcome. Malaria infection was intravenously initiated by Plasmodium knowlesi blood-stage parasites through the femoral vein on 160(th) day of gestation (for pregnant baboons). Peripheral smear, placental smear, haematological samples, and histological samples were collected during the study period. Median values of clinical and haematological changes were analysed using Kruskal-Wallis and Dunn's Multiple Comparison Test. Parasitaemia profiles were analysed using Mann Whitney U test. A Spearman's rank correlation was run to determine the relationship between the different variables of severity scores. Probability values of P <0.05 were considered significant. RESULTS: Levels of white blood cells increased significantly in pregnant infected (34%) than in nulligravidae infected baboons (8%). Placental parasitaemia levels was on average 19-fold higher than peripheral parasitaemia in the same animal. Infiltration of parasitized erythrocytes and inflammatory cells were also observed in baboon placenta. Malaria parasite score increased with increase in total placental damage score (rs = 0.7650, P <0.05) and inflammatory score (rs = 0.8590, P <0.05). Although the sample size was small, absence of parasitized erythrocytes in cord blood and foetal placental region suggested lack of congenital malaria in non-immune baboons. CONCLUSION: This study has demonstrated accumulation of parasitized red blood cells and infiltration of inflammatory cells in the placental intravillous space (IVS) of baboons that are non-immune to malaria. This is a key feature of placental falciparum malaria in humans. This presents the baboon as a new model for the characterization of malaria during pregnancy.


Asunto(s)
Modelos Animales de Enfermedad , Papio anubis , Placenta/parasitología , Plasmodium knowlesi/fisiología , Complicaciones Parasitarias del Embarazo/parasitología , Animales , Femenino , Pruebas Hematológicas , Humanos , Prueba de Papanicolaou , Parasitemia/parasitología , Parasitemia/patología , Placenta/patología , Embarazo , Complicaciones Parasitarias del Embarazo/patología
20.
Nature ; 455(7214): 799-803, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18843368

RESUMEN

Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.


Asunto(s)
Genoma de Protozoos/genética , Genómica , Macaca mulatta/parasitología , Malaria/parasitología , Plasmodium knowlesi/genética , Secuencia de Aminoácidos , Animales , Antígenos CD/química , Antígenos CD/genética , Cromosomas/genética , Secuencia Conservada , Genes Protozoarios/genética , Humanos , Datos de Secuencia Molecular , Plasmodium knowlesi/clasificación , Plasmodium knowlesi/fisiología , Estructura Terciaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Análisis de Secuencia de ADN , Telómero/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda