Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G567-G582, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38193168

RESUMEN

The enteric nervous system (ENS) comprises millions of neurons and glia embedded in the wall of the gastrointestinal tract. It not only controls important functions of the gut but also interacts with the immune system, gut microbiota, and the gut-brain axis, thereby playing a key role in the health and disease of the whole organism. Any disturbance of this intricate system is mirrored in an alteration of electrical functionality, making electrophysiological methods important tools for investigating ENS-related disorders. Microelectrode arrays (MEAs) provide an appropriate noninvasive approach to recording signals from multiple neurons or whole networks simultaneously. However, studying isolated cells of the ENS can be challenging, considering the limited time that these cells can be kept vital in vitro. Therefore, we developed an alternative approach cultivating cells on glass samples with spacers (fabricated by photolithography methods). The spacers allow the cells to grow upside down in a spatially confined environment while enabling acute consecutive recordings of multiple ENS cultures on the same MEA. Upside-down culture also shows beneficial effects on the growth and behavior of enteric neural cultures. The number of dead cells was significantly decreased, and neural networks showed a higher resemblance to the myenteric plexus ex vivo while producing more stable signals than cultures grown in the conventional way. Overall, our results indicate that the upside-down approach not only allows to investigate the impact of neurological diseases in vitro but could also offer insights into the growth and development of the ENS under conditions much closer to the in vivo environment.NEW & NOTEWORTHY In this study, we devised a novel approach for culturing and electrophysiological recording of the enteric nervous system using custom-made glass substrates with spacers. This allows to turn cultures of isolated myenteric plexus upside down, enhancing the use of the microelectrode array technique by allowing recording of multiple cultures consecutively using only one chip. In addition, upside-down culture led to significant improvements in the culture conditions, resulting in a more in vivo-like growth.


Asunto(s)
Sistema Nervioso Entérico , Neuronas , Neuronas/fisiología , Sistema Nervioso Entérico/fisiología , Plexo Mientérico/fisiología , Plexo Submucoso
2.
Cell Tissue Res ; 395(1): 39-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37982872

RESUMEN

The pig is an important translational model for studying intestinal physiology and disorders for its many homologies with humans, including the organization of the enteric nervous system (ENS), the major regulator of gastrointestinal functions. This study focused on the quantification and neurochemical characterization of substance P (SP) neurons in the pig ascending (AC) and descending colon (DC) in wholemount preparations of the inner submucosal plexus (ISP), outer submucosal plexus (OSP), and myenteric plexus (MP). We used antibodies for the pan-neuronal marker HuCD, and choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS), markers for excitatory and inhibitory transmitters, for multiple labeling immunofluorescence and high-resolution confocal microscopy. The highest density of SP immunoreactive (IR) neurons was in the ISP (222/mm2 in the AC, 166/mm2 in the DC), where they make up about a third of HuCD-IR neurons, compared to the OSP and MP (19-22% and 13-17%, respectively, P < 0.001-0.0001). HuCD/SP/ChAT-IR neurons (up to 23%) were overall more abundant than HuCD/SP/nNOS-IR neurons (< 10%). Most SP-IR neurons contained ChAT-IR (62-85%), whereas 18-38% contained nNOS-IR with the highest peak in the OSP. A subpopulation of SP-IR neurons contains both ChAT- and nNOS-IR with the highest peak in the OSP and ISP of DC (33-36%) and the lowest in the ISP of AC (< 10%, P < 0.001). SP-IR varicose fibers were abundant in the ganglia. This study shows that SP-IR neurons are functionally distinct with variable proportions in different plexuses in the AC and DC reflecting diverse functions of specific colonic regions.


Asunto(s)
Plexo Mientérico , Plexo Submucoso , Humanos , Porcinos , Animales , Sustancia P , Neuronas , Colon , Colina O-Acetiltransferasa
3.
Cell Tissue Res ; 388(1): 19-32, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35146560

RESUMEN

We investigated the distributions and targets of nitrergic neurons in the rat stomach, using neuronal nitric oxide synthase (NOS) immunohistochemistry and nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase histochemistry. Nitrergic neurons comprised similar proportions of myenteric neurons, about 30%, in all gastric regions. Small numbers of nitrergic neurons occurred in submucosal ganglia. In total, there were ~ 125,000 neuronal nitric oxide synthase (nNOS) neurons in the stomach. The myenteric cell bodies had single axons, type I morphology and a wide range of sizes. Five targets were identified, the longitudinal, circular and oblique layers of the external muscle, the muscularis mucosae and arteries within the gastric wall. The circular and oblique muscle layers had nitrergic fibres throughout their thickness, while the longitudinal muscle was innervated at its inner surface by fibres of the tertiary plexus, a component of the myenteric plexus. There was a very dense innervation of the pyloric sphincter, adjacent to the duodenum. The muscle strands that run between mucosal glands rarely had closely associated nNOS nerve fibres. Both nNOS immunohistochemistry and NADPH histochemistry showed that nitrergic terminals did not provide baskets of terminals around myenteric neurons. Thus, the nitrergic neuron populations in the stomach supply the muscle layers and intramural arteries, but, unlike in the intestine, gastric interneurons do not express nNOS. The large numbers of nNOS neurons and the density of innervation of the circular muscle and pyloric sphincter suggest that there is a finely graded control of motor function in the stomach by the recruitment of different numbers of inhibitory motor neurons.


Asunto(s)
Plexo Mientérico , Óxido Nítrico Sintasa , Animales , Plexo Mientérico/metabolismo , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Ratas , Estómago/inervación , Plexo Submucoso
4.
Gut ; 70(7): 1383-1395, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33384336

RESUMEN

Intestinal resident macrophages are at the front line of host defence at the mucosal barrier within the gastrointestinal tract and have long been known to play a crucial role in the response to food antigens and bacteria that are able to penetrate the mucosal barrier. However, recent advances in single-cell RNA sequencing technology have revealed that resident macrophages throughout the gut are functionally specialised to carry out specific roles in the niche they occupy, leading to an unprecedented understanding of the heterogeneity and potential biological functions of these cells. This review aims to integrate these novel findings with long-standing knowledge, to provide an updated overview on our understanding of macrophage function in the gastrointestinal tract and to speculate on the role of specialised subsets in the context of homoeostasis and disease.


Asunto(s)
Microambiente Celular , Intestinos/citología , Intestinos/fisiología , Macrófagos/citología , Macrófagos/fisiología , Vasos Sanguíneos/citología , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Intestinos/irrigación sanguínea , Músculo Liso/citología , Neuronas , Ganglios Linfáticos Agregados/citología , Fagocitosis , Plexo Submucoso/citología
5.
Gastroenterology ; 158(8): 2221-2235.e5, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32113825

RESUMEN

BACKGROUND & AIMS: Small, 2-dimensional sections routinely used for human pathology analysis provide limited information about bowel innervation. We developed a technique to image human enteric nervous system (ENS) and other intramural cells in 3 dimensions. METHODS: Using mouse and human colon tissues, we developed a method that combines tissue clearing, immunohistochemistry, confocal microscopy, and quantitative analysis of full-thickness bowel without sectioning to quantify ENS and other intramural cells in 3 dimensions. RESULTS: We provided 280 adult human colon confocal Z-stacks from persons without known bowel motility disorders. Most of our images were of myenteric ganglia, captured using a 20× objective lens. Full-thickness colon images, viewed with a 10× objective lens, were as large as 4 × 5 mm2. Colon from 2 pediatric patients with Hirschsprung disease was used to show distal colon without enteric ganglia, as well as a transition zone and proximal pull-through resection margin where ENS was present. After testing a panel of antibodies with our method, we identified 16 antibodies that bind to molecules in neurons, glia, interstitial cells of Cajal, and muscularis macrophages. Quantitative analyses demonstrated myenteric plexus in 24.5% ± 2.4% of flattened colon Z-stack area. Myenteric ganglia occupied 34% ± 4% of myenteric plexus. Single myenteric ganglion volume averaged 3,527,678 ± 573,832 mm3 with 38,706 ± 5763 neuron/mm3 and 129,321 ± 25,356 glia/mm3. Images of large areas provided insight into why published values of ENS density vary up to 150-fold-ENS density varies greatly, across millimeters, so analyses of small numbers of thin sections from the same bowel region can produce varying results. Neuron subtype analysis revealed that approximately 56% of myenteric neurons stained with neuronal nitric oxide synthase antibody and approximately 33% of neurons produce and store acetylcholine. Transition zone regions from colon tissues of patients with Hirschsprung disease had ganglia in multiple layers and thick nerve fiber bundles without neurons. Submucosal neuron distribution varied among imaged colon regions. CONCLUSIONS: We developed a 3-dimensional imaging method for colon that provides more information about ENS structure than tissue sectioning. This approach could improve diagnosis for human bowel motility disorders and may be useful for other bowel diseases as well.


Asunto(s)
Colon/inervación , Ganglios Autónomos/patología , Enfermedad de Hirschsprung/patología , Interpretación de Imagen Asistida por Computador , Imagenología Tridimensional , Microscopía Confocal , Plexo Mientérico/patología , Plexo Submucoso/patología , Animales , Automatización , Neuronas Colinérgicas/patología , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Nitrérgicas/patología , Valor Predictivo de las Pruebas , Fijación del Tejido
6.
Cell Tissue Res ; 383(2): 645-654, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32965550

RESUMEN

The enteric nervous system (ENS) controls gastrointestinal functions. In large mammals' intestine, it comprises an inner (ISP) and outer (OSP) submucous plexus and a myenteric plexus (MP). This study quantifies enteric neurons in the ISP, OSP, and MP of the pig ascending (AC) and descending colon (DC) using the HuC/D, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS) neuronal markers in whole mount preparations with multiple labeling immunofluorescence. We established that the ISP contains the highest number of HuC/D neurons/mm2, which were more abundant in AC vs. DC, followed by OSP and MP with similar density in AC and DC. In the ISP, the density of ChAT immunoreactive (IR) neurons was very similar in AC and DC (31% and 35%), nNOS-IR neurons were less abundant in AC than DC (15% vs. 42%, P < 0.001), and ChAT/nNOS-IR neurons were 5% and 10%, respectively. In the OSP, 39-44% of neurons were ChAT-IR in AC and DC, while 45% and 38% were nNOS-IR and 10-12% were ChAT/nNOS-IR (AC vs. DC P < 0.05). In the MP, ChAT-IR neurons were 44% in AC and 54% in DC (P < 0.05), nNOS-IR neurons were 50% in both, and ChAT/nNOS-IR neurons were 12 and 18%, respectively. The ENS architecture with multilayered submucosal plexuses and the distribution of functionally distinct groups of neurons in the pig colon are similar to humans, supporting the suitability of the pig as a model and providing the platform for investigating the mechanisms underlying human colonic diseases.


Asunto(s)
Colina O-Acetiltransferasa/inmunología , Colon/inervación , Sistema Nervioso Entérico/citología , Plexo Mientérico/citología , Neuronas/enzimología , Óxido Nítrico Sintasa/inmunología , Plexo Submucoso/citología , Animales , Recuento de Células , Masculino , Porcinos , Porcinos Enanos
7.
Oncology ; 99(1): 15-22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33113541

RESUMEN

INTRODUCTION: Programmed death-ligand 1 (PD-L1) expression is a prognostic marker for gastric cancer that correlates with tumor diameter and depth of penetration. But the role of PD-L1 and mechanism(s) employed in the initial phase of invasion in early gastric cancer is yet to be understood. OBJECTIVE: This study aims to elucidate the role of PD-L1 during the progression of gastric cancer, specifically invading the submucosa beyond the lamina muscularis mucosa. METHODS: Using 107 patients with pathological submucosal gastric cancer, we determined the expression of PD-L1 based on the staining of the cell membrane or cytoplasm of tumor cells in the central and invasive front of the tumor. Samples were categorized into 3 groups based on the intensity of PD-L1 expression. CD8+ lymphocytes expressing PD-1 and CD163+ macrophages were used to determine the number of cell nuclei at the invasive front, similar to PD-L1. CMTM6 levels were determined and used to stratify samples into 3 groups. RESULTS: PD-L1 expression was higher in the invasive front (26.2%) than in the central portion of the tumors (7.4%; p < 0.001). Moreover, lymphatic and vascular invasion were more frequently observed in samples with high levels of PD-L1 (lymphatic invasion: 60.7 vs. 35.4%, p = 0.0026, and vascular invasion: 39.3 vs. 16.5%, p = 0.0018). There was no correlation between PD-L1 expression and the levels of PD-1, CD8, CD163, and CMTM6. CONCLUSIONS: PD-L1-expressing cancer cells at the invasive front of gastric cancer influence the initial stages of tumor invasion and lymphovascular permeation in early-stage gastric cancers. Immune checkpoint signaling may be the driving force in the invasive front during the invasion of the submucosa beyond the lamina muscularis mucosa.


Asunto(s)
Antígeno B7-H1/genética , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Gástricas/genética , Plexo Submucoso/metabolismo , Anciano , Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Biomarcadores de Tumor/genética , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Pronóstico , Receptores de Superficie Celular/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Plexo Submucoso/patología
8.
J Physiol ; 598(23): 5317-5332, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32880976

RESUMEN

KEY POINTS: Neurons of the enteric submucous plexus are challenged by osmolar fluctuations during digestion and absorption of nutrients. Central neurons are very sensitive to changes in osmolality but knowledge on that issue related to enteric neurons is sparse. The present study focuses on investigation of osmosensitivity of submucosal neurons including potential molecular mediating mechanisms. Results show that submucosal neurons respond to hypoosmolar stimuli with increased activity which is partially mediated by the transient receptor potential vanilloid 4 channel. We provided important information on osmosensitive properties of enteric neurons. These data are fundamental to better explain the nerve-mediated control of the gastrointestinal functions during physiological and pathophysiological (diarrhoea) conditions. ABSTRACT: Enteric neurons are located inside the gut wall, where they are confronted with changes in osmolality during (inter-) digestive periods. In particular, neurons of the submucous plexus (SMP), located between epithelial cells and blood vessels may sense and respond to osmotic shifts. The present study was conducted to investigate osmosensitivity of enteric submucosal neurons and the potential role of the transient receptor potential vanilloid 4 channel (TRPV4) as a mediator of enteric neuronal osmosensitivity. Therefore, freshly dissected submucosal preparations from guinea pig colon were investigated for osmosensitivity using voltage-sensitive dye and Ca2+ imaging. Acute hypoosmolar stimuli (final osmolality reached at ganglia of 94, 144 and 194 mOsm kg-1 ) were applied to single ganglia using a local perfusion system. Expression of TRPV4 in the SMP was quantified using qRT-PCR, and GSK1016790A and HC-067047 were used to activate or block the receptor, respectively, revealing its relevance in enteric osmosensitivity. On average, 11.0 [7.0/17.0] % of submucosal neurons per ganglion responded to the hypoosmolar stimulus. The Ca2+ imaging experiments showed that glia responded to the hypoosmolar stimulus, but with a delay in comparison with neurons. mRNA expression of TRPV4 could be shown in the SMP and blockade of the receptor by HC-067047 significantly decreased the number of responding neurons (0.0 [0.0/6.3] %) while the TRPV4 agonist GSK1016790A caused action potential discharge in a subpopulation of osmosensitive enteric neurons. The results of the present study provide insight into the osmosensitivity of submucosal enteric neurons and strongly indicate the involvement of TRPV4 as an osmotransducer.


Asunto(s)
Plexo Mientérico , Plexo Submucoso , Animales , Colon , Cobayas , Neuroglía , Neuronas
9.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228092

RESUMEN

The enteric nervous system (ENS), located in the wall of the gastrointestinal (GI) tract, is characterized by complex organization and a high degree of neurochemical diversity of neurons. One of the less known active neuronal substances found in the enteric neurons is neuregulin 1 (NRG1), a factor known to be involved in the assurance of normal development of the nervous system. During the study, made up using the double immunofluorescence technique, the presence of NRG1 in the ENS of the selected segment of porcine large intestine (caecum, ascending and descending colon) was observed in physiological conditions, as well as under the impact of low and high doses of bisphenol A (BPA) which is commonly used in the production of plastics. In control animals in all types of the enteric plexuses, the percentage of NRG1-positive neurons oscillated around 20% of all neurons. The administration of BPA caused an increase in the number of NRG1-positive neurons in all types of the enteric plexuses and in all segments of the large intestine studied. The most visible changes were noted in the inner submucous plexus of the ascending colon, where in animals treated with high doses of BPA, the percentage of NRG1-positive neurons amounted to above 45% of all neuronal cells. The mechanisms of observed changes are not entirely clear, but probably result from neurotoxic, neurodegenerative and/or proinflammatory activity of BPA and are protective and adaptive in nature.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Sistema Nervioso Entérico/efectos de los fármacos , Intestino Grueso/efectos de los fármacos , Neurregulina-1/genética , Fenoles/toxicidad , Administración Oral , Animales , Esquema de Medicación , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/patología , Femenino , Expresión Génica/efectos de los fármacos , Intestino Grueso/inervación , Intestino Grueso/metabolismo , Intestino Grueso/patología , Neurregulina-1/agonistas , Neurregulina-1/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Plexo Submucoso/efectos de los fármacos , Plexo Submucoso/metabolismo , Plexo Submucoso/patología , Porcinos
10.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G793-G801, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31545923

RESUMEN

Gastrointestinal (GI) symptoms can originate from severe dysmotility due to enteric neuropathies. Current methods used to demonstrate enteric neuropathies are based mainly on classic qualitative histopathological/immunohistochemical evaluation. This study was designed to identify an objective morphometric method for paraffin-embedded tissue samples to quantify the interganglionic distance between neighboring myenteric ganglia immunoreactive for neuron-specific enolase, as well as the number of myenteric and submucosal neuronal cell bodies/ganglion in jejunal specimens of patients with severe GI dysmotility. Jejunal full-thickness biopsies were collected from 32 patients (22 females; 16-77 yr) with well-characterized severe dysmotility and 8 controls (4 females; 47-73 yr). A symptom questionnaire was filled before surgery. Mann-Whitney U test, Kruskal-Wallis coupled with Dunn's posttest and nonparametric linear regression tests were used for analyzing morphometric data and clinical correlations, respectively. Compared with controls, patients with severe dysmotility exhibited a significant increase in myenteric interganglionic distance (P = 0.0005) along with a decrease in the number of myenteric (P < 0.00001) and submucosal (P < 0.0004) neurons. A 50% reduction in the number of submucosal and myenteric neurons correlated with an increased interganglionic distance and severity of dysmotility. Our study proposes a relatively simple tool that can be applied for quantitative evaluation of paraffin sections from patients with severe dysmotility. The finding of an increased interganglionic distance may aid diagnosis and limit the direct quantitative analysis of neurons per ganglion in patients with an interganglionic distance within the control range.NEW & NOTEWORTHY Enteric neuropathies are challenging conditions characterized by a severe impairment of gut physiology, including motility. An accurate, unambiguous assessment of enteric neurons provided by quantitative analysis of routine paraffin sections may help to define neuropathy-related gut dysmotility. We showed that patients with severe gut dysmotility exhibited an increased interganglionic distance associated with a decreased number of myenteric and submucosal neurons, which correlated with symptoms and clinical manifestations of deranged intestinal motility.


Asunto(s)
Motilidad Gastrointestinal/fisiología , Enfermedades Intestinales , Intestinos , Plexo Mientérico , Proteínas del Tejido Nervioso , Manejo de Especímenes/métodos , Plexo Submucoso , Correlación de Datos , Femenino , Humanos , Inmunohistoquímica , Enfermedades Intestinales/inmunología , Enfermedades Intestinales/patología , Enfermedades Intestinales/fisiopatología , Intestinos/inervación , Intestinos/patología , Intestinos/fisiopatología , Masculino , Persona de Mediana Edad , Plexo Mientérico/inmunología , Plexo Mientérico/patología , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/inmunología , Plexo Submucoso/inmunología , Plexo Submucoso/patología
11.
Dig Dis Sci ; 64(9): 2548-2554, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30937720

RESUMEN

BACKGROUND: The colon is partly controlled by myenteric and submucosal plexuses, which respond to stress and lead to some gastrointestinal disorders. These plexuses play roles in irritable bowel syndrome. Patients suffering from this syndrome can be treated with some antidepressants, including sertraline and nortriptyline. AIMS: The primary aim of study was to compare the effect of a sertraline and a nortriptyline on the structural changes of the enteric neurons after stress exposure in both sexes. The secondary objectives were to evaluate the effects of stress on the submucosal and myenteric plexuses. METHODS: Male and female Sprague-Dawley rats were assigned to four subgroups. The first subgroup received no stress. The other three subgroups received chronic variable stress (CVS) and were given phosphate buffer, sertraline (10 mg/kg/day), or nortriptyline (10 mg/kg/day). After 45 days, the neuron number in their colon plexuses was estimated using the stereologic method. RESULTS: The number of neurons increased by 40-51% in the submucosal plexus and by 57-69% in the myenteric plexus in the CVS group compared with the control group (p < 0.002) without any sex preference. The increment was significantly higher in the myenteric plexus than in the submucosal plexus (p < 0.05). Moreover, co-treatment of stressed rats with sertraline and nortriptyline could prevent the cellular hyperplasia of the plexuses, with more effective action for sertraline (p < 0.02). CONCLUSIONS: Stress exposure for 45 days induced hyperplasia of the colon's enteric plexuses in both sexes. However, these drugs could prevent the changes, with a more effective action for sertraline.


Asunto(s)
Colon/inervación , Plexo Mientérico/patología , Neuronas/patología , Nortriptilina/uso terapéutico , Sertralina/uso terapéutico , Plexo Submucoso/patología , Animales , Antidepresivos Tricíclicos/uso terapéutico , Femenino , Hiperplasia/etiología , Hiperplasia/prevención & control , Masculino , Ratas , Ratas Sprague-Dawley , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Estrés Fisiológico , Estrés Psicológico/complicaciones
12.
Int J Neurosci ; 129(11): 1076-1084, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31215289

RESUMEN

Purpose/Aim of the study: Auerbach/Meissner network of lower abdominopelvic organs managed by parasympathetic nerve fibres of lumbosacral roots arising from Onuf's nucleus located in conus medullaris. Aim of this study is to evaluate if there is any relationship between Onuf's nucleus ischemia and Auerbach/Meissner network degeneration following spinal subarachnoid haemorrhage (SAH). Materials and Methods: Study was conducted on 24 male rabbits included control (Group I, n = 5), serum saline-SHAM (Group II, n = 5), and spinal SAH (Group III, n = 14) groups. Spinal SAH performed by injecting homologous blood into subarachnoid space at Th12-L4 level and followed three weeks. Live and degenerated neuron densities of Onuf's nucleus, Auerbach and Meissner ganglia (n/mm3) were determined by Stereological methods. Results: The mean degenerated neuron density of Onuf's nucleus was significantly higher in Group III than in Groups I-II (152 ± 26, 2 ± 1 and 5 ± 2/mm3 respectively, p < 0.005). The degenerated neuron density of Auerbach's ganglia was significantly higher in Group III than in Groups I-II (365 ± 112, 3 ± 1 and 9 ± 3/mm3 respectively, p < 0.005). The degenerated neuron density of Meissner's ganglia was significantly higher in Group III than in Groups I-II (413 ± 132, 2 ± 1 and 11 ± 4/mm3 respectively, p < 0.005). Conclusions: Onuf's nucleus pathologies should be considered as Auerbach/Meissner ganglia degeneration and also related Hirschsprung-like diseases in the future.


Asunto(s)
Células del Asta Anterior/patología , Plexo Mientérico/patología , Red Nerviosa/patología , Isquemia de la Médula Espinal/patología , Hemorragia Subaracnoidea/patología , Plexo Submucoso/patología , Animales , Modelos Animales de Enfermedad , Enfermedad de Hirschsprung/patología , Masculino , Degeneración Nerviosa/patología , Conejos
13.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861419

RESUMEN

The digestive tract, especially the small intestine, is one of the main routes of acrylamide absorption and is therefore highly exposed to the toxic effect of acrylamide contained in food. The aim of this experiment was to elucidate the effect of low (tolerable daily intake-TDI) and high (ten times higher than TDI) doses of acrylamide on the neurochemical phenotype of duodenal enteric nervous system (ENS) neurons using the pig as an animal model. The experiment was performed on 15 immature gilts of the Danish Landrace assigned to three experimental groups: control (C) group-pigs administered empty gelatine capsules, low dose (LD) group-pigs administered capsules with acrylamide at the TDI dose (0.5 µg/kg body weight (b.w.)/day), and the high dose (HD) group-pigs administered capsules with acrylamide at a ten times higher dose than the TDI (5 µg/kg b.w./day) with a morning feeding for 4 weeks. Administration of acrylamide, even in a low (TDI) dose, led to an increase in the percentage of enteric neurons immunoreactive to substance P (SP), calcitonin gene-related peptide (CGRP), galanin (GAL), neuronal nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VACHT) in the porcine duodenum. The severity of the changes clearly depended on the dose of acrylamide and the examined plexus. The obtained results suggest the participation of these neuroactive substances in acrylamide-inducted plasticity and the protection of ENS neurons, which may be an important line of defence from the harmful action of acrylamide.


Asunto(s)
Acrilamida/farmacología , Duodeno/inervación , Duodeno/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Plexo Mientérico/efectos de los fármacos , Plexo Mientérico/metabolismo , Plexo Submucoso/efectos de los fármacos , Plexo Submucoso/metabolismo , Porcinos
14.
Neurourol Urodyn ; 37(7): 2097-2105, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29603776

RESUMEN

AIMS: We evaluated a Selective Bladder Denervation (SBD) device, which uses radiofrequency ablation, for the treatment of overactive bladder syndrome in terms of its nerve denervation, ablation characteristics, and post-treatment healing. METHODS: Using the SBD device, eight fresh extirpated ovine bladder trigones were treated (90°C set point for 60 s) and nitroblue tetrazolium viability stained to characterize the ablation. In addition, 12 trigones were treated in vivo with three adjacent ablations and divided into survival cohorts: Day 7, Day 30, and Day 90 to assess the ablations and their associated healing. RESULTS: The ex vivo single trigone ablations had a 7.9 ± 0.9 mm width and 5.7 ± 1.0 mm thickness that involved the submucosa, detrusor muscle, adventitia, and vagina. Microscopic viability staining confirmed complete nerve necrosis within the targeted tissue. The in vivo Day 7 trigones supported the ex vivo ablation characteristics and showed up to minimal inflammation, granulation tissue, and collagen fibrosis. Day 30 trigones had essentially absent inflammation and granulation tissue with evolving collagen fibrosis at the ablation's periphery. Day 90 trigones had essentially absent acute inflammation, minimal chronic inflammation, essentially absent granulation tissue, and up to mild collagen fibrosis. No ureteral/urethral alterations, vesico-vaginal fistulas, or other complications were identified. CONCLUSIONS: The SBD device provided a targeted trigone ablation with resultant denervation. The tissue healing timeline followed that expected for a hyperthermic ablation and was characterized by a fibroproliferative healing response with limited inflammation and granulation tissue. The ablations did not impact the overlying bladder mucosal surface.


Asunto(s)
Desnervación/métodos , Vejiga Urinaria Hiperactiva/cirugía , Procedimientos Quirúrgicos Urológicos/métodos , Animales , Colágeno , Femenino , Fibrosis , Tejido de Granulación/patología , Necrosis , Ovinos , Plexo Submucoso/patología , Resultado del Tratamiento , Vejiga Urinaria/patología , Vagina/patología
15.
Int J Mol Sci ; 19(1)2018 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-29316719

RESUMEN

Calbindin (CALB) is well established as immunohistochemical marker for intrinsic primary afferent neurons in the guinea pig gut. Its expression by numerous human enteric neurons has been demonstrated but little is known about particular types of neurons immunoreactive for CALB. Here we investigated small and large intestinal wholemount sets of 26 tumor patients in order to evaluate (1) the proportion of CALB⁺ neurons in the total neuron population, (2) the colocalization of CALB with calretinin (CALR), somatostatin (SOM) and vasoactive intestinal peptide (VIP) and (3) the morphology of CALB+ neurons. CALB+ neurons represented a minority of myenteric neurons (small intestine: 31%; large intestine: 25%) and the majority of submucosal neurons (between 72 and 95%). In the submucosa, most CALB⁺ neurons co-stained for CALR and VIP (between 69 and 80%) or for SOM (between 20 and 3%). In the myenteric plexus, 85% of CALB+ neurons did not co-stain with the other markers investigated. An unequivocal correlation between CALB reactivity and neuronal morphology was found for myenteric type III neurons in the small intestine: uniaxonal neurons with long, slender and branched dendrites were generally positive for CALB. Since also other neurons displayed occasional CALB reactivity, this protein is not suited as an exclusive marker for type III neurons.


Asunto(s)
Calbindina 1/metabolismo , Plexo Mientérico/citología , Neuronas/metabolismo , Plexo Submucoso/citología , Adulto , Anciano , Anciano de 80 o más Años , Calbindina 1/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plexo Mientérico/metabolismo , Neuronas/clasificación , Somatostatina/genética , Somatostatina/metabolismo , Plexo Submucoso/metabolismo , Péptido Intestinal Vasoactivo/genética , Péptido Intestinal Vasoactivo/metabolismo
16.
Pediatr Res ; 81(5): 838-846, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28060794

RESUMEN

BACKGROUND: Enteric neural stem/progenitor cells (ENSCs) offer an innovative approach to treating Hirschsprung disease (HSCR) and other enteric neuropathies. However, postnatal-derived human ENSCs have not been thoroughly characterized and their behavior in the embryonic and postnatal intestinal environment is unknown. METHODS: ENSCs were isolated from the intestines of 25 patients undergoing bowel resection, including 7 children with HSCR. Neuronal differentiation and proliferation of ENSCs from submucosal and myenteric plexuses from patients with and without HSCR were characterized. ENSC migration and differentiation were studied following transplantation into embryonic chick neural crest, embryonic chick hindgut, and postnatal mouse aganglionic colon. RESULTS: The proliferative and neurogenic potential of ENSCs from HSCR intestine is equivalent to that of non-HSCR controls. Similarly, no difference was observed between myenteric- and submucosal-derived ENSCs. Postnatal ENSCs transplanted to embryonic neural crest pathways and to aneural hindgut migrate normally and differentiate into appropriate neural crest-derived cell types. ENSCs in postnatal mouse aganglionic colon differentiate into neurons and glia both ex vivo and in vivo. CONCLUSIONS: ENSCs isolated from the postnatal intestine of patients with and without HSCR can behave like embryonic neural crest-derived cells. These results support the feasibility of cell-based therapy for future treatment of neurointestinal disease.


Asunto(s)
Movimiento Celular , Proliferación Celular , Enfermedad de Hirschsprung/patología , Intestino Grueso/inervación , Plexo Mientérico/patología , Células-Madre Neurales/patología , Neurogénesis , Nicho de Células Madre , Plexo Submucoso/patología , Adolescente , Animales , Células Cultivadas , Embrión de Pollo , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Enfermedad de Hirschsprung/cirugía , Humanos , Lactante , Recién Nacido , Masculino , Ratones Endogámicos C57BL , Células-Madre Neurales/trasplante , Esferoides Celulares , Trasplante de Células Madre , Adulto Joven
17.
Int J Mol Sci ; 18(2)2017 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-28178198

RESUMEN

Zinc transporter 3 (ZnT3) is a member of the solute-linked carrier 30 (SLC 30) zinc transporter family. It is closely linked to the nervous system, where it takes part in the transport of zinc ions from the cytoplasm to the synaptic vesicles. ZnT3 has also been observed in the enteric nervous system (ENS), but its reactions in response to pathological factors remain unknown. This study, based on the triple immunofluorescence technique, describes changes in ZnT3-like immunoreactive (ZnT3-LI) enteric neurons in the porcine ileum, caused by chemically-induced inflammation. The inflammatory process led to a clear increase in the percentage of neurons immunoreactive to ZnT3 in all "kinds" of intramural enteric plexuses, i.e., myenteric (MP), outer submucous (OSP) and inner submucous (ISP) plexuses. Moreover, a wide range of other active substances was noted in ZnT3-LI neurons under physiological and pathological conditions, and changes in neurochemical characterisation of ZnT3⁺ cells in response to inflammation depended on the "kind" of enteric plexus. The obtained results show that ZnT3 is present in the ENS in a relatively numerous and diversified neuronal population, not only in physiological conditions, but also during inflammation. The reasons for the observed changes are not clear; they may be connected with the functions of zinc ions and their homeostasis disturbances in pathological processes. On the other hand, they may be due to adaptive and/or neuroprotective processes within the pathologically altered gastrointestinal tract.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Sistema Nervioso Entérico/fisiología , Ileítis/genética , Ileítis/metabolismo , Íleon/fisiología , Animales , Proteínas de Transporte de Catión/genética , Neuronas Colinérgicas/metabolismo , Modelos Animales de Enfermedad , Ileítis/patología , Plexo Submucoso/fisiología , Porcinos , Transmisión Sináptica
18.
Gastroenterology ; 149(2): 407-19.e8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25921371

RESUMEN

BACKGROUND & AIMS: Interstitial cells of Cajal (ICC) control intestinal smooth muscle contraction to regulate gut motility. ICC within the plane of the myenteric plexus (ICC-MY) arise from KIT-positive progenitor cells during mouse embryogenesis. However, little is known about the ontogeny of ICC associated with the deep muscular plexus (ICC-DMP) in the small intestine and ICC associated with the submucosal plexus (ICC-SMP) in the colon. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) marks intestinal epithelial stem cells, but the role of LRIG1 in nonepithelial intestinal cells has not been identified. We sought to determine the ontogeny of ICC-DMP and ICC-SMP, and whether LRIG1 has a role in their development. METHODS: Lrig1-null mice (homozygous Lrig1-CreERT2) and wild-type mice were analyzed by immunofluorescence and transit assays. Transit was evaluated by passage of orally administered rhodamine B-conjugated dextran. Lrig1-CreERT2 mice or mice with CreERT2 under control of an inducible smooth muscle promoter (Myh11-CreERT2) were crossed with Rosa26-LSL-YFP mice for lineage tracing analysis. RESULTS: In immunofluorescence assays, ICC-DMP and ICC-SMP were found to express LRIG1. Based on lineage tracing, ICC-DMP and ICC-SMP each arose from LRIG1-positive smooth muscle progenitors. In Lrig1-null mice, there was loss of staining for KIT in DMP and SMP regions, as well as for 2 additional ICC markers (anoctamin-1 and neurokinin 1 receptor). Lrig1-null mice had significant delays in small intestinal transit compared with control mice. CONCLUSIONS: LRIG1 regulates the postnatal development of ICC-DMP and ICC-SMP from smooth muscle progenitors in mice. Slowed small intestinal transit observed in Lrig1-null mice may be due, at least in part, to loss of the ICC-DMP population.


Asunto(s)
Células Intersticiales de Cajal/metabolismo , Intestino Delgado/citología , Glicoproteínas de Membrana/metabolismo , Músculo Liso/citología , Plexo Mientérico/crecimiento & desarrollo , Proteínas del Tejido Nervioso/metabolismo , Plexo Submucoso/crecimiento & desarrollo , Animales , Técnica del Anticuerpo Fluorescente , Homocigoto , Integrasas , Células Intersticiales de Cajal/citología , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Músculo Liso/crecimiento & desarrollo , Plexo Mientérico/citología , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Recombinación Genética , Plexo Submucoso/citología
19.
Cells Tissues Organs ; 201(3): 203-10, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26954067

RESUMEN

In the 1970s, by using classic histological methods, close topographical relationships between special areas of enteric ganglia and capillaries were shown in the pig. In this study, by application of double and triple immunohistochemistry, we confirmed this neurovascular interface and demonstrated that these zones are mainly confined to nitrergic neurons in the myenteric and the external submucosal plexus. In the upper small intestine of the pig, the respective neurons display type III morphology, i.e. they have long, slender and branched dendrites and a single axon. In another set of experiments, we prepared specimens for electron-microscopical analysis of these zones. Both ganglia and capillaries display continuous basement membranes, the smallest distances between them being 1,000 nm at the myenteric and 300 nm at the external submucosal level. The capillary endothelium was mostly continuous but, at the external submucosal level, scattered fenestrations were observed. This particular neurovascular relationship suggests that nitrergic neurons may require a greater amount of oxygen and/or nutrients. In guinea pig and mouse, previous ischemia/reperfusion experiments showed that nitrergic neurons are selectively damaged. Thus, a preferential blood supply of enteric nitrergic neurons may indicate that these neurons are more vulnerable in ischemia.


Asunto(s)
Intestino Delgado/irrigación sanguínea , Intestino Delgado/inervación , Plexo Mientérico/irrigación sanguínea , Neuronas Nitrérgicas/citología , Plexo Submucoso/irrigación sanguínea , Porcinos/anatomía & histología , Animales , Capilares/ultraestructura , Femenino , Inmunohistoquímica , Intestino Delgado/ultraestructura , Masculino , Plexo Mientérico/citología , Plexo Mientérico/ultraestructura , Proteínas de Neurofilamentos/análisis , Óxido Nítrico Sintasa de Tipo I/análisis , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Plexo Submucoso/citología , Plexo Submucoso/ultraestructura
20.
Exp Parasitol ; 164: 56-63, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26902605

RESUMEN

Intestinal epithelial secretion is coordinated by the submucosal plexus (SMP). Chemical mediators from SMP regulate the immunobiological response and direct actions against infectious agents. Toxoplasma gondii is a worldwide parasite that causes toxoplasmosis. This study aimed to determine the effects of chronic infection with T. gondii on the morphometry of the mucosa and the submucosal enteric neurons in the proximal colon of rats. Male adult rats were distributed into a control group (n = 10) and an infected group (n = 10). Infected rats received orally 500 oocysts of T. gondii (ME-49). After 36 days, the rats were euthanized and samples of the proximal colon were processed for histology to evaluate mucosal thickness in sections. Whole mounts were stained with methylene blue and subjected to immunohistochemistry to detect vasoactive intestinal polypeptide. The total number of submucosal neurons decreased by 16.20%. Vasoactive intestinal polypeptide-immunoreactive neurons increased by 26.95%. Intraepithelial lymphocytes increased by 62.86% and sulfomucin-producing goblet cells decreased by 22.87%. Crypt depth was greater by 43.02%. It was concluded that chronic infection with T. gondii induced death and hypertrophy in the remaining submucosal enteric neurons and damage to the colonic mucosa of rats.


Asunto(s)
Colon/patología , Neuronas/patología , Toxoplasmosis Animal/patología , Animales , Anticuerpos Antiprotozoarios/sangre , Colorantes Azulados , Gatos , Muerte Celular , Enfermedad Crónica , Colon/inervación , Colorantes , Fármacos Gastrointestinales , Células Caliciformes/patología , Inmunoglobulina G/sangre , Mucosa Intestinal/citología , Mucosa Intestinal/inervación , Mucosa Intestinal/patología , Linfocitos/inmunología , Linfocitos/patología , Masculino , Ratones , Plexo Mientérico/citología , Distribución Aleatoria , Ratas , Ratas Wistar , Plexo Submucoso/citología , Toxoplasma/inmunología , Toxoplasma/patogenicidad , Péptido Intestinal Vasoactivo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda