Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biochemistry ; 63(14): 1774-1782, 2024 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-38958242

RESUMEN

ProTides are nucleotide analogues used for the treatment of specific viral infections. These compounds consist of a masked nucleotide that undergoes in vivo enzymatic and spontaneous chemical transformations to generate a free mononucleotide that is ultimately transformed to the pharmaceutically active triphosphorylated drug. The three FDA approved ProTides are composed of a phosphoramidate (P-N) core coupled with a nucleoside analogue, phenol, and an l-alanyl carboxylate ester. The previously proposed mechanism of activation postulates the existence of an unstable 5-membered mixed anhydride cyclic intermediate formed from the direct attack of the carboxylate group of the l-alanyl moiety with expulsion of phenol. The mixed anhydride cyclic intermediate is further postulated to undergo spontaneous hydrolysis to form a linear l-alanyl phosphoramidate product. In the proposed mechanism of activation, the 5-membered mixed anhydride intermediate has been detected previously using mass spectrometry, but the specific site of nucleophilic attack by water (P-O versus C-O) has not been determined. To further interrogate the mechanism for hydrolysis of the putative 5-membered cyclic intermediate formed during ProTide activation, the reaction was conducted in 18O-labeled water using a ProTide analogue that could be activated by carboxypeptidase Y. Mass spectrometry and 31P NMR spectroscopy were used to demonstrate that the hydrolysis of the mixed anhydride 5-membered intermediate occurs with exclusive attack at the phosphorus center.


Asunto(s)
Ácidos Fosfóricos , Hidrólisis , Ácidos Fosfóricos/química , Ácidos Fosfóricos/metabolismo , Amidas/química , Amidas/metabolismo , Estereoisomerismo , Isótopos de Oxígeno/química , Anhídridos/química , Espectroscopía de Resonancia Magnética/métodos , Antivirales/química , Antivirales/farmacología , Agua/química , ProTides
2.
J Am Chem Soc ; 146(1): 521-531, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38110248

RESUMEN

Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.


Asunto(s)
Carboxipeptidasas , ProTides , Masculino , Humanos , Fluorescencia , Carboxipeptidasas/metabolismo , Hidrolasas , Aminoácidos , Colorantes Fluorescentes/química
3.
ChemMedChem ; 19(8): e202300661, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38241205

RESUMEN

Infection by human papillomaviruses (HPV) can cause warts and tumors. So far, no small molecule antiviral has been approved for the treatment of infections with this DNA virus, although preclinical studies show activity for nucleosidic compounds, such as 9-(2-phosphonylmethoxy)ethylguanine (PMEG) or cidofovir. This prompted us to test new prodrug versions of the nucleoside analog 3'-azido-2',3'-dideoxythymidine (AZT), known to be active against reverse transcriptases and approved for the treatment of HIV. Here we report the synthesis of an ethylbutyl alaninyl ester phosphosphoramidate prodrug of AZT, dubbed AZAEB, and its activity against HPV, a target not known to be sensitive to AZT. A methyl ester derivative was found to be inactive against this and three other DNA viruses, while the phosphoramidate prodrug AZAEB showed a modest inhibitory effect against HPV types 6, 11, 18 and 31. Our results open up new avenues of study for the treatment of diseases caused by members of the papillomaviridae family.


Asunto(s)
Infecciones por Papillomavirus , Profármacos , Humanos , Zidovudina/farmacología , ProTides , Virus del Papiloma Humano , Nucleósidos , Profármacos/farmacología , Ésteres , Antivirales/farmacología
4.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38690769

RESUMEN

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Asunto(s)
Adenosina/análogos & derivados , Antivirales , Catepsina A , Pulmón , Profármacos , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacocinética , Profármacos/farmacología , Animales , Ratones , Antivirales/farmacocinética , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Humanos , Catepsina A/metabolismo , Pulmón/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacología , Permeabilidad , ProTides
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda