Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Mikrochim Acta ; 191(7): 404, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888740

RESUMEN

The unprecedented navigation ability in micro/nanoscale and tailored functionality tunes micro/nanomotors as new target drug delivery systems, open up new horizons for biomedical applications. Herein, we designed a light-driven rGO/Cu2 + 1O tubular nanomotor for active targeting of cancer cells as a drug delivery system. The propulsion performance is greatly enhanced in real cell media (5% glucose cells isotonic solution), attributing to the introduction of oxygen vacancy and reduced graphene oxide (rGO) layer for separating photo-induced electron-hole pairs. The motion speed and direction can be readily modulated. Meanwhile, doxorubicin (DOX) can be loaded quickly on the rGO layer because of π-π bonding effect. The Cu2 + 1O matrix in the tiny robots not only serves as a photocatalyst to generate a chemical concentration gradient as the driving force but also acts as a nanomedicine to kill cancer cells as well. The strong propulsion of light-driven rGO/Cu2 + 1O nanomotors coupled with tiny size endow them with active transmembrane transport, assisting DOX and Cu2 + 1O breaking through the barrier of the cell membrane. Compared with non-powered nanocarrier and free DOX, light-propelled rGO/Cu2 + 1O nanomotors exhibit greater transmembrane transport efficiency and significant therapeutic efficacy. This proof-of-concept nanomotor design presents an innovative approach against tumor, enlarging the list of biomedical applications of light-driven micro/nanomotors to the superficial tissue treatment.


Asunto(s)
Cobre , Doxorrubicina , Grafito , Luz , Cobre/química , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Grafito/química , Sistemas de Liberación de Medicamentos , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Línea Celular Tumoral
2.
Proc Natl Acad Sci U S A ; 115(3): 501-506, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29295927

RESUMEN

A biodegradable drug delivery system (DDS) is one the most promising therapeutic strategies for cancer therapy. Here, we propose a unique concept of light activation of black phosphorus (BP) at hydrogel nanostructures for cancer therapy. A photosensitizer converts light into heat that softens and melts drug-loaded hydrogel-based nanostructures. Drug release rates can be accurately controlled by light intensity, exposure duration, BP concentration, and hydrogel composition. Owing to sufficiently deep penetration of near-infrared (NIR) light through tissues, our BP-based system shows high therapeutic efficacy for treatment of s.c. cancers. Importantly, our drug delivery system is completely harmless and degradable in vivo. Together, our work proposes a unique concept for precision cancer therapy by external light excitation to release cancer drugs. If these findings are successfully translated into the clinic, millions of patients with cancer will benefit from our work.


Asunto(s)
Antineoplásicos/administración & dosificación , Preparaciones de Acción Retardada/administración & dosificación , Portadores de Fármacos/efectos de la radiación , Sistemas de Liberación de Medicamentos/métodos , Nanoestructuras/efectos de la radiación , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/química , Línea Celular Tumoral , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/instrumentación , Humanos , Hidrogeles/química , Hidrogeles/efectos de la radiación , Rayos Infrarrojos , Ratones , Ratones Desnudos , Nanoestructuras/química , Fósforo/química
3.
Molecules ; 26(17)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34500809

RESUMEN

We demonstrate a novel structure based on smart carbon nanocomposites intended for fabricating laser-triggered drug delivery devices (DDDs). The performance of the devices relies on nanocomposites' photothermal effects that are based on polydimethylsiloxane (PDMS) with carbon nanoparticles (CNPs). Upon evaluating the main features of the nanocomposites through physicochemical and photomechanical characterizations, we identified the main photomechanical features to be considered for selecting a nanocomposite for the DDDs. The capabilities of the PDMS/CNPs prototypes for drug delivery were tested using rhodamine-B (Rh-B) as a marker solution, allowing for visualizing and quantifying the release of the marker contained within the device. Our results showed that the DDDs readily expel the Rh-B from the reservoir upon laser irradiation and the amount of released Rh-B depends on the exposure time. Additionally, we identified two main Rh-B release mechanisms, the first one is based on the device elastic deformation and the second one is based on bubble generation and its expansion into the device. Both mechanisms were further elucidated through numerical simulations and compared with the experimental results. These promising results demonstrate that an inexpensive nanocomposite such as PDMS/CNPs can serve as a foundation for novel DDDs with spatial and temporal release control through laser irradiation.


Asunto(s)
Portadores de Fármacos/química , Nanocompuestos/química , Materiales Inteligentes/química , Carbono/química , Dimetilpolisiloxanos/química , Portadores de Fármacos/efectos de la radiación , Elasticidad , Rayos Láser , Luz , Fenómenos Mecánicos , Nanocompuestos/efectos de la radiación , Rodaminas/química , Materiales Inteligentes/efectos de la radiación
4.
J Am Chem Soc ; 142(11): 4970-4974, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32115942

RESUMEN

Photoactivation of bioactive molecules allows manipulation of cellular processes with high spatiotemporal precision. The recent emergence of visible-light excitable photoprotecting groups has the potential to further expand the established utility of the photoactivation strategy in biological applications by offering higher tissue penetration, diminished phototoxicity, and compatibility with other light-dependent techniques. Nevertheless, a critical barrier to such applications remains the significant hydrophobicity of most visible-light excitable photocaging groups. Here, we find that applying the conventional 2,6-sulfonation to meso-methyl BODIPY photocages is incompatible with their photoreaction due to an increase in the excited state barrier for photorelease. We present a simple, remote sulfonation solution to BODIPY photocages that imparts water solubility and provides control over cellular permeability while retaining their favorable spectroscopic and photoreaction properties. Peripherally disulfonated BODIPY photocages are cell impermeable, making them useful for modulation of cell-surface receptors, while monosulfonated BODIPY retains the ability to cross the cellular membrane and can modulate intracellular targets. This new approach is generalizable for controlling BODIPY localization and was validated by sensitization of mammalian cells and neurons by visible-light photoactivation of signaling molecules.


Asunto(s)
Alcanosulfonatos/metabolismo , Compuestos de Boro/metabolismo , Colorantes Fluorescentes/metabolismo , Alcanosulfonatos/síntesis química , Alcanosulfonatos/efectos de la radiación , Animales , Compuestos de Boro/síntesis química , Compuestos de Boro/efectos de la radiación , Membrana Celular/metabolismo , Dopamina/química , Dopamina/farmacología , Portadores de Fármacos/síntesis química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/efectos de la radiación , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/efectos de la radiación , Células HEK293 , Hipocampo/efectos de los fármacos , Histamina/química , Histamina/farmacología , Humanos , Luz , Microscopía Confocal , Microscopía Fluorescente , Estructura Molecular , Neuronas/efectos de los fármacos , Ratas , Solubilidad
5.
Mol Pharm ; 17(12): 4499-4509, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32813533

RESUMEN

More than 2.8 million annually in the United States are afflicted with some form of traumatic brain injury (TBI), where 75% of victims have a mild form of TBI (MTBI). TBI risk is higher for individuals engaging in physical activities or involved in accidents. Although MTBI may not be initially life-threatening, a large number of these victims can develop cognitive and physical dysfunctions. These late clinical sequelae have been attributed to the development of secondary injuries that can occur minutes to days after the initial impact. To minimize brain damage from TBI, it is critical to diagnose and treat patients within the first or "golden" hour after TBI. Although it would be very helpful to quickly determine the TBI locations in the brain and direct the treatment selectively to the affected sites, this remains a challenge. Herein, we disclose our novel strategy to target cyclosporine A (CsA) into TBI sites, without the need to locate the exact location of the TBI lesion. Our approach is based on TBI treatment with a cyanine dye nanocage attached to CsA, a known therapeutic agent for TBI that is associated with unacceptable toxicities. In its caged form, CsA remains inactive, while after near-IR light photoactivation, the resulting fragmentation of the cyanine nanocage leads to the selective release of CsA at the TBI sites.


Asunto(s)
Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Ciclosporina/administración & dosificación , Portadores de Fármacos/efectos de la radiación , Fármacos Neuroprotectores/administración & dosificación , Fotoquimioterapia/métodos , Animales , Carbocianinas/química , Carbocianinas/efectos de la radiación , Ciclosporina/farmacocinética , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Liberación de Fármacos/efectos de la radiación , Humanos , Rayos Infrarrojos , Nanopartículas/química , Fármacos Neuroprotectores/farmacocinética , Ratas
6.
Mol Pharm ; 17(10): 3885-3899, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32787269

RESUMEN

Boron neutron capture therapy (BNCT) for cancer is on the rise worldwide due to recent developments of in-hospital neutron accelerators which are expected to revolutionize patient treatments. There is an urgent need for improved boron delivery agents, and herein we have focused on studying the biochemical foundations upon which a successful GLUT1-targeting strategy to BNCT could be based. By combining synthesis and molecular modeling with affinity and cytotoxicity studies, we unravel the mechanisms behind the considerable potential of appropriately designed glucoconjugates as boron delivery agents for BNCT. In addition to addressing the biochemical premises of the approach in detail, we report on a hit glucoconjugate which displays good cytocompatibility, aqueous solubility, high transporter affinity, and, crucially, an exceptional boron delivery capacity in the in vitro assessment thereby pointing toward the significant potential embedded in this approach.


Asunto(s)
Terapia por Captura de Neutrón de Boro/métodos , Boro/administración & dosificación , Portadores de Fármacos/efectos de la radiación , Glucosa/efectos de la radiación , Isótopos/administración & dosificación , Neoplasias/radioterapia , Boro/farmacocinética , Línea Celular Tumoral , Portadores de Fármacos/síntesis química , Portadores de Fármacos/farmacocinética , Liberación de Fármacos/efectos de la radiación , Glucosa/análogos & derivados , Glucosa/síntesis química , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Isótopos/farmacocinética , Simulación del Acoplamiento Molecular
7.
Mol Pharm ; 17(10): 3720-3729, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32633977

RESUMEN

The limited tumor tissue penetration of many nanoparticles remains a formidable challenge to their therapeutic efficacy. Although several photonanomedicines have been applied to improve tumor penetration, the first near-infrared window mediated by the low optical tissue penetration depth severely limits their anticancer effectiveness. To achieve deep optical tissue and drug delivery penetration, a near-infrared second window (NIR-II)-excited and pH-responsive ultrasmall drug delivery nanoplatform was fabricated based on BSA-stabilized CuS nanoparticles (BSA@CuS NPs). The BSA@CuS NPs effectively encapsulated doxorubicin (DOX) via strong electrostatic interactions to form multifunctional nanoparticles (BSA@CuS@DOX NPs). The BSA@CuS@DOX NPs had an ultrasmall size, which allowed them to achieve deeper tumor penetration. They also displayed stronger NIR II absorbance-mediated deep optical tissue penetration than that of the NIR I window. Moreover, the multifunctional nanoplatform preferentially accumulated in tumor sites, induced tumor hyperthermia, and generated remarkably high ROS levels in tumor sites upon NIR-II laser (1064 nm) irradiation. More importantly, our strategy achieved excellent synergistic effects of chemotherapy and phototherapy (chemophototherapy) under the guidance of photothermal imaging. The developed nanoparticles also showed good biocompatibility and bioclearance properties. Therefore, our work demonstrated a facile strategy for fabricating a multifunctional nanoplatform that is a promising candidate for deep tumor penetration as an effective antitumor therapy.


Asunto(s)
Doxorrubicina/administración & dosificación , Portadores de Fármacos/efectos de la radiación , Nanopartículas/efectos de la radiación , Neoplasias/tratamiento farmacológico , Fototerapia/métodos , Animales , Línea Celular Tumoral/trasplante , Supervivencia Celular , Modelos Animales de Enfermedad , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Liberación de Fármacos/efectos de la radiación , Humanos , Concentración de Iones de Hidrógeno , Rayos Infrarrojos , Rayos Láser , Ratones , Nanopartículas/química , Neoplasias/patología , Fototerapia/instrumentación , Distribución Tisular
8.
Mol Pharm ; 17(10): 3900-3914, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32820927

RESUMEN

Erythrocyte-derived particles activated by near-infrared (NIR) light present a platform for various phototheranostic applications. We have engineered such a platform with indocyanine green as the NIR-activated agent. A particular feature of these particles is that their diameters can be tuned from micro- to nanoscale, providing a potential capability for broad clinical utility ranging from vascular to cancer-related applications. An important issue related to clinical translation of these particles is their immunogenic effects. Herein, we have evaluated the early-induced innate immune response of these particles in healthy Swiss Webster mice following tail vein injection by measurements of specific cytokines in blood serum, the liver, and the spleen following euthanasia. In particular, we have investigated the effects of particle size and relative dose, time-dependent cytokine response for up to 6 h postinjection, functionalization of the nanosized particles with folate or Herceptin, and dual injections of the particles 1 week apart. Mean concentrations of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 in response to injection of microsized particles at the investigated relative doses were significantly lower than the corresponding mean concentrations induced by lipopolysaccharide (positive control) at 2 h. All investigated doses of the nanosized particles induced significantly higher concentrations of MCP-1 in the liver and the spleen as compared to phosphate buffer saline (PBS) (negative control) at 2 h. In response to micro- and nanosized particles at the highest investigated dose, there were significantly higher levels of TNF-α in blood serum at 2 and 6 h postinjection as compared to the levels associated with PBS treatment at these times. Whereas the mean concentration of TNF-α in the liver significantly increased between 2 and 6 h postinjection in response to the injection of the microsized particles, it was significantly reduced during this time interval in response to the injection of the nanosized particles. In general, functionalization of the nanosized particles was associated with a reduction of IL-6 and MCP-1 in blood serum, the liver, and the spleen, and TNF-α in blood serum. With the exception of IL-10 in the spleen in response to nanosized particles, the second injection of micro- or nanosized particles did not lead to significantly higher concentrations of other cytokines at the investigated dose as compared to a single injection.


Asunto(s)
Portadores de Fármacos/efectos adversos , Eritrocitos/química , Inmunidad/efectos de los fármacos , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animales , Citocinas/análisis , Citocinas/metabolismo , Relación Dosis-Respuesta Inmunológica , Esquema de Medicación , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Eritrocitos/inmunología , Femenino , Rayos Infrarrojos , Inyecciones Intravenosas , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Ratones , Modelos Animales , Nanopartículas/administración & dosificación , Nanopartículas/efectos adversos , Nanopartículas/química , Nanopartículas/efectos de la radiación , Tamaño de la Partícula , Fototerapia/efectos adversos , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/metabolismo
9.
Biol Pharm Bull ; 43(4): 736-741, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32238716

RESUMEN

Stimuli-responsive liposomes are promising drug carriers for cancer treatment because they enable controlled drug release and the maintenance of desired drug concentrations in tumor tissue. In particular, near-IR (NIR) light is a useful stimulus for triggering drug release from liposomes based on its advantages such as deep tissue penetration and safety. Previously, we found that a silicon phthalocyanine derivative, IR700, conjugated to antibodies, can induce the rupture of the cell membrane following irradiation by NIR light. Based on this finding, we constructed IR700-modified liposomes (IR700 liposomes) and evaluated their drug release properties triggered by NIR light. IR700 liposomes released substantial amounts of encapsulated calcein following irradiation by NIR light. Drug release was substantially suppressed by the addition of sodium azide, suggesting that liposomal membrane permeabilization was mediated by singlet oxygen generated from IR700. Moreover, calcein release from IR700 liposomes triggered by NIR light was promoted under conditions of deoxygenation and the presence of electron donors. Thus, membrane disruption should be induced by the physical change of IR700 from highly hydrophilic to hydrophobic as we previously described, although singlet oxygen can cause a certain level of membrane disruption under normoxia. We also observed that doxorubicin-encapsulated IR700 liposomes exhibited significant cytotoxic effects against CT-26 murine colon carcinoma cells following NIR light exposure. These results indicate that IR700 liposomes can efficiently release anti-cancer drugs following NIR light irradiation even under hypoxic conditions and, therefore, they would be useful for cancer treatment.


Asunto(s)
Portadores de Fármacos , Indoles , Fármacos Fotosensibilizantes , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/efectos de la radiación , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Fluoresceínas/administración & dosificación , Fluoresceínas/química , Humanos , Indoles/administración & dosificación , Indoles/química , Indoles/efectos de la radiación , Isoindoles , Luz , Liposomas , Ratones , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química
10.
J Nanobiotechnology ; 18(1): 91, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539777

RESUMEN

BACKGROUND: Stimulus-responsive degradable mesoporous organosilica nanoparticles (MONs) have shown great promise as drug carriers via enhancing the efficiency of drug delivery and accelerating the degradation of nanocarriers. However, it remains a great challenge to develop novel light-enabled spatial and temporal degradable MONs with both superior responsiveness for efficient anti-cancer drug delivery and safe exocytosis. RESULTS: We report a novel photo-responsive degradable hollow mesoporous organosilica nanoplatform (HMONs@GOQD). The platform is based on organosilica nanoparticles (HMONs) containing singlet oxygen (1O2)-responsive bridged organoalkoxysilanes and wrapped graphene oxide quantum dots (GOQDs). The unique hollow mesoporous structure of the HMONs guarantees an excellent drug loading and release profile. During light irradiation, 1O2 produced by the GOQDs leads to the degradation of the organosilica nanoparticles, resulting in enhanced local drug release. CONCLUSIONS: We carried out in vitro and in vivo experiments using DOX as a model drug; DOX-HMONs@GOQDs exhibited high biocompatibility, accelerated degradation, and superior therapeutic efficacy during light irradiation, indicating a promising platform for clinical cancer therapy.


Asunto(s)
Portadores de Fármacos , Compuestos de Organosilicio/química , Puntos Cuánticos , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/efectos de la radiación , Grafito/química , Masculino , Ratones , Ratones Desnudos , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Procesos Fotoquímicos , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Puntos Cuánticos/efectos de la radiación
11.
Drug Dev Ind Pharm ; 46(4): 659-672, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32208984

RESUMEN

Objective: In vitro, optimization, characterization, and cytotoxic studies of NAR nanoparticles (NPs) to against pancreatic cancer.Method: The sonication tailored Naringenin (NARG)-loaded poly (lactide-co-glycolic acid) (PLGA) NPs was fabricated for potential cytotoxic effect against pancreatic cancer. NARG NPs were prepared by emulsion-diffusion evaporation technique applying BoxBehnken experimental design based on three-level and three-factors. The effect of independent variables surfactant concentration (X1), polymer concentration (X2), and sonication time (X3) were studied on responses particle size (Y1), and drug release % (Y2). NPs characterized for particles size and size distribution, polydispersity index (PDI), zeta potential, transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimeter (DSC), and X-ray diffraction (XRD) studies. Further, the studies was fitted to various drug release kinetic model and cytotoxicity evaluated in vitro.Results: The nanosized particles were spherical, uniform with an average size of 150.45 ± 12.45 nm, PDI value 0.132 ± 0.026, zeta potential -20.5 ± 2.5 mV, and cumulative percentage release 85.67 ± 6.23%. In vitro release of NARG from nanoparticle evaluated initially burst followed by sustained release behavior. The Higuchi was best fitted model to drug release from NARG NPs. The cytotoxicity study of NARG NPs apparently showed higher cytotoxic effect over free NARG (p < 0.05). The stability study of optimized formulation revealed no significant physico-chemical changes during 3 months.Conclusions: Thus, NARG-loaded NPs gave ameliorated anticancer effect over plain NARG.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Flavanonas/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Química Farmacéutica , Portadores de Fármacos/efectos de la radiación , Liberación de Fármacos/efectos de la radiación , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Flavanonas/farmacocinética , Humanos , Nanopartículas/química , Nanopartículas/efectos de la radiación , Neoplasias Pancreáticas/patología , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/efectos de la radiación , Sonicación
12.
Molecules ; 25(9)2020 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-32397665

RESUMEN

Nanoparticles are widely used as theranostic agents for the treatment of various pathologies, including cancer. Among all, dendrimers-based nanoparticles represent a valid approach for drugs delivery, thanks to their controllable size and surface properties. Indeed, dendrimers can be easily loaded with different payloads and functionalized with targeting agents. Moreover, they can be used in combination with other materials such as metal nanoparticles for combinatorial therapies. Here, we present the formulation of an innovative nanostructured hybrid system composed by a metallic core and a dendrimers-based coating that is able to deliver doxorubicin specifically to cancer cells through a targeting agent. Its dual nature allows us to transport nanoparticles to our site of interest through the magnetic field and specifically increase internalization by exploiting the T7 targeting peptide. Our system can release the drug in a controlled pH-dependent way, causing more than 50% of cell death in a pancreatic cancer cell line. Finally, we show how the system was internalized inside cancer cells, highlighting a peculiar disassembly of the nanostructure at the cell surface. Indeed, only the dendrimeric portion is internalized, while the metal core remains outside. Thanks to these features, our nanosystem can be exploited for a multistage magnetic vector.


Asunto(s)
Antineoplásicos/farmacología , Dendrímeros/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química , Animales , Antineoplásicos/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/efectos de la radiación , Liberación de Fármacos/efectos de la radiación , Humanos , Concentración de Iones de Hidrógeno , Magnetismo , Nanopartículas de Magnetita/efectos de la radiación , Nanopartículas de Magnetita/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Células 3T3 NIH , Tamaño de la Partícula
13.
Mikrochim Acta ; 186(4): 237, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30868242

RESUMEN

Multifunctional nanodots represent an emerging platform for overcoming the delivery challenges of poorly water-soluble drugs for use in the diagnosis and treatment of cancer. The authors describe the preparation of nanocrystallites composed of the water-insoluble photosensitizer zinc(II)-phthalocyanine in the form of nanodots by applying a cryodesiccation-driven crystallization approach. Modification of the surface of the nanodots with Pluronic F127 and folic acid endows them with excellent water solubility and stealth properties in blood. Under near-infrared (NIR) photoexcitation at 808 nm, the nanodots are shown to produce singlet oxygen, which is widely used in photodynamic therapy of cancer. The nanodots exhibit strong NIR absorbance at 808 nm and can be used as a non-toxic contrast agent for photoacoustic imaging of tissue. Graphical abstract Schematic presentation of the preparation of ZnPcNDs by droplet-confined/cryodesiccation-driven crystallization.


Asunto(s)
Medios de Contraste/uso terapéutico , Portadores de Fármacos/uso terapéutico , Indoles/uso terapéutico , Compuestos Organometálicos/uso terapéutico , Fármacos Fotosensibilizantes/uso terapéutico , Puntos Cuánticos/uso terapéutico , Animales , Línea Celular Tumoral , Medios de Contraste/efectos de la radiación , Medios de Contraste/toxicidad , Cristalización , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/toxicidad , Ácido Fólico/química , Humanos , Indoles/efectos de la radiación , Indoles/toxicidad , Rayos Infrarrojos , Isoindoles , Ratones Endogámicos BALB C , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Compuestos Organometálicos/efectos de la radiación , Compuestos Organometálicos/toxicidad , Técnicas Fotoacústicas/métodos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/toxicidad , Poloxámero/química , Puntos Cuánticos/efectos de la radiación , Puntos Cuánticos/toxicidad , Oxígeno Singlete/uso terapéutico , Compuestos de Zinc
14.
J Am Chem Soc ; 140(49): 17226-17233, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30452248

RESUMEN

In this Article, we show that the surface of the bacteriophage Qß is equipped with natural ligands for the synthesis of small gold nanoparticles (AuNPs). By exploiting disulfides in the protein secondary structure and the geometry formed from the capsid quaternary structure, we find that we can produce regularly arrayed patterns of ∼6 nm AuNPs across the surface of the virus-like particle. Experimental and computational analyses provide insight into the formation and stability of this composite. We further show that the entrapped genetic material can hold upward of 500 molecules of the anticancer drug Doxorubicin without leaking and without interfering with the synthesis of the AuNPs. This direct nucleation of nanoparticles on the capsid allows for exceptional conduction of photothermal energy upon nanosecond laser irradiation. As a proof of principle, we demonstrate that this energy is capable of rapidly releasing the drug from the capsid without heating the bulk solution, allowing for highly targeted cell killing in vitro.


Asunto(s)
Allolevivirus/química , Antineoplásicos/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/química , Oro/química , Nanopartículas del Metal/química , Células A549 , Animales , Antineoplásicos/química , Cápside/química , Proteínas de la Cápside/química , Doxorrubicina/química , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Oro/efectos de la radiación , Oro/toxicidad , Humanos , Hipertermia Inducida/métodos , Luz , Nanopartículas del Metal/efectos de la radiación , Nanopartículas del Metal/toxicidad , Ratones , Tamaño de la Partícula , Fototerapia/métodos , Porosidad , Prueba de Estudio Conceptual , Células RAW 264.7 , ARN/química , ARN/toxicidad
15.
Langmuir ; 34(49): 14891-14898, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30407836

RESUMEN

Novel RNA-based technologies provide an avenue of possibilities to control the regulation of gene expression in cells. To realize the full potential of small interfering RNA (siRNA)-based therapy, efficient delivery vehicles and novel strategies for triggering release from carrier vehicles have to be developed. Gold nanoparticles (AuNPs) with sizes of ∼50-150 nm have the ability to accumulate in tumor tissue and can be transported across the membrane by endocytosis. Therefore, a laser-controlled oligonucleotide release from such particles is of particular interest. Here, we quantify the loading of specifically attached microRNA oligonucleotides (miRNA) onto single gold nanoparticles with diameters of 80, 100, 150, and 200 nm. We show that AuNPs have a curvature-dependent density of miRNA loading: the higher the curvature, the higher the loading density. Moreover, we demonstrate how one sensing strand of an RNA duplex can be dehybridized and hence released from the AuNP by heating the AuNP by irradiation with a near-infrared (NIR) laser. Laser-induced release is also demonstrated inside living cells. Together, these findings show that plasmonic nanoparticles with high curvatures are ideal carriers of oligonucleotides into cells, and their cargo can be released in a controlled manner by a thermoplasmonic mechanism. Importantly, this remotely controlled release strategy can be applied to any cargo attached to a plasmonic nanocarrier, on either the single particle or ensemble level.


Asunto(s)
Portadores de Fármacos/química , Oro/química , Rayos Láser , Nanopartículas del Metal/química , MicroARNs/química , Carbocianinas/química , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Colorantes Fluorescentes/química , Oro/efectos de la radiación , Oro/toxicidad , Células HEK293 , Calefacción , Humanos , Rayos Infrarrojos , Nanopartículas del Metal/efectos de la radiación , Nanopartículas del Metal/toxicidad , MicroARNs/genética , Hibridación de Ácido Nucleico/efectos de la radiación , Tamaño de la Partícula
16.
Langmuir ; 34(34): 9974-9981, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30056720

RESUMEN

A pH- and ultrasound dual-responsive drug release pattern was successfully achieved using mesoporous silica nanoparticles (MSNs) coated with polydopamine (PDA). In this paper, the PDA shell on the MSN surface was obtained through oxidative self-polymerization under the alkaline condition. The morphology and structure of this composite nanoparticle were fully characterized by a series of analyses, such as infrared (IR), transmission electron microscopy, and thermogravimetric analysis. Doxorubicin hydrochloride (DOX)-loaded composite nanoparticles were used to study the performances of responsive drug storage/release behavior, and this kind of hybrid material displayed an apparent pH response in DOX releasing under the acidic condition. Beyond that, upon high-intensity focused ultrasound exposure, loaded DOX in composite nanoparticles was successfully triggered to release from pores because of the ultrasonic cavitation effect, and the DOX-releasing pattern could be optimized into a unique pulsatile fashion by switching the on/off status. From the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, it was observed that our blank nanoparticles showed no toxicity to HeLa cells, but DOX-loaded nanoparticles could inhibit the growth of tumor cells. Furthermore, these composite nanoparticles displayed an effective near-IR photothermal conversion capability with a relatively high conversion efficiency (∼37%). These as-desired drug delivery carriers might have a great potential for future cancer treatment that combine the chemotherapy and photothermal therapy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Portadores de Fármacos/química , Indoles/química , Nanopartículas/química , Polímeros/química , Dióxido de Silicio/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/química , Doxorrubicina/toxicidad , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Células HeLa , Humanos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/síntesis química , Indoles/efectos de la radiación , Indoles/toxicidad , Rayos Infrarrojos , Nanocompuestos/química , Nanocompuestos/efectos de la radiación , Nanocompuestos/toxicidad , Nanopartículas/efectos de la radiación , Nanopartículas/toxicidad , Polímeros/síntesis química , Polímeros/efectos de la radiación , Polímeros/toxicidad , Porosidad , Dióxido de Silicio/síntesis química , Dióxido de Silicio/efectos de la radiación , Dióxido de Silicio/toxicidad , Ondas Ultrasónicas
17.
Biomacromolecules ; 19(8): 3301-3310, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29864270

RESUMEN

A combination of chemo-photodynamic therapy has been manifested as a promising strategy for efficient cancer treatment due to the enhanced therapeutic efficacy. Here, we designed doxorubicin (DOX)-loaded photoresponsive micelles (DPRMs) based on a combination of chlorin e6 (Ce6) and lipoic acid (LA) conjugated methoxy-poly(ethylene) glycol (mPEG-Ce6, mPEG-LA) to achieve effective drug delivery using a single system. DPRMs were optimized with different molar ratios of mPEG-Ce6 and mPEG-LA which showed uniformly spherical morphology of size ∼130 nm and approximately 9% of DOX loading contents. Photoresponsive lipoyl ring of mPEG-LA was incorporated in DPRMs in order to induce photomediated reduction resulting in 2-3-fold accelerated DOX release according to higher molar ratio of mPEG-LA and enhancement of light dose. The photoresponsive DOX release and ROS generation by Ce6 mediated cytotoxic effect of DPRMs were demonstrated in vitro using CT-26 (mouse colon cancer) and HCT-116 (human colon cancer) cells. We observed both the photosensitizer and the anticancer drug are colocalized in the tumor cells to achieve effective enhancement. Additionally, the DPRMs with laser irradiation successfully inhibited tumor growth in CT-26 tumor bearing mouse model and immunohistochemical staining verified apoptosis-mediated tumor growth inhibition. These observations demonstrated that the DPRMs showed a higher therapeutic effect than the other systems and PDT maximized the antitumor effect. Thus, DPRMs confirmed the advantages as a chemo-photodynamic dual-therapy with a synergistic therapeutic effect and great potential for cancer treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Micelas , Neoplasias Experimentales/terapia , Fotoquimioterapia/métodos , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Clorofilidas , Terapia Combinada/métodos , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapéutico , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/efectos de la radiación , Liberación de Fármacos , Células HCT116 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Polietilenglicoles/química , Porfirinas/química , Ácido Tióctico/química
18.
Acta Pharmacol Sin ; 39(1): 132-139, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28795690

RESUMEN

Cancer metastasis is responsible for over 90% of breast cancer-related deaths, and inhibiting lymph node metastasis is an option to treat metastatic disease. Herein, we report the use of IR-780-loaded polymeric micelles (IPMs) for effective photothermal therapy (PTT) of breast cancer lymphatic metastasis. The IPMs were nanometer-sized micelles with a mean diameter of 25.6 nm and had good stability in simulated physiological solutions. Under 808-nm laser irradiation, IPMs exhibited high heat-generating capability in both in vitro and in vivo experiments. After intravenous injection, IPMs specifically accumulated in the tumor and metastatic lymph nodes and penetrated into these tissues. Moreover, a single IPMs treatment plus laser irradiation significantly inhibited primary tumor growth and suppressed lymphatic metastasis by 88.2%. Therefore, IPMs are an encouraging platform for PTT applications in treatment of metastatic breast cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Indoles/uso terapéutico , Metástasis Linfática/prevención & control , Animales , Antineoplásicos/efectos de la radiación , Línea Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Portadores de Fármacos/uso terapéutico , Femenino , Calefacción , Indoles/efectos de la radiación , Terapia por Láser/métodos , Ratones Desnudos , Micelas , Tamaño de la Partícula , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/efectos de la radiación , Fosfatidiletanolaminas/uso terapéutico , Fototerapia/métodos , Polietilenglicoles/química , Polietilenglicoles/efectos de la radiación , Polietilenglicoles/uso terapéutico
19.
Angew Chem Int Ed Engl ; 57(28): 8463-8467, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29757483

RESUMEN

The approach of concurrent-to-synchronous chemoradiation has now been advanced by well-designed nanovesicles that permit X-ray irradiation-triggered instant drug release. The nanovesicles consist of Au nanoparticles tethered with irradiation labile linoleic acid hydroperoxide (LAHP) molecules and oxidation-responsive poly(propylene sulfide)-poly(ethylene glycol) (PPS-PEG) polymers, where DOX were loaded in the inner core of the vesicles (Au-LAHP-vDOX). Upon irradiation, the in situ formation of hydroxyl radicals from LAHP molecules triggers the internal oxidation of PPS from being hydrophobic to hydrophilic, leading to degradation of the vesicles and burst release of cargo drugs. In this manner, synchronous chemoradiation showed impressive anticancer efficacy both in vitro and in a subcutaneous mouse tumor model by one-dose injection and one-time irradiation.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Liberación de Fármacos/efectos de la radiación , Oro/química , Nanopartículas/química , Rayos X , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ácidos Linoleicos/química , Peróxidos Lipídicos/química , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Tamaño de la Partícula , Polímeros/química , Tomografía de Emisión de Positrones , Propiedades de Superficie
20.
J Am Chem Soc ; 139(13): 4584-4610, 2017 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-28192672

RESUMEN

Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic therapy, photothermal therapy, radiotherapy, protected delivery of bioactive moieties, anticancer drug delivery systems, and theranostics (i.e., real-time monitoring and tracking combined with a therapeutic action to different diseases sites and organs). Combinations of these approaches can lead to enhanced and synergistic therapies, employing light as a trigger or for activation. Nonlinear light absorption mechanisms such as two-photon absorption and photon upconversion have been employed in the design of light-responsive DDSs. The integration of a light stimulus into dual/multiresponsive nanocarriers can provide spatiotemporal controlled delivery and release of therapeutic agents, targeted and controlled nanosystems, combined delivery of two or more agents, their on-demand release under specific conditions, and so forth. Overall, light-activated nanomedicines and DDSs are expected to provide more effective therapies against serious diseases such as cancers, inflammation, infections, and cardiovascular disease with reduced side effects and will open new doors toward the treatment of patients worldwide.


Asunto(s)
Portadores de Fármacos/química , Portadores de Fármacos/efectos de la radiación , Luz , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Neoplasias/tratamiento farmacológico , Fotoquimioterapia , Animales , Humanos , Nanomedicina
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda