Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
BMC Genomics ; 25(1): 456, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730418

RESUMEN

In this study, we investigated the codon bias of twelve mitochondrial core protein coding genes (PCGs) in eight Pleurotus strains, two of which are from the same species. The results revealed that the codons of all Pleurotus strains had a preference for ending in A/T. Furthermore, the correlation between codon base compositions and codon adaptation index (CAI), codon bias index (CBI) and frequency of optimal codons (FOP) indices was also detected, implying the influence of base composition on codon bias. The two P. ostreatus species were found to have differences in various base bias indicators. The average effective number of codons (ENC) of mitochondrial core PCGs of Pleurotus was found to be less than 35, indicating strong codon preference of mitochondrial core PCGs of Pleurotus. The neutrality plot analysis and PR2-Bias plot analysis further suggested that natural selection plays an important role in Pleurotus codon bias. Additionally, six to ten optimal codons (ΔRSCU > 0.08 and RSCU > 1) were identified in eight Pleurotus strains, with UGU and ACU being the most widely used optimal codons in Pleurotus. Finally, based on the combined mitochondrial sequence and RSCU value, the genetic relationship between different Pleurotus strains was deduced, showing large variations between them. This research has improved our understanding of synonymous codon usage characteristics and evolution of this important fungal group.


Asunto(s)
Uso de Codones , Genoma Mitocondrial , Pleurotus , Pleurotus/genética , Codón/genética , Composición de Base , Especificidad de la Especie , Selección Genética , Evolución Molecular , Variación Genética
2.
Fungal Genet Biol ; 172: 103893, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657898

RESUMEN

Chitin is an essential structural component of fungal cell walls composed of transmembrane proteins called chitin synthases (CHSs), which have a large range of reported effects in ascomycetes; however, are poorly understood in agaricomycetes. In this study, evolutionary and molecular genetic analyses of chs genes were conducted using genomic information from nine ascomycete and six basidiomycete species. The results support the existence of seven previously classified chs clades and the discovery of three novel basidiomycete-specific clades (BI-BIII). The agaricomycete fungus Pleurotus ostreatus was observed to have nine putative chs genes, four of which were basidiomycete-specific. Three of these basidiomycete specific genes were disrupted in the P. ostreatus 20b strain (ku80 disruptant) through homologous recombination and transformants were obtained (Δchsb2, Δchsb3, and Δchsb4). Despite numerous transformations Δchsb1 was unobtainable, suggesting disruption of this gene causes a crucial negative effect in P. ostreatus. Disruption of these chsb2-4 genes caused sparser mycelia with rougher surfaces and shorter aerial hyphae. They also caused increased sensitivity to cell wall and membrane stress, thinner cell walls, and overexpression of other chitin and glucan synthases. These genes have distinct roles in the structural formation of aerial hyphae and cell walls, which are important for understanding basidiomycete evolution in filamentous fungi.


Asunto(s)
Quitina Sintasa , Quitina , Proteínas Fúngicas , Filogenia , Pleurotus , Quitina Sintasa/genética , Pleurotus/genética , Pleurotus/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Quitina/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Evolución Molecular , Basidiomycota/genética , Basidiomycota/enzimología
3.
Fungal Genet Biol ; 172: 103890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503389

RESUMEN

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.


Asunto(s)
Cuerpos Fructíferos de los Hongos , Meiosis , Pleurotus , Esporas Fúngicas , Pleurotus/genética , Pleurotus/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Meiosis/genética , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Genes Esenciales/genética , Transcriptoma/genética
4.
Appl Microbiol Biotechnol ; 108(1): 217, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372792

RESUMEN

Pleurotus ostreatus, also known as the oyster mushroom, is a popular edible mushroom cultivated worldwide. This review aims to survey recent progress in the molecular genetics of this fungus and demonstrate its potential as a model mushroom for future research. The development of modern molecular genetic techniques and genome sequencing technologies has resulted in breakthroughs in mushroom science. With efficient transformation protocols and multiple selection markers, a powerful toolbox, including techniques such as gene knockout and genome editing, has been developed, and numerous new findings are accumulating in P. ostreatus. These include molecular mechanisms of wood component degradation, sexual development, protein secretion systems, and cell wall structure. Furthermore, these techniques enable the identification of new horizons in enzymology, biochemistry, cell biology, and material science through protein engineering, fluorescence microscopy, and molecular breeding. KEY POINTS: • Various genetic techniques are available in Pleurotus ostreatus. • P. ostreatus can be used as an alternative model mushroom in genetic analyses. • New frontiers in mushroom science are being developed using the fungus.


Asunto(s)
Agaricales , Pleurotus , Pleurotus/genética , Agaricales/genética , Ciencia de los Materiales , Pared Celular , Barajamiento de ADN
5.
Antonie Van Leeuwenhoek ; 117(1): 42, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411793

RESUMEN

Pleurotus tuber-regium (Fr.) Sing. can evade oxygen by forming sclerotia under oxidative stress, consequently averting the development of hyperoxidative state, during which the expression level of catalase gene (PtCat) is significantly up-regulated. To investigate the relationship between the catalase gene and sclerotia formation, over-expression and interference strains of the PtCat gene were obtained by Agrobacterium tumefaciens-mediated transformation for phenotypic analysis. In the absence of hydrogen peroxide (H2O2) stress, a minor difference was observed in the mycelial growth rate and the activity of antioxidant enzymes between the over-expression and interference strains. However, when exposed to 1-2 mM H2O2, the colony diameter of the over-expression strain was approximately 2-3× that of the interference strain after 8 days of culturing. The catalase activity of the over-expression strain increased by 1000 U/g under 2 mM H2O2 stress, while the interference strain increased by only 250 U/g. After one month of cultivation, the interference strain formed an oval sclerotium measuring 3.5 cm on the long axis and 2 cm on the short axis, while the over-expression strain did not form sclerotia. Therefore, it is concluded that catalase activity regulates the formation of sclerotia in P. tuber-regium.


Asunto(s)
Peróxido de Hidrógeno , Pleurotus , Catalasa/genética , Pleurotus/genética , Estrés Oxidativo , Antioxidantes
6.
BMC Genomics ; 24(1): 552, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723428

RESUMEN

BACKGROUND: Pleurotus giganteus is a commonly cultivated mushroom with notable high temperature resistance, making it significant for the growth of the edible fungi industry in the tropics. Despite its practical importance,, the genetic mechanisms underlying its ability to withstand high temperature tolerance remain elusive. RESULTS: In this study, we performed high-quality genome sequencing of a monokaryon isolated from a thermotolerant strain of P. giganteus. The genome size was found to be 40.11 Mb, comprising 17 contigs and 13,054 protein-coding genes. Notably, some genes related to abiotic stress were identified in genome, such as genes regulating heat shock protein, protein kinase activity and signal transduction. These findings provide valuable insights into the genetic basis of P. giganteus' high temperature resistance. Furthermore, the phylogenetic tree showed that P. giganteus was more closely related to P. citrinopileatus than other Pleurotus species. The divergence time between Pleurotus and Lentinus was estimated as 153.9 Mya, and they have a divergence time with Panus at 168.3 Mya, which proved the taxonomic status of P. giganteus at the genome level. Additionally, a comparative transcriptome analysis was conducted between mycelia treated with 40 °C heat shock for 18 h (HS) and an untreated control group (CK). Among the 2,614 differentially expressed genes (DEGs), 1,303 genes were up-regulated and 1,311 were down-regulated in the HS group. The enrichment analysis showed that several genes related to abiotic stress, including heat shock protein, DnaJ protein homologue, ubiquitin protease, transcription factors, DNA mismatch repair proteins, and zinc finger proteins, were significantly up-regulated in the HS group. These genes may play important roles in the high temperature adaptation of P. giganteus. Six DEGs were selected according to fourfold expression changes and were validated by qRT-PCR, laying a good foundation for further gene function analysis. CONCLUSION: Our study successfully reported a high-quality genome of P. giganteus and identified genes associated with high-temperature tolerance through an integrative analysis of the genome and transcriptome. This study lays a crucial foundation for understanding the high-temperature tolerance mechanism of P. giganteus, providing valuable insights for genetic modification of P. giganteus strains and the development of high-temperature strains for the edible fungus industry, particularly in tropical regions.


Asunto(s)
Pleurotus , Pleurotus/genética , Transcriptoma , Filogenia , Temperatura , Proteínas de Choque Térmico
7.
Environ Microbiol ; 25(8): 1393-1408, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36959722

RESUMEN

White-rot fungi efficiently degrade wood lignin; however, the mechanisms involved remain largely unknown. Recently, a forward genetics approach to identify several genes in Pleurotus ostreatus (Agaricales) in which mutations cause defects in wood lignin degradation was used. For example, pex1 encodes a peroxisome biogenesis factor and gat1 encodes a putative Agaricomycetes-specific DNA-binding transcription factor. In this study, we examined the effects of single-gene mutations in pex1 or gat1 on wood lignin degradation in another white-rot fungus, Gelatoporia (Ceriporiopsis) subvermispora (Polyporales), to investigate conserved and derived degradation mechanisms in white-rot fungi. G. subvermispora pex1 and gat1 single-gene mutant strains were generated from a monokaryotic wild-type strain, FP-90031-Sp/1, using plasmid-based CRISPR/Cas9. As in P. ostreatus, Gsgat1 mutants were nearly unable to degrade lignin sourced from beech wood sawdust medium (BWS), while Gspex1 mutants exhibited a delay in lignin degradation. We also found that the transcripts of lignin-modifying enzyme-encoding genes, mnp4, mnp5, mnp6, mnp7, and mnp11, which predominantly accumulate in FP-90031-Sp/1 cultured with BWS, were greatly downregulated in Gsgat1 mutants. Taken together, the results suggest that Gat1 may be a conserved regulator of the ligninolytic system of white-rot fungi and that the contribution of peroxisomes to the ligninolytic system may differ among species.


Asunto(s)
Pleurotus , Polyporales , Lignina/metabolismo , Sistemas CRISPR-Cas , Polyporales/metabolismo , Pleurotus/genética , Pleurotus/metabolismo
8.
Environ Microbiol ; 25(10): 1909-1924, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37218079

RESUMEN

Lignin-modifying enzymes (LMEs), which include laccases (Lacs), manganese peroxidases (MnPs), versatile peroxidases (VPs), and lignin peroxidases (LiPs), have been considered key factors in lignin degradation by white-rot fungi because they oxidize lignin model compounds and depolymerize synthetic lignin in vitro. However, it remains unclear whether these enzymes are essential/important in the actual degradation of natural lignin in plant cell walls. To address this long-standing issue, we examined the lignin-degrading abilities of multiple mnp/vp/lac mutants of Pleurotus ostreatus. One vp2/vp3/mnp3/mnp6 quadruple-gene mutant was generated from a monokaryotic wild-type strain PC9 using plasmid-based CRISPR/Cas9. Also, two vp2/vp3/mnp2/mnp3/mnp6, two vp2/vp3/mnp3/mnp6/lac2 quintuple-gene mutants, and two vp2/vp3/mnp2/mnp3/mnp6/lac2 sextuple-gene mutants were generated. The lignin-degrading abilities of the sextuple and vp2/vp3/mnp2/mnp3/mnp6 quintuple-gene mutants on the Beech wood sawdust medium reduced drastically, but not so much for those of the vp2/vp3/mnp3/mnp6/lac2 mutants and the quadruple mutant strain. The sextuple-gene mutants also barely degraded lignin in Japanese Cedar wood sawdust and milled rice straw. Thus, this study presented evidence that the LMEs, especially MnPs and VPs, play a crucial role in the degradation of natural lignin by P. ostreatus for the first time.


Asunto(s)
Pleurotus , Pleurotus/genética , Pleurotus/metabolismo , Lignina/metabolismo , Sistemas CRISPR-Cas , Peroxidasas/genética , Peroxidasas/metabolismo , Pared Celular/metabolismo
9.
Arch Microbiol ; 206(1): 13, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38070036

RESUMEN

The development of fast-growing/short cropping period oyster mushroom (Pleurotus species) having good taste is one of the important needs of mushroom growers. Pleurotus djamor strain woody1, collected recently from the dead wood, has a short cropping period of 30 days but a moderately acceptable taste. One of the cultivated Pleurotus spp., P. djamor strain MDU1, has good taste but a long cropping period of 47 days. Thus, genetic improvement of P. djamor was carried out between these two strains by pairing monokaryons (anastomosis) to develop elite hybrid strains having a short cropping period and good taste. Monokaryons of parental strains showed variation in time required for germination; i.e., basidiospores of P. djamor strain woody1 germinated and developed monokaryotic colonies in 6 days, whereas that of P. djamor strain MDU1 developed monokaryotic colonies in 8 days of incubation. In addition, variation in the growth rate and morphology of the monokaryotic mycelia of both parental strains was noticed, and fast-growing monokaryons were selected for anastomosis. Out of 60 crosses made between mycelia of monokaryotic isolates of both parental strains, 20 crosses showed clamp connection, indicating that they were successful crosses. Out of 20 hybrids, two hybrid strains, viz., W2M4 and W4M4, exhibited higher yields than their parents. They exhibited the short cropping period trait, good taste attribute, and some specific volatile metabolites. This study showed that the developed two hybrid varieties, having desirable agronomic traits, could be used in mushroom farming to increase the mushroom grower's income.


Asunto(s)
Pleurotus , Pleurotus/genética , Hibridación de Ácido Nucleico
10.
Arch Virol ; 168(6): 162, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195309

RESUMEN

A novel positive single-stranded RNA virus, Pleurotus ostreatus deltaflexivirus 1 (PoDFV1), was isolated from the edible fungus Pleurotus ostreatus strain ZP6. The complete genome of PoDFV1 is 7706 nucleotides (nt) long and contains a short poly(A) tail. PoDFV1 was predicted to contain one large open reading frame (ORF1) and three small downstream ORFs (ORFs 2-4). ORF1 encodes a putative replication-associated polyprotein of 1979 amino acids (aa) containing three conserved domains - viral RNA methyltransferase (Mtr), viral RNA helicase (Hel), and RNA-dependent RNA polymerase (RdRp) - which are common to all deltaflexiviruses. ORFs 2-4 encode three small hypothetical proteins (15-20 kDa) without conserved domains or known biological functions. Sequence alignments and phylogenetic analysis suggested that PoDFV1 is a member of a new species in the genus Deltaflexivirus (family Deltaflexiviridae, order Tymovirales). To our knowledge, this is the first report of a deltaflexivirus infecting P. ostreatus.


Asunto(s)
Virus Fúngicos , Pleurotus , Virus ARN , Pleurotus/genética , Filogenia , Proteínas Virales/genética , Proteínas Virales/química , Genoma Viral , Virus ARN/genética , ARN Viral/genética , Virus ARN Monocatenarios Positivos/genética , Sistemas de Lectura Abierta
11.
Mol Biol Rep ; 50(1): 621-629, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370299

RESUMEN

BACKGROUND: Pleurotus eryngii is a kind of edible fungi with good quality, and it is popular among consumers. At present, some adulterated edible fungi are available in the market. The rights and interests of consumers can be ensured by establishing a practical edible fungi detection system. Among the existing methods for detecting food adulteration, endogenous reference gene amplification is convenient and reliable. However, no ideal endogenous reference gene is available for P. eryngii. METHODS AND RESULTS: In this study, s9ap was screened as an endogenous reference gene through sequence alignment. Qualitative and quantitative PCR analysis of this gene was carried out in one P. eryngii variety and 18 other species. The detection limit of quantitative PCR was 400 pg, and no s9ap amplification products were detected in the 18 other species. CONCLUSIONS: This study confirmed that s9ap was an ideal endogenous reference gene for the detection of P. eryngii. This method was also suitable for processed food products.


Asunto(s)
Pleurotus , Pleurotus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia
12.
Mol Biol Rep ; 50(6): 5029-5038, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37095362

RESUMEN

BACKGROUND: Sporocarps of oyster mushroom liberate enormous spores and cause allergic reactions to workers involved in its cultivation. These spore-related allergies include stiffness or pain in the forearms, limbs, itchy throat, grogginess, and respiratory problems and are major problems during oyster mushroom cultivation. METHODS AND RESULTS: In this study, we have generated seven hybrids using single-spore isolates (SSIs) of Pleurotus ostreatus var. florida (DMRP-49) and P. ostreatus (DMRP-30). Chimera was observed during cultivation trial of these hybrids and led to the development of low spore-producing/sporeless strain (DMRP-395) as evident from spore print and microscopic analysis. Further, the cultivation trial of this sporeless strain revealed a bunchy fruiting pattern and required 20-24 °C temperature for fruiting. At par yield was observed in sporeless strain. Notably, a prominent infundibuliform-shaped pileus along with central attachment of stipe was observed in the sporeless strain. Moreover, genetic diversity and principal component biplot analysis revealed resemblance of sporeless strain with one of the parental strain, i.e., P. ostreatus var. florida (DMRP-49). CONCLUSIONS: The developed sporeless strain (DMRP-395) contains high protein and at par yield as compared with the control (DMRP-136). This sporeless strain will be helpful to reduce spore-related allergic responses in mushroom growers.


Asunto(s)
Agaricales , Pleurotus , Humanos , Pleurotus/genética , Esporas Fúngicas/genética , Agaricales/genética
13.
Mol Biol Rep ; 50(9): 7205-7213, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37418082

RESUMEN

BACKGROUND: Pleurotus ostreatus, commonly known as the oyster mushroom, is a saprophytic fungus with many applications in biotechnology and medicine. This mushroom is a rich source of proteins, polysaccharides, and bioactive compounds that have been shown to possess anticancer, antioxidant, and immunomodulatory properties. In this study, we investigated the expression profile of laccase (POXA3) and ß-glucan synthase (FKS) genes during different developmental stages in two strains of P. ostreatus. METHODS AND RESULTS: Cultural and morphological studies of the two strains were studied. DMR P115 strain recorded faster mycelial growth compared to the HUC strain. However, both strains produced white, thick fluffy mycelial growth with radiating margin. Morphological characteristics of the mushroom fruiting body were also higher in the DMR P115 strain. The expression of these genes was analyzed using quantitative real-time PCR (qPCR) and the results were compared to those of the reference gene ß-actin. The expression of laccase (POXA3) was higher in the mycelial stage of DMR P115 and HUC strains indicating its role in the fruiting body development and substrate degradation. The expression of ß-glucan synthase (FKS) was upregulated in the mycelium and mature fruiting body of the DMR P115 strain. In contrast, there was only significant upregulation in the mycelial stage of the HUC strain, which indicates its role in cell wall formation and the immunostimulatory properties of that strain. CONCLUSION: The results deepen the understanding of the molecular mechanism of the fruiting body development in P. ostreatus and can be used as a foundation for future lines of research related to strain improvement of P. ostreatus.


Asunto(s)
Agaricales , Pleurotus , beta-Glucanos , Pleurotus/genética , Lacasa/genética , Lacasa/metabolismo , beta-Glucanos/metabolismo
14.
Appl Microbiol Biotechnol ; 107(4): 1391-1404, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36640206

RESUMEN

In order to explore the relationship between sclerotial formation and antioxidant enzymes under abiotic stresses, the effects of abiotic stresses including temperature, pH value, osmotic pressure, limited nitrogen, and hydrogen peroxide (H2O2) on the activities of antioxidant enzymes, ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in Pleurotus tuber-regium were studied. Meanwhile, the sclerotial formation under these abiotic stress conditions was also investigated. It was found that low temperature, weak alkaline, appropriate osmotic stress, and H2O2 can promote sclerotial formation, and sclerotial formation always tended to occur when the activities of antioxidant enzymes were at a high value. During the prolonged low temperature stress, SOD acted mainly in the early stage of stress, while POD and CAT had higher activity in the middle and late stage. Moreover, the reverse transcription quantitative polymerase chain reaction (RT-qPCR) results showed that SOD.193 and POD.535 were significantly down-regulated in sclerotia, and CAT.1115 and POD.401 were up-regulated instead. These antioxidant enzyme genes played an important role in the sclerotial formation under low temperature stress. It is strongly suggested that antioxidant enzymes and abiotic stresses are closely related to sclerotial formation in P. tuber-regium. KEY POINTS: • Low temperature and H2O2 can promote sclerotial formation. • Sclerotia are more likely to form under high antioxidant enzyme activity. • POD.401, POD.535, SOD.193, and CAT.1115 are important for sclerotial formation.


Asunto(s)
Antioxidantes , Pleurotus , Antioxidantes/metabolismo , Peróxido de Hidrógeno/farmacología , Catalasa/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Peroxidasas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo
15.
Antonie Van Leeuwenhoek ; 117(1): 1, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095768

RESUMEN

Pleurotus ostreatus is a crucial commercial mushroom widely cultivated for diverse uses. Scientists have worked on breeding disease-resistant and high-yielding varieties to secure food supply. Studies on the molecular genetic mechanism of growth and development can provide valuable information to facilitate crop breeding programs by genetic engineering. Aegerolysins are pore-forming proteins widely distributed in both prokaryotes and eukaryotes, which are reported to have haemolytic activity and be involved in the early stages of fructification. The present study aimed to explore biological function of a differential expressed aegerolysin gene PriA in P. ostreatus. The expression level of PriA gene was higher in primordium and fruiting body than that in mycelium. The PriA expression in overexpression (OE) and RNAi interference (RNAi) strains was detected by qRT-PCR. The RNAi strains grew at slightly slower rates and advanced producing yellow pigments than the wild type, while OE strains showed no prominent phenotypic characteristics. Furthermore, Pseudomonas tolaasii infection assays showed that the PriA OE strains could enhance mycelia and caps resistance to P. tolaasii. These data demonstrate PriA from P. ostreatus play an essential role in mycelial development and increase antagonism against P. tolaasii. Our study provides some reference information on interactions between edible fungi and pathogenic bacteria and offers a new resistance-conferring gene for breeding.


Asunto(s)
Pleurotus , Pleurotus/genética , Pleurotus/metabolismo , Pseudomonas/genética , Reacción en Cadena de la Polimerasa
16.
Lett Appl Microbiol ; 76(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37061783

RESUMEN

Hydrophobins are small-secreted proteins comprising both hydrophobic and hydrophilic parts, that can self-assemble into an amphiphilic film at the air-liquid interface. More than 20 hydrophobin genes have been estimated in the white-rot fungus Pleurotus ostreatus. In our previous studies, three hydrophobin genes were shown to be predominantly expressed under ligninolytic conditions, and only vmh3 was downregulated in both the delignification-deficient mutant Δgat1 and Δhir1 strains. Here, we focused on the function of the hydrophobin Vmh3 to clarify its physiological role in lignin degradation. When the hyphae were observed by transmission electron microscopy, deletion of vmh3 resulted in the disappearance of black aggregates at the interface between the cell wall and outer environment. Deletion of vmh3 resulted in reduced hydrophobicity when 0.2% sodium dodecyl sulfate was dropped onto the mycelial surface. These results suggest that Vmh3 functions on the cell surface and plays a major role in mycelial hydrophobization. Furthermore, the Δvmh3 strain showed a marked delay in lignin degradation on beech wood sawdust medium, while the production of lignin-modifying enzymes was not reduced. This study demonstrated, for the first time, the possible effect of hydrophobin on lignin degradation by a white-rot fungus.


Asunto(s)
Pleurotus , Pleurotus/genética , Pleurotus/metabolismo , Lignina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
17.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445762

RESUMEN

Oyster mushroom spherical virus (OMSV) is a mycovirus with a positive-sense single-stranded RNA genome that infects the edible mushroom Pleurotus ostreatus. OMSV is horizontally transferred from an infected strain to a cured strain via mycelia. The infection results in significant inhibition of mycelial growth, malformation of fruiting bodies, and yield loss in oyster mushrooms. This study successfully transferred OMSV from P. ostreatus to Pleurotus pulmonarius. However, transmission was not successful in other Pleurotus species including P. citrinopileatus, P. eryngii, P. nebrodensis, and P. salmoneostramineus. The successful OMSV infection in P. pulmonarius was further verified with Western blot analysis using a newly prepared polyclonal antiserum against the OMSV coat protein. Furthermore, OMSV infection reduced the mycelial growth rate of P. pulmonarius. The OMSV-infected strain demonstrated abnormal performance including twisted mushrooms or irregular edge of the cap as well as reduced yield of fruiting bodies in P. pulmonarius, compared to the OMSV-free strain. This study is the first report on the infection and pathogenicity of OMSV to the new host P. pulmonarius. The data from this study therefore suggest that OMSV is a potential threat to P. pulmonarius.


Asunto(s)
Virus Fúngicos , Pleurotus , Virus ARN , Pleurotus/genética , Virus ARN/genética
18.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37686365

RESUMEN

MYB transcription factors (TFs) have been extensively studied in plant abiotic stress responses and growth and development. However, the role of MYB TFs in the heat stress response and growth and development of Pleurotus ostreatus remains unclear. To investigate the function of PoMYB12, PoMYB15, and PoMYB20 TFs in P. ostreatus, mutant strains of PoMYB12, PoMYB15, and PoMYB20 were generated using RNA interference (RNAi) and overexpression (OE) techniques. The results indicated that the mycelia of OE-PoMYB12, OE-PoMYB20, and RNAi-PoMYB15 mutant strains exhibited positive effects under heat stress at 32 °C, 36 °C, and 40 °C. Compared to wild-type strains, the OE-PoMYB12, OE-PoMYB20, and RNAi-PoMYB15 mutant strains promoted the growth and development of P. ostreatus. These mutant strains also facilitated the recovery of growth and development of P. ostreatus after 24 h of 36 °C heat stress. In conclusion, the expression of PoMYB12 and PoMYB20 supports the mycelium's response to heat stress and enhances the growth and development of P. ostreatus, whereas PoMYB15 produces the opposite effect.


Asunto(s)
Pleurotus , Pleurotus/genética , Respuesta al Choque Térmico/genética , Micelio/genética , Interferencia de ARN , Factores de Transcripción/genética
19.
World J Microbiol Biotechnol ; 39(12): 349, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37857876

RESUMEN

Several Pleurotus species (oyster mushrooms) are commercially cultivated in India owing to the favorable tropical agro-climatic conditions. However, there are only a few studies on the microbiome of mushrooms, especially oyster mushrooms. The aim of this study was to assess the effect of endobacteria on mycelial growth, spawning, sporophore development, and proximate composition of P. pulmonarius. We isolated several bacterial strains from the sporophores of P. pulmonarius and assessed the in vitro production of indole acetic acid, ammonia, and siderophores. The selected bacteria were individually supplemented with spawn, substrate, or both for sporophore production. Three of 130 isolates were selected as mycelial growth-promoting bacteria in both solid and submerged fermentation. These bacterial isolates were identified through Gram staining, biochemical characterization, and 16S rRNA sequencing. Isolate PP showed 99.24% similarity with Priestia paraflexa, whereas isolates PJ1 and PJ2 showed 99.78% and 99.65% similarities, respectively, with Rossellomorea marisflavi. The bacterial supplementation with spawn, substrate, or both, increased the biological efficiency (BE) and nutrient content of the mushrooms. The bacterial supplementation with substrate augmented BE by 64.84%, 13.73%, and 27.13% using PJ2, PP, and PJ1, respectively; under similar conditions of spawn supplementation, BE was increased by 15.24%, 47.30%, 48.10%, respectively. Overall, the supplementation of endobacteria to improve oyster mushroom cultivation may open a new avenue for sustainable agricultural practices in the mushroom industry.


Asunto(s)
Agaricales , Pleurotus , Pleurotus/genética , ARN Ribosómico 16S/genética , Agaricales/genética , Agricultura
20.
Dokl Biochem Biophys ; 511(1): 203-211, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37833607

RESUMEN

The edible oyster mushroom Pleurotus ostreatus is one of the most cultivated species worldwide. Morphogenesis associated with the maturation of fruit bodies is controlled by two unlinked loci of sexual compatibility matA and matB with multiple alleles (tetrapolar system of sexual compatibility). Quantitative analysis of the alleles of mating compatibility loci in 17 natural isolates collected in the Moscow region was performed in mon-mon (monokaryons-monokaryon) and di-mon (dikaryon-monokaryon) crossings. Four monokaryotic testers strains which were heteroallelic at both mating type loci were obtained for each of the five natural mushroom isolates by using original technique of sterile spore prints on Petri dishes and mon-mon crossing. Twelve natural isolates were crossed via di-mon mating with the four monokaryotic testers M-38. Genetic analysis of the alleles of sexual compatibility loci in 17 natural isolates revealed multiple alleles at both loci: at least ten alleles at matA locus and eight alleles at matB locus. Structural organization analysis of the matA locus was performed in silico for homokaryotic strains PC9 and PC15 based on the whole-genome sequencing data available at DOE Joint Genome Institute. The matA locus has an extremely divergent structure: there are one copy of the homeodomain gene hd1 and one copy of the hd2 gene in the PC9 strain, whereas the matA locus of the PC15 strain is composed by two copies of hd1.1 and hd1.2 genes (class HD1 homeodomain proteins) and one copy of hd2 gene (class HD2 proteins). Comprehensive analysis of amino acid sequences of HD1 and HD2 homeodomain proteins demonstrated that the proteins have a globular structure with the nuclear localization and contain a variable N-terminus and a more conserved DNA-binding domain with a specific conserved motif  WFXNXR in the third ɑ-helix. The results suggest that multiple alleles of the matA locus of sexual compatibility in basidiomycete fungi is achieved due to both different copy number of the coding hd genes within the locus and the variability of the coding gene sequences.


Asunto(s)
Agaricales , Pleurotus , Pleurotus/genética , Agaricales/genética , Proteínas de Homeodominio/genética , Secuencia de Aminoácidos , Genes Homeobox
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda