Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 45(1): 395-416, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27557711

RESUMEN

Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show elevated U12-intron retention in all examined tissues from SMA mice, and that U12-dependent intron retention is induced upon siRNA knock-down of SMN in HeLa cells. Furthermore, we show that retention of U12-dependent introns is mitigated by ASO treatment of SMA mice and that many transcriptional changes are reversed. Finally, we report on missplicing of several Ca2+ channel genes that may explain disrupted Ca2+ homeostasis in SMA and activation of Cdk5.


Asunto(s)
Intrones , Atrofia Muscular Espinal/genética , Empalme del ARN , ARN Mensajero/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Calcio/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Modelos Animales de Enfermedad , Femenino , Células HeLa , Humanos , Masculino , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Análisis de Secuencia de ARN , Médula Espinal/metabolismo , Médula Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
2.
Hum Mol Genet ; 25(9): 1728-38, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26908606

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism.


Asunto(s)
Embrión no Mamífero/citología , MicroARNs/genética , Neuronas Motoras/patología , Músculo Esquelético/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Pez Cebra
3.
Proc Natl Acad Sci U S A ; 111(32): E3277-86, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25071210

RESUMEN

The accurate biogenesis of RNA-protein complexes is a key aspect of eukaryotic cells. Defects in Sm protein complex binding to snRNAs are known to reduce levels of snRNAs, suggesting an unknown quality control system for small nuclear ribonucleoprotein (snRNP) assembly. snRNA quality control may also be relevant in spinal muscular atrophy, which is caused by defects in the survival motor neuron (SMN)1 gene, an assembly factor for loading the Sm complex on snRNAs and, when severely reduced, can lead to reduced levels of snRNAs and splicing defects. To determine how assembly-defective snRNAs are degraded, we first demonstrate that yeast U1 Sm-mutant snRNAs are degraded either by Rrp6- or by Dcp2-dependent decapping/5'-to-3' decay. Knockdown of the decapping enzyme DCP2 in mammalian cells also increases the levels of assembly-defective snRNAs and suppresses some splicing defects seen in SMN-deficient cells. These results identify a conserved mechanism of snRNA quality control, and also suggest a general paradigm wherein the phenotype of an "RNP assembly disease" might be suppressed by inhibition of a competing RNA quality control mechanism.


Asunto(s)
ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Animales , Endorribonucleasas/antagonistas & inhibidores , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Ratones , Modelos Biológicos , Mutación , Células 3T3 NIH , Control de Calidad , Empalme del ARN , Estabilidad del ARN/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
4.
Neural Plast ; 2012: 456478, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701806

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder, leading to progressive muscle weakness, atrophy, and sometimes premature death. SMA is caused by mutation or deletion of the survival motor neuron-1 (SMN1) gene. An effective treatment does not presently exist. Since the severity of the SMA phenotype is inversely correlated with expression levels of SMN, the SMN-encoded protein, SMN is the most important therapeutic target for development of an effective treatment for SMA. In recent years, numerous SMN independent targets and therapeutic strategies have been demonstrated to have potential roles in SMA treatment. For example, some neurotrophic, antiapoptotic, and myotrophic factors are able to promote survival of motor neurons or improve muscle strength shown in SMA mouse models or clinical trials. Plastin-3, cpg15, and a Rho-kinase inhibitor regulate axonal dynamics and might reduce the influences of SMN depletion in disarrangement of neuromuscular junction. Stem cell transplantation in SMA model mice resulted in improvement of motor behaviors and extension of survival, likely from trophic support. Although most therapies are still under investigation, these nonclassical treatments might provide an adjunctive method for future SMA therapy.


Asunto(s)
Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/tendencias , Terapia Genética/tendencias , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Atrofia Muscular Espinal/patología , Trasplante de Células Madre/tendencias , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
5.
Sci Rep ; 10(1): 11069, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632203

RESUMEN

5q-Associated spinal muscular atrophy is a hereditary neuromuscular disease leading to progressive muscle weakness in which fatigue occurs and affects quality of life. Treatment with the antisense oligonucleotide nusinersen has been shown to improve motor function. Fatigue can be measured within the Fatigue Severity Scale (FSS). FSS is a self-reported questionnaire consisting of nine items to quantify fatigue severity within the last week. Higher values indicating a higher severity. Using the FSS, fatigue was measured in 28 adult patients, subdivided into ambulatory and non-ambulatory, suffering from a genetically confirmed 5q-SMA under treatment with nusinersen in accordance with the label. Correlations were performed among FSS and motor scales, 6-minute walk test (6MWT) and Hammersmiths Functional Motor Scale Expanded (HFMSE). Evaluation was performed prior to treatment initiation and after 6 and 10 months. The mean FSS score for all 28 patients at baseline was 4.61 ± 1.44. After 6 months mean FSS score significantly reduced to 3.92 ± 1.35. After 10 months mean FSS score had not differed from baseline, 3.84 ± 1.25. A moderate negative correlation of the difference of FSS and 6MWT after 6 months compared to baseline conditions was measured. Nusinersen reduces fatigue as measured by the FSS in adult patients with 5q-SMA transiently after initiation of treatment. There was no reduction of FSS 10 months after the beginning of treatment when compared to baseline.


Asunto(s)
Fatiga/patología , Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos/efectos adversos , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Adulto , Fatiga/inducido químicamente , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Atrofia Muscular Espinal/patología , Pronóstico , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Prueba de Paso , Adulto Joven
6.
PLoS One ; 13(9): e0203398, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30188931

RESUMEN

OBJECTIVES: Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by homozygous loss of the survival motor neuron 1 (SMN1) gene and insufficient functional SMN protein produced by the SMN2 copy gene. Additional genetic protective modifiers such as Plastin 3 (PLS3) can counteract SMA pathology despite insufficient SMN protein. Recently, Spinraza, an SMN antisense oligonucleotide (ASO) that restores full-length SMN2 transcripts, has been FDA- and EMA-approved for SMA therapy. Hence, the availability of biomarkers allowing a reliable monitoring of disease and therapy progression would be of great importance. Our objectives were (i) to analyse the feasibility of SMN and of six SMA biomarkers identified by the BforSMA study in the Taiwanese SMA mouse model, (ii) to analyse the effect of PLS3 overexpression on these biomarkers, and (iii) to assess the impact of low-dose SMN-ASO therapy on the level of SMN and the six biomarkers. METHODS: At P10 and P21, the level of SMN and six putative biomarkers were compared among SMA, heterozygous and wild type mice, with or without PLS3 overexpression, and with or without presymptomatic low-dose SMN-ASO subcutaneous injection. SMN levels were measured in whole blood by ECL immunoassay and of six SMA putative biomarkers, namely Cartilage Oligomeric Matrix Protein (COMP), Dipeptidyl Peptidase 4 (DPP4), Tetranectin (C-type Lectin Family 3 Member B, CLEC3B), Osteopontin (Secreted Phosphoprotein 1, SPP1), Vitronectin (VTN) and Fetuin A (Alpha 2-HS Glycoprotein, AHSG) in plasma. RESULTS: SMN levels were significantly discernible between SMA, heterozygous and wild type mice. However, no significant differences were measured upon low-dose SMN-ASO treatment compared to untreated animals. Of the six biomarkers, only COMP and DPP4 showed high and SPP1 moderate correlation with the SMA phenotype. PLS3 overexpression neither influenced the SMN level nor the six biomarkers, supporting the hypothesis that PLS3 acts as an independent protective modifier.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Glicoproteínas de Membrana , Proteínas de Microfilamentos , Atrofia Muscular Espinal , Oligodesoxirribonucleótidos Antisentido/farmacología , Proteína 1 para la Supervivencia de la Neurona Motora , Animales , Biomarcadores/metabolismo , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 1 para la Supervivencia de la Neurona Motora/biosíntesis , Proteína 1 para la Supervivencia de la Neurona Motora/genética
7.
J Clin Invest ; 128(7): 3008-3023, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29672276

RESUMEN

Spinal muscular atrophy (SMA), a degenerative motor neuron (MN) disease, caused by loss of functional survival of motor neuron (SMN) protein due to SMN1 gene mutations, is a leading cause of infant mortality. Increasing SMN levels ameliorates the disease phenotype and is unanimously accepted as a therapeutic approach for patients with SMA. The ubiquitin/proteasome system is known to regulate SMN protein levels; however, whether autophagy controls SMN levels remains poorly explored. Here, we show that SMN protein is degraded by autophagy. Pharmacological and genetic inhibition of autophagy increases SMN levels, while induction of autophagy decreases these levels. SMN degradation occurs via its interaction with the autophagy adapter p62 (also known as SQSTM1). We also show that SMA neurons display reduced autophagosome clearance, increased p62 and ubiquitinated proteins levels, and hyperactivated mTORC1 signaling. Importantly, reducing p62 levels markedly increases SMN and its binding partner gemin2, promotes MN survival, and extends lifespan in fly and mouse SMA models, revealing p62 as a potential new therapeutic target for the treatment of SMA.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/metabolismo , Proteínas del Complejo SMN/metabolismo , Proteína Sequestosoma-1/antagonistas & inhibidores , Animales , Autofagia , Células Cultivadas , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/patología , Mutación , Fenotipo , Proteolisis , ARN Interferente Pequeño/genética , Proteínas del Complejo SMN/deficiencia , Proteínas del Complejo SMN/genética , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
PLoS One ; 7(12): e51826, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284781

RESUMEN

Proximal spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by deficiency of the ubiquitous Survival of Motor Neuron (SMN) protein. SMN has been shown to be transported in granules along the axon and moved through cytoskeletal elements. However, the role and nature of SMN granules are still not well characterized. Here, using immunocytochemical methods and time-lapse studies we show that SMN granules colocalize with the Golgi apparatus in motor neuron-like NSC34 cells. Electron microscopy clearly revealed that SMN granules are transported into the Golgi stack and aggregate in the trans-Golgi apparatus. SMN granules are characterized as either coated or un-coated and behave like regulated secretory granules. Treatment of cells with monensin to disrupt Golgi-mediated granule secretion decreased SMN expression in neurites and caused growth cone defects similar to those seen in SMN knockdown cells. Knockdown of Cop-α, the protein that coats vesicles transporting proteins between the Golgi compartments, caused SMN granule accumulation in the Golgi apparatus. In addition to the well-studied role of SMN in small nuclear ribonucleoprotein (SnRNP) assembly, this work links SMN granules with the Golgi network and thus sheds light on Golgi-mediated SMN granule transport.


Asunto(s)
Citoplasma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Aparato de Golgi/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/fisiología , Animales , Western Blotting , Núcleo Celular/metabolismo , Proteína Coat de Complejo I/metabolismo , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Ratones , Microscopía Electrónica de Transmisión , Neuronas Motoras/citología , Neuritas/metabolismo , Transporte de Proteínas , ARN Interferente Pequeño/genética , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Imagen de Lapso de Tiempo
9.
J Cell Biol ; 199(1): 21-5, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23027901

RESUMEN

One of the greatest thrills a biomedical researcher may experience is seeing the product of many years of dedicated effort finally make its way to the patient. As a team, we have worked for the past eight years to discover a drug that could treat a devastating childhood neuromuscular disease, spinal muscular atrophy (SMA). Here, we describe the journey that has led to a promising drug based on the biology underlying the disease.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Oligonucleótidos Antisentido/farmacología , Animales , Humanos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/genética , Proteína 1 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/antagonistas & inhibidores , Proteína 2 para la Supervivencia de la Neurona Motora/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda