Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 11.425
Filtrar
Más filtros

Colección SES
Publication year range
1.
PLoS Biol ; 21(11): e3002393, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38015826

RESUMEN

Human cognition and action can be influenced by internal bodily processes such as heartbeats. For instance, somatosensory perception is impaired both during the systolic phase of the cardiac cycle and when heartbeats evoke stronger cortical responses. Here, we test whether these cardiac effects originate from overall changes in cortical excitability. Cortical and corticospinal excitability were assessed using electroencephalographic and electromyographic responses to transcranial magnetic stimulation while concurrently monitoring cardiac activity with electrocardiography. Cortical and corticospinal excitability were found to be highest during systole and following stronger neural responses to heartbeats. Furthermore, in a motor task, hand-muscle activity and the associated desynchronization of sensorimotor oscillations were stronger during systole. These results suggest that systolic cardiac signals have a facilitatory effect on motor excitability-in contrast to sensory attenuation that was previously reported for somatosensory perception. Thus, it is possible that distinct time windows exist across the cardiac cycle, optimizing either perception or action.


Asunto(s)
Excitabilidad Cortical , Corteza Motora , Humanos , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología , Mano/fisiología , Electroencefalografía , Estimulación Magnética Transcraneal/métodos
2.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38553046

RESUMEN

Exercise is known to benefit motor skill learning in health and neurological disease. Evidence from brain stimulation, genotyping, and Parkinson's disease studies converge to suggest that the dopamine D2 receptor, and shifts in the cortical excitation and inhibition (E:I) balance, are prime candidates for the drivers of exercise-enhanced motor learning. However, causal evidence using experimental pharmacological challenge is lacking. We hypothesized that the modulatory effect of the dopamine D2 receptor on exercise-induced changes in the E:I balance would determine the magnitude of motor skill acquisition. To test this, we measured exercise-induced changes in excitation and inhibition using paired-pulse transcranial magnetic stimulation (TMS) in 22 healthy female and male humans, and then had participants learn a novel motor skill-the sequential visual isometric pinch task (SVIPT). We examined the effect of D2 receptor blockade (800 mg sulpiride) on these measures within a randomized, double-blind, placebo-controlled design. Our key result was that motor skill acquisition was driven by an interaction between the D2 receptor and E:I balance. Specifically, poorer skill learning was related to an attenuated shift in the E:I balance in the sulpiride condition, whereas this interaction was not evident in placebo. Our results demonstrate that exercise-primed motor skill acquisition is causally influenced by D2 receptor activity on motor cortical circuits.


Asunto(s)
Ejercicio Físico , Corteza Motora , Destreza Motora , Receptores de Dopamina D2 , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Receptores de Dopamina D2/metabolismo , Adulto , Destreza Motora/fisiología , Destreza Motora/efectos de los fármacos , Estimulación Magnética Transcraneal/métodos , Adulto Joven , Corteza Motora/fisiología , Corteza Motora/efectos de los fármacos , Ejercicio Físico/fisiología , Método Doble Ciego , Inhibición Neural/fisiología , Inhibición Neural/efectos de los fármacos , Aprendizaje/fisiología , Potenciales Evocados Motores/fisiología , Potenciales Evocados Motores/efectos de los fármacos , Sulpirida/farmacología , Antagonistas de Dopamina/farmacología
3.
PLoS Biol ; 20(4): e3001598, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35389982

RESUMEN

Humans and other animals are able to adjust their speed-accuracy trade-off (SAT) at will depending on the urge to act, favoring either cautious or hasty decision policies in different contexts. An emerging view is that SAT regulation relies on influences exerting broad changes on the motor system, tuning its activity up globally when hastiness is at premium. The present study aimed to test this hypothesis. A total of 50 participants performed a task involving choices between left and right index fingers, in which incorrect choices led either to a high or to a low penalty in 2 contexts, inciting them to emphasize either cautious or hasty policies. We applied transcranial magnetic stimulation (TMS) on multiple motor representations, eliciting motor-evoked potentials (MEPs) in 9 finger and leg muscles. MEP amplitudes allowed us to probe activity changes in the corresponding finger and leg representations, while participants were deliberating about which index to choose. Our data indicate that hastiness entails a broad amplification of motor activity, although this amplification was limited to the chosen side. On top of this effect, we identified a local suppression of motor activity, surrounding the chosen index representation. Hence, a decision policy favoring speed over accuracy appears to rely on overlapping processes producing a broad (but not global) amplification and a surround suppression of motor activity. The latter effect may help to increase the signal-to-noise ratio of the chosen representation, as supported by single-trial correlation analyses indicating a stronger differentiation of activity changes in finger representations in the hasty context.


Asunto(s)
Corteza Motora , Animales , Potenciales Evocados Motores/fisiología , Dedos/fisiología , Humanos , Actividad Motora , Corteza Motora/fisiología , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal
4.
Brain ; 147(4): 1423-1435, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38537253

RESUMEN

Psychomotor slowing is a frequent symptom of schizophrenia. Short-interval intracortical inhibition assessed by transcranial magnetic stimulation demonstrated inhibitory dysfunction in schizophrenia. The inhibitory deficit results from additional noise during information processing in the motor system in psychosis. Here, we tested whether cortical inhibitory dysfunction was linked to psychomotor slowing and motor network alterations. In this cross-sectional study, we included 60 patients with schizophrenia and psychomotor slowing determined by the Salpêtrière Retardation Rating Scale, 23 patients without slowing and 40 healthy control participants. We acquired single and double-pulse transcranial magnetic stimulation effects from the left primary motor cortex, resting-state functional connectivity and diffusion imaging on the same day. Groups were compared on resting motor threshold, amplitude of the motor evoked potentials, as well as short-interval intracortical inhibition. Regression analyses calculated the association between motor evoked potential amplitudes or cortical inhibition with seed-based resting-state functional connectivity from the left primary motor cortex and fractional anisotropy at whole brain level and within major motor tracts. In patients with schizophrenia and psychomotor slowing, we observed lower amplitudes of motor evoked potentials, while the short-interval intracortical inhibition/motor evoked potentials amplitude ratio was higher than in healthy controls, suggesting lower cortical inhibition in these patients. Patients without slowing also had lower amplitudes of motor evoked potentials. Across the combined patient sample, cortical inhibition deficits were linked to more motor coordination impairments. In patients with schizophrenia and psychomotor slowing, lower amplitudes of motor evoked potentials were associated with lower fractional anisotropy in motor tracts. Moreover, resting-state functional connectivity between the primary motor cortex, the anterior cingulate cortex and the cerebellum increased with stronger cortical inhibition. In contrast, in healthy controls and patients without slowing, stronger cortical inhibition was linked to lower resting-state functional connectivity between the left primary motor cortex and premotor or parietal cortices. Psychomotor slowing in psychosis is linked to less cortical inhibition and aberrant functional connectivity of the primary motor cortex. Higher neural noise in the motor system may drive psychomotor slowing and thus may become a treatment target.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Estudios Transversales , Lóbulo Parietal , Estimulación Magnética Transcraneal/métodos , Potenciales Evocados Motores/fisiología , Inhibición Neural/fisiología
5.
Brain ; 147(7): 2344-2356, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38374770

RESUMEN

Cortical hyperexcitability is an important pathophysiological mechanism in amyotrophic lateral sclerosis (ALS), reflecting a complex interaction of inhibitory and facilitatory interneuronal processes that evolves in the degenerating brain. The advances in physiological techniques have made it possible to interrogate progressive changes in the motor cortex. Specifically, the direction of transcranial magnetic stimulation (TMS) stimulus within the primary motor cortex can be utilized to influence descending corticospinal volleys and to thereby provide information about distinct interneuronal circuits. Cortical motor function and cognition was assessed in 29 ALS patients with results compared to healthy volunteers. Cortical dysfunction was assessed using threshold-tracking TMS to explore alterations in short interval intracortical inhibition (SICI), short interval intracortical facilitation (SICF), the index of excitation and stimulus response curves using a figure-of-eight coil with the coil oriented relative to the primary motor cortex in a posterior-anterior, lateral-medial and anterior-posterior direction. Mean SICI, between interstimulus interval of 1-7 ms, was significantly reduced in ALS patients compared to healthy controls when assessed with the coil oriented in posterior-anterior (P = 0.044) and lateral-medial (P = 0.005) but not the anterior-posterior (P = 0.08) directions. A significant correlation between mean SICI oriented in a posterior-anterior direction and the total Edinburgh Cognitive and Behavioural ALS Screen score (Rho = 0.389, P = 0.037) was evident. In addition, the mean SICF, between interstimulus interval 1-5 ms, was significantly increased in ALS patients when recorded with TMS coil oriented in posterior-anterior (P = 0.035) and lateral-medial (P < 0.001) directions. In contrast, SICF recorded with TMS coil oriented in the anterior-posterior direction was comparable between ALS and controls (P = 0.482). The index of excitation was significantly increased in ALS patients when recorded with the TMS coil oriented in posterior-anterior (P = 0.041) and lateral-medial (P = 0.003) directions. In ALS patients, a significant increase in the stimulus response curve gradient was evident compared to controls when recorded with TMS coil oriented in posterior-anterior (P < 0.001), lateral-medial (P < 0.001) and anterior-posterior (P = 0.002) directions. The present study has established that dysfunction of distinct interneuronal circuits mediates the development of cortical hyperexcitability in ALS. Specifically, complex interplay between inhibitory circuits and facilitatory interneuronal populations, that are preferentially activated by stimulation in posterior-to-anterior or lateral-to-medial directions, promotes cortical hyperexcitability in ALS. Mechanisms that underlie dysfunction of these specific cortical neuronal circuits will enhance understanding of the pathophysiological processes in ALS, with the potential to uncover focussed therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral , Potenciales Evocados Motores , Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiopatología , Anciano , Potenciales Evocados Motores/fisiología , Adulto , Red Nerviosa/fisiopatología , Inhibición Neural/fisiología , Electromiografía
6.
Brain ; 147(4): 1412-1422, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37956080

RESUMEN

Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.


Asunto(s)
Mioclonía , Estimulación Transcraneal de Corriente Directa , Humanos , Anciano , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Potenciales Evocados Motores/fisiología , Cerebelo/fisiología
7.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38342689

RESUMEN

Post-movement beta synchronization is an increase of beta power relative to baseline, which commonly used to represent the status quo of the motor system. However, its functional role to the subsequent voluntary motor output and potential electrophysiological significance remain largely unknown. Here, we examined the reaction time of a Go/No-Go task of index finger tapping which performed at the phases of power baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds (ballistic/self-paced) in 13 healthy subjects. We found a correlation between the post-movement beta synchronization and reaction time that larger post-movement beta synchronization prolonged the reaction time during Go trials. To probe the electrophysiological significance of post-movement beta synchronization, we assessed intracortical inhibitory measures probably involving GABAB (long-interval intracortical inhibition) and GABAA (short-interval intracortical inhibition) receptors in beta baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds. We found that short-interval intracortical inhibition but not long-interval intracortical inhibition increased in post-movement beta synchronization peak compared with that in the power baseline, and was negatively correlated with the change of post-movement beta synchronization peak value. These novel findings indicate that the post-movement beta synchronization is related to forward model updating, with high beta rebound predicting longer time for the preparation of subsequent movement by inhibitory neural pathways of GABAA.


Asunto(s)
Potenciales Evocados Motores , Movimiento , Humanos , Potenciales Evocados Motores/fisiología , Movimiento/fisiología , Tiempo de Reacción/fisiología , Inhibición Psicológica , Inhibición Neural/fisiología
8.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37991276

RESUMEN

Despite the prevalence of visuomotor transformations in our motor skills, their mechanisms remain incompletely understood, especially when imagery actions are considered such as mentally picking up a cup or pressing a button. Here, we used a stimulus-response task to directly compare the visuomotor transformation underlying overt and imagined button presses. Electroencephalographic activity was recorded while participants responded to highlights of the target button while ignoring the second, non-target button. Movement-related potentials (MRPs) and event-related desynchronization occurred for both overt movements and motor imagery (MI), with responses present even for non-target stimuli. Consistent with the activity accumulation model where visual stimuli are evaluated and transformed into the eventual motor response, the timing of MRPs matched the response time on individual trials. Activity-accumulation patterns were observed for MI, as well. Yet, unlike overt movements, MI-related MRPs were not lateralized, which appears to be a neural marker for the distinction between generating a mental image and transforming it into an overt action. Top-down response strategies governing this hemispheric specificity should be accounted for in future research on MI, including basic studies and medical practice.


Asunto(s)
Corteza Motora , Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Corteza Motora/fisiología , Imaginación/fisiología , Potenciales Evocados/fisiología , Electroencefalografía/métodos , Movimiento/fisiología , Potenciales Evocados Motores/fisiología
9.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38879808

RESUMEN

Navigated repetitive transmagnetic stimulation is a non-invasive and safe brain activity modulation technique. When combined with the classical rehabilitation process in stroke patients it has the potential to enhance the overall neurologic recovery. We present a case of a peri-operative stroke, treated with ultra-early low frequency navigated repetitive transmagnetic stimulation over the contralesional hemisphere. The patient received low frequency navigated repetitive transmagnetic stimulation within 12 hours of stroke onset for seven consecutive days and a significant improvement in his right sided weakness was noticed and he was discharge with normal power. This was accompanied by an increase in the number of positive responses evoked by navigated repetitive transmagnetic stimulation and a decrease of the resting motor thresholds at a cortical level. Subcortically, a decrease in the radial, axial, and mean diffusivity were recorded in the ipsilateral corticospinal tract and an increase in fractional anisotropy, axial diffusivity, and mean diffusivity was observed in the interhemispheric fibers of the corpus callosum responsible for the interhemispheric connectivity between motor areas. Our case demonstrates clearly that ultra-early low frequency navigated repetitive transmagnetic stimulation applied to the contralateral motor cortex can lead to significant clinical motor improvement in patients with subcortical stroke.


Asunto(s)
Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Masculino , Estimulación Magnética Transcraneal/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/cirugía , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Persona de Mediana Edad , Anciano , Tractos Piramidales/fisiopatología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Potenciales Evocados Motores/fisiología
10.
Proc Natl Acad Sci U S A ; 119(11): e2113813119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35259014

RESUMEN

SignificanceThe GGGGCC hexanucleotide repeat expansion in the chromosome 9 open reading frame 72 (C9orf72) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS). Despite myriad studies on the toxic effects of poly-dipeptides produced from the C9orf72 repeats, the mechanisms underlying the selective hyperexcitability of motor cortex that characterizes the early stages of C9orf72 ALS patients remain elusive. Here, we show that the proline-arginine poly-dipeptides cause hyperexcitability in cortical motor neurons by increasing persistent sodium currents conducted by the Nav1.2/ß4 sodium channel complex, which is highly expressed in the motor cortex. These findings provide the basis for understanding how the C9orf72 mutation causes motor neuron hyperactivation that can lead to the motor neuron death in C9orf72 ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Dipéptidos/genética , Hipercinesia/genética , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/patología , Arginina , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Dipéptidos/metabolismo , Susceptibilidad a Enfermedades , Potenciales Evocados Motores , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Prolina , Sodio/metabolismo
11.
J Neurosci ; 43(6): 1008-1017, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36609455

RESUMEN

Response inhibition is essential for terminating inappropriate actions. A substantial response delay may occur in the nonstopped effector when only part of a multieffector action is terminated. This stopping-interference effect has been attributed to nonselective response inhibition processes and can be reduced with proactive cuing. This study aimed to elucidate the role of interhemispheric primary motor cortex (M1-M1) influences during selective stopping with proactive cuing. We hypothesized that stopping-interference would be reduced as stopping certainty increased because of proactive recruitment of interhemispheric facilitation or inhibition when cued to respond or stop, respectively. Twenty-three healthy human participants of either sex performed a bimanual anticipatory response inhibition paradigm with cues signaling the likelihood of a stop-signal occurring. Dual-coil transcranial magnetic stimulation was used to determine corticomotor excitability (CME), interhemispheric inhibition (IHI), and interhemispheric facilitation (IHF) in the left hand at rest and during response preparation. Response times slowed and stopping-interference decreased with increased stopping certainty. Proactive response inhibition was marked by a reduced rate of rise and faster cancel time in electromyographical bursts during stopping. There was a nonselective release of IHI but not CME from rest to in-task response preparation, whereas IHF was not observed in either context. An effector-specific reduction in CME but no reinstatement of IHI was observed when the left hand was cued to stop. These findings indicate that stopping speed and selectivity are better with proactive cueing and that interhemispheric M1-M1 channels modulate inhibitory tone during response preparation to support going but not proactive response inhibition.SIGNIFICANCE STATEMENT Response inhibition is essential for terminating inappropriate actions and, in some cases, may be required for only part of a multieffector action. The present study examined interhemispheric influences between the primary motor cortices during selective stopping with proactive cuing. Stopping selectivity was greater with increased stopping certainty and was marked by proactive adjustments to the hand cued to stop and hand cued to respond separately. Inhibitory interhemispheric influences were released during response preparation but were not directly involved in proactive response inhibition. These findings indicate that between-hand stopping can be selective with proactive cuing, but cue-related improvements are unlikely to reflect the advance engagement of interhemispheric influences between primary motor cortices.


Asunto(s)
Inhibición Neural , Estimulación Magnética Transcraneal , Humanos , Inhibición Neural/fisiología , Tiempo de Reacción/fisiología , Mano/fisiología , Señales (Psicología) , Potenciales Evocados Motores , Lateralidad Funcional
12.
J Neurosci ; 43(27): 5030-5044, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37236809

RESUMEN

Human motor behavior involves planning and execution of actions, some more frequently. Manipulating probability distribution of a movement through intensive direction-specific repetition causes physiological bias toward that direction, which can be cortically evoked by transcranial magnetic stimulation (TMS). However, because evoked movement has not been used to distinguish movement execution and plan histories to date, it is unclear whether the bias is because of frequently executed movements or recent planning of movement. Here, in a cohort of 40 participants (22 female), we separately manipulate the recent history of movement plans and execution and probe the resulting effects on physiological biases using TMS and on the default plan for goal-directed actions using a timed-response task. Baseline physiological biases shared similar low-level kinematic properties (direction) to a default plan for upcoming movement. However, manipulation of recent execution history via repetitions toward a specific direction significantly affected physiological biases, but not plan-based goal-directed movement. To further determine whether physiological biases reflect ongoing motor planning, we biased plan history by increasing the likelihood of a specific target location and found a significant effect on the default plan for goal-directed movements. However, TMS-evoked movement during preparation did not become biased toward the most frequent plan. This suggests that physiological biases may either provide a readout of the default state of primary motor cortex population activity in the movement-related space, but not ongoing neural activation in the planning-related space, or that practice induces sensitization of neurons involved in the practiced movement, calling into question the relevance of cortically evoked physiological biases to voluntary movements.SIGNIFICANCE STATEMENT Human motor performance depends not only on ability to make movements relevant to the environment/body's current state, but also on recent action history. One emerging approach to study recent movement history effects on the brain is via physiological biases in cortically-evoked involuntary movements. However, because prior movement execution and plan histories were indistinguishable to date, to what extent physiological biases are due to pure execution-dependent history, or to prior planning of the most probable action, remains unclear. Here, we show that physiological biases are profoundly affected by recent movement execution history, but not ongoing movement planning. Evoked movement, therefore, provides a readout of the default state within the movement space, but not of ongoing activation related to voluntary movement planning.


Asunto(s)
Discinesias , Movimiento , Humanos , Femenino , Movimiento/fisiología , Estimulación Magnética Transcraneal , Encéfalo , Potenciales Evocados Motores/fisiología , Desempeño Psicomotor/fisiología
13.
J Neurosci ; 43(50): 8649-8662, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37852789

RESUMEN

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent centrally induced neural mechanisms and peripherally induced sensory costimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging because of the limited spatiotemporal resolution of available noninvasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in a male and a female nonhuman primate (rhesus macaque) to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response curve with stimulation intensity. We further show that stimulation responses are spatially specific. We use several control conditions to dissociate centrally induced neural responses from auditory and somatosensory coactivation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.SIGNIFICANCE STATEMENT Transcranial magnetic stimulation (TMS) is a widely used noninvasive brain stimulation method to stimulate the human brain. To advance its utility for clinical applications, a clear understanding of its underlying physiological mechanisms is crucial. Here, we perform invasive electrophysiological recordings in the nonhuman primate brain during TMS, achieving a spatiotemporal precision not available in human EEG experiments. We find that evoked potentials are dose dependent and spatially specific, and can be separated from peripheral stimulation effects. This means that TMS-evoked responses can indicate a direct physiological stimulation response. Our work has important implications for the interpretation of human TMS-EEG recordings and biomarker development.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Masculino , Humanos , Femenino , Animales , Estimulación Magnética Transcraneal/métodos , Electroencefalografía/métodos , Macaca mulatta , Potenciales Evocados/fisiología , Biomarcadores , Potenciales Evocados Motores/fisiología
14.
J Neurosci ; 43(14): 2469-2481, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36859307

RESUMEN

Most current methods for neuromodulation target the cortex. Approaches for inducing plasticity in subcortical motor pathways, such as the reticulospinal tract, could help to boost recovery after damage (e.g., stroke). In this study, we paired loud acoustic stimulation (LAS) with transcranial magnetic stimulation (TMS) over the motor cortex in male and female healthy humans. LAS activates the reticular formation; TMS activates descending systems, including corticoreticular fibers. Two hundred paired stimuli were used, with 50 ms interstimulus interval at which LAS suppresses TMS responses. Before and after stimulus pairing, responses in the contralateral biceps muscle to TMS alone were measured. Ten, 20, and 30 min after stimulus pairing ended, TMS responses were enhanced, indicating the induction of LTP. No long-term changes were seen in control experiments which used 200 unpaired TMS or LAS, indicating the importance of associative stimulation. Following paired stimulation, no changes were seen in responses to direct corticospinal stimulation at the level of the medulla, or in the extent of reaction time shortening by a loud sound (StartReact effect), suggesting that plasticity did not occur in corticospinal or reticulospinal synapses. Direct measurements in female monkeys undergoing a similar paired protocol revealed no enhancement of corticospinal volleys after paired stimulation, suggesting no changes occurred in intracortical connections. The most likely substrate for the plastic changes, consistent with all our measurements, is an increase in the efficacy of corticoreticular connections. This new protocol may find utility, as it seems to target different motor circuits compared with other available paradigms.SIGNIFICANCE STATEMENT Induction of plasticity by neurostimulation protocols may be promising to enhance functional recovery after damage such as following stroke, but current protocols mainly target cortical circuits. In this study, we developed a novel paradigm which may generate long-term changes in connections between cortex and brainstem. This could provide an additional tool to modulate and improve recovery.


Asunto(s)
Plasticidad Neuronal , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Estimulación Magnética Transcraneal/métodos , Plasticidad Neuronal/fisiología , Músculo Esquelético/fisiología , Vías Eferentes , Formación Reticular/fisiología , Potenciales Evocados Motores/fisiología
15.
J Physiol ; 602(12): 2931-2943, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872383

RESUMEN

Theta-burst transcranial ultrasound stimulation (tbTUS) increases primary motor cortex (M1) excitability for at least 30 min. However, the remote effects of focal M1 tbTUS on the excitability of other cortical areas are unknown. Here, we examined the effects of left M1 tbTUS on right M1 excitability. An 80 s train of active or sham tbTUS was delivered to the left M1 in 20 healthy subjects. Before and after the tbTUS, we measured: (1) corticospinal excitability using motor-evoked potential (MEP) amplitudes from single-pulse transcranial magnetic stimulation (TMS) of left and right M1; (2) interhemispheric inhibition (IHI) from left to right M1 and from right to left M1 using a dual-site paired-pulse TMS paradigm; and (3) intracortical circuits of the right M1 with short-interval intracortical inhibition and intracortical facilitation (ICF) using paired-pulse TMS. Left M1 tbTUS decreased right M1 excitability as shown by decreased MEP amplitudes, increased right M1 ICF and decreased short-interval IHI from left to right hemisphere at interstimulus interval (ISI) of 10 ms but not long-interval IHI at interstimulus interval of 40 ms. The study showed that left M1 tbTUS can change the excitability of remote cortical areas with decreased right M1 excitability and interhemispheric inhibition. The remote effects of tbTUS should be considered when it is used in neuroscience research and as a potential neuromodulation treatment for brain disorders. KEY POINTS: Transcranial ultrasound stimulation (TUS) is a novel non-invasive brain stimulation technique for neuromodulation with the advantages of being able to achieve high spatial resolution and target deep brain structures. A repetitive TUS protocol, with an 80 s train of theta burst patterned TUS (tbTUS), has been shown to increase primary motor cortex (M1) excitability, as well as increase alpha and beta movement-related spectral power in distinct brain regions. In this study, we examined on the effects of the motor cortical tbTUS on the excitability of contralateral M1 measured with MEPs elicited by transcranial magnetic stimulation. We showed that left M1 tbTUS decreased right M1 excitability and left-to-right M1 interhemispheric inhibition, and increased intracortical facilitation of right M1. These results lead to better understand the effects of tbTUS and can help the development of tbTUS for the treatment of neurological and psychiatric disorders and in neuroscience research.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Corteza Motora/fisiología , Masculino , Femenino , Adulto , Estimulación Magnética Transcraneal/métodos , Adulto Joven , Ritmo Teta
16.
J Physiol ; 602(5): 933-948, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358314

RESUMEN

Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant's individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.


Asunto(s)
Corteza Motora , Humanos , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología , Estimulación Magnética Transcraneal/métodos , Plasticidad Neuronal/fisiología , Potenciación a Largo Plazo/fisiología
17.
J Physiol ; 602(10): 2253-2264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38638084

RESUMEN

Short- and long-latency afferent inhibition (SAI and LAI respectively) are phenomenon whereby the motor evoked potential induced by transcranial magnetic stimulation (TMS) is inhibited by a sensory afferent volley consequent to nerve stimulation. It remains unclear whether dopamine participates in the genesis or modulation of SAI and LAI. The present study aimed to determine if SAI and LAI are modulated by levodopa (l-DOPA). In this placebo-controlled, double-anonymized study Apo-Levocarb (100 mg l-DOPA in combination with 25 mg carbidopa) and a placebo were administered to 32 adult males (mean age 24 ± 3 years) in two separate sessions. SAI and LAI were evoked by stimulating the median nerve and delivering single-pulse TMS over the motor hotspot corresponding to the first dorsal interosseous muscle of the right hand. SAI and LAI were quantified before and 1 h following ingestion of drug or placebo corresponding to the peak plasma concentration of Apo-Levocarb. The results indicate that Apo-Levocarb increases SAI and does not significantly alter LAI. These findings support literature demonstrating increased SAI following exogenous dopamine administration in neurodegenerative disorders. KEY POINTS: Short- and long-latency afferent inhibition (SAI and LAI respectively) are measures of corticospinal excitability evoked using transcranial magnetic stimulation. SAI and LAI are reduced in conditions such as Parkinson's disease which suggests dopamine may be involved in the mechanism of afferent inhibition. 125 mg of Apo-Levocarb (100 mg dopamine) increases SAI but not LAI. This study increases our understanding of the pharmacological mechanism of SAI and LAI.


Asunto(s)
Carbidopa , Potenciales Evocados Motores , Levodopa , Estimulación Magnética Transcraneal , Humanos , Masculino , Levodopa/farmacología , Adulto , Potenciales Evocados Motores/efectos de los fármacos , Estimulación Magnética Transcraneal/métodos , Carbidopa/farmacología , Adulto Joven , Inhibición Neural/efectos de los fármacos , Método Doble Ciego , Dopaminérgicos/farmacología , Dopamina/farmacología , Combinación de Medicamentos , Nervio Mediano/fisiología , Nervio Mediano/efectos de los fármacos
18.
J Physiol ; 602(1): 205-222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38059677

RESUMEN

In the absence of disease, humans produce smooth and accurate movement trajectories. Despite such 'macroscopic' aspect, the 'microscopic' structure of movements reveals recurrent (quasi-rhythmic) discontinuities. To date, it is unclear how the sensorimotor system contributes to the macroscopic and microscopic architecture of movement. Here, we investigated how corticospinal excitability changes in relation to microscopic fluctuations that are naturally embedded within larger macroscopic variations in motor output. Participants performed a visuomotor tracking task. In addition to the 0.25 Hz modulation that is required for task fulfilment (macroscopic scale), the motor output shows tiny but systematic fluctuations at ∼2 and 8 Hz (microscopic scales). We show that motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) during task performance are consistently modulated at all (time) scales. Surprisingly, MEP modulation covers a similar range at both micro- and macroscopic scales, even though the motor output differs by several orders of magnitude. Thus, corticospinal excitability finely maps the multiscale temporal patterning of the motor output, but it does so according to a principle of scale invariance. These results suggest that corticospinal excitability indexes a relatively abstract level of movement encoding that may reflect the hierarchical organisation of sensorimotor processes. KEY POINTS: Motor behaviour is organised on multiple (time)scales. Small but systematic ('microscopic') fluctuations are engrained in larger and slower ('macroscopic') variations in motor output, which are instrumental in deploying the desired motor plan. Corticospinal excitability is modulated in relation to motor fluctuations on both macroscopic and microscopic (time)scales. Corticospinal excitability obeys a principle of scale invariance, that is, it is modulated similarly at all (time)scales, possibly reflecting hierarchical mechanisms that optimise motor encoding.


Asunto(s)
Corteza Motora , Humanos , Corteza Motora/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos , Movimiento , Potenciales Evocados Motores/fisiología , Músculo Esquelético/fisiología , Electromiografía
19.
J Physiol ; 602(12): 2961-2983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38758005

RESUMEN

Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Músculo Esquelético , Médula Espinal , Corteza Motora/fisiología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Médula Espinal/fisiología , Adulto , Músculo Esquelético/fisiología , Músculo Esquelético/inervación , Estimulación de la Médula Espinal/métodos , Anciano , Estimulación Eléctrica/métodos
20.
J Physiol ; 602(15): 3737-3753, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38949035

RESUMEN

Ageing induces a decline in GABAergic intracortical inhibition, which seems to be associated not only with decremental changes in well-being, sleep quality, cognition and pain management but also with impaired motor control. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. Therefore, the present study investigated whether age-related cortical dis-inhibition could be reversed after 6 months of balance learning and whether improvements in postural control correlated with the extent of reversed dis-inhibition. The results demonstrated that intracortical inhibition can be upregulated in elderly subjects after long-term balance learning and revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition and may therefore be seminal for many pathologies in which the equilibrium between inhibitory and excitatory neurotransmitters is disturbed. KEY POINTS: Ageing induces a decline in GABAergic intracortical inhibition. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. After 6 months of balance learning, intracortical inhibition can be upregulated in elderly subjects. The results of this study also revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition.


Asunto(s)
Envejecimiento , Aprendizaje , Corteza Motora , Equilibrio Postural , Humanos , Masculino , Anciano , Equilibrio Postural/fisiología , Corteza Motora/fisiología , Femenino , Envejecimiento/fisiología , Aprendizaje/fisiología , Inhibición Neural , Persona de Mediana Edad , Neuronas GABAérgicas/fisiología , Adulto , Estimulación Magnética Transcraneal , Ácido gamma-Aminobutírico/metabolismo , Potenciales Evocados Motores
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda