Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Pathog ; 18(1): e1009718, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073381

RESUMEN

Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella's intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.


Asunto(s)
Inflamasomas/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Infecciones por Salmonella/inmunología , Sistemas de Secreción Tipo III/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas de Unión al Calcio/inmunología , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/patogenicidad , Virulencia
2.
Immunity ; 39(3): 432-41, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-24054327
3.
PLoS Pathog ; 15(6): e1007886, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31251782

RESUMEN

Inflammasomes are cytosolic multi-protein complexes that detect infection or cellular damage and activate the Caspase-1 (CASP1) protease. The NAIP5/NLRC4 inflammasome detects bacterial flagellin and is essential for resistance to the flagellated intracellular bacterium Legionella pneumophila. The effectors required downstream of NAIP5/NLRC4 to restrict bacterial replication remain unclear. Upon NAIP5/NLRC4 activation, CASP1 cleaves and activates the pore-forming protein Gasdermin-D (GSDMD) and the effector caspase-7 (CASP7). However, Casp1-/- (and Casp1/11-/-) mice are only partially susceptible to L. pneumophila and do not phenocopy Nlrc4-/-mice, because NAIP5/NLRC4 also activates CASP8 for restriction of L. pneumophila infection. Here we show that CASP8 promotes the activation of CASP7 and that Casp7/1/11-/- and Casp8/1/11-/- mice recapitulate the full susceptibility of Nlrc4-/- mice. Gsdmd-/- mice exhibit only mild susceptibility to L. pneumophila, but Gsdmd-/-Casp7-/- mice are as susceptible as the Nlrc4-/- mice. These results demonstrate that GSDMD and CASP7 are the key substrates downstream of NAIP5/NLRC4/CASP1/8 required for resistance to L. pneumophila.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/inmunología , Caspasa 1/inmunología , Caspasa 7/inmunología , Caspasa 8/inmunología , Inflamasomas/inmunología , Legionella pneumophila/inmunología , Enfermedad de los Legionarios/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al Calcio/genética , Caspasa 1/genética , Caspasa 7/genética , Caspasa 8/genética , Inflamasomas/genética , Péptidos y Proteínas de Señalización Intracelular , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/patología , Ratones , Ratones Noqueados , Proteína Inhibidora de la Apoptosis Neuronal/genética , Proteínas de Unión a Fosfato
4.
Nat Immunol ; 9(10): 1171-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18724372

RESUMEN

Inflammasomes are cytosolic multiprotein complexes that sense microbial infection and trigger cytokine production and cell death. However, the molecular components of inflammasomes and what they sense remain poorly defined. Here we demonstrate that 35 amino acids of the carboxyl terminus of flagellin triggered inflammasome activation in the absence of bacterial contaminants or secretion systems. To further elucidate the host flagellin-sensing pathway, we generated mice deficient in the intracellular sensor Naip5. These mice failed to activate the inflammasome in response to the 35 amino acids of flagellin or in response to Legionella pneumophila infection. Our data clarify the molecular basis for the cytosolic response to flagellin.


Asunto(s)
Flagelina/inmunología , Macrófagos/inmunología , Complejos Multiproteicos/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Secuencias de Aminoácidos/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/metabolismo , Citosol , Ensayo de Inmunoadsorción Enzimática , Flagelina/química , Immunoblotting , Legionella pneumophila/inmunología , Enfermedad de los Legionarios/inmunología , Macrófagos/microbiología , Ratones , Proteína Inhibidora de la Apoptosis Neuronal/genética , Receptor Toll-Like 5/inmunología , Receptor Toll-Like 5/metabolismo , Transducción Genética
5.
Immunol Rev ; 265(1): 22-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25879281

RESUMEN

Inflammasomes are cytosolic protein complexes that serve as platforms for the recruitment and activation of the pro-inflammatory CASPASE-1 protease. CASPASE-1 activation leads to processing and maturation of the cytokines interleukin-1ß and interleukin-18 and a lytic form of cell death termed pyroptosis. Inflammasome assembly is initiated by cytosolic sensors in response to microbial infections. Many of these sensors, including NLRP1 (NLR family, pyrin domain containing 1), are described to form an inflammasome, but until recently, the mechanism of inflammasome activation and its physiological functions in host defense have remained unclear. In the last few years, important advances in our understanding of NLRP1 biology have been achieved. In this review, we discuss the activation of NLRP1 by various stimuli, including Bacillus anthracis lethal toxin, Toxoplasma gondii, muramyl dipeptide, and host intracellular ATP depletion. The role NLRP1 plays in pathogen recognition and resistance during infection is also discussed, as is the regulation of NLRP1 by host and viral proteins. We conclude by discussing the unexpected differences in the mechanism of NLRP1 inflammasome activation, as compared to the activation of other inflammasomes, such as the NAIP (NLR family, apoptosis inhibitory protein)/NLRC4 inflammasomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Infecciones/inmunología , Inflamasomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Activa , Inflamasomas/inmunología , Proteínas NLR , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo
6.
EMBO J ; 32(1): 86-99, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23222484

RESUMEN

Infection of macrophages by bacterial pathogens can trigger Toll-like receptor (TLR) activation as well as Nod-like receptors (NLRs) leading to inflammasome formation and cell death dependent on caspase-1 (pyroptosis). Complicating the study of inflammasome activation is priming. Here, we develop a priming-free NLRC4 inflammasome activation system to address the necessity and role of priming in pyroptotic cell death and damage-associated molecular pattern (DAMP) release. We find pyroptosis is not dependent on priming and when priming is re-introduced pyroptosis is unaffected. Cells undergoing unprimed pyroptosis appear to be independent of mitochondrial involvement and do not produce inflammatory cytokines, nitrous oxide (NO), or reactive oxygen species (ROS). Nevertheless, they undergo an explosive cell death releasing a chemotactic isoform of the DAMP high mobility group protein box 1 (HMGB1). Importantly, priming through surface TLRs but not endosomal TLRs during pyroptosis leads to the release of a new TLR4-agonist cysteine redox isoform of HMGB1. These results show that pyroptosis is dominant to priming signals and indicates that metabolic changes triggered by priming can affect how cell death is perceived by the immune system.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Caspasa 1/metabolismo , Proteína HMGB1/metabolismo , Macrófagos/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Receptores Toll-Like/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/agonistas , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Bacterianas/metabolismo , Proteínas de Unión al Calcio/agonistas , Proteínas de Unión al Calcio/inmunología , Muerte Celular , Línea Celular , Expresión Génica , Proteína HMGB1/análisis , Interacciones Huésped-Patógeno , Inflamasomas/inmunología , Inflamasomas/metabolismo , Activación de Macrófagos/fisiología , Macrófagos/microbiología , Macrófagos/fisiología , Ratones , Datos de Secuencia Molecular , Proteína Inhibidora de la Apoptosis Neuronal/agonistas , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Isoformas de Proteínas/metabolismo , Transducción de Señal , Receptores Toll-Like/inmunología
7.
J Immunol ; 195(3): 815-9, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26109648

RESUMEN

Murine NLR family, apoptosis inhibitory protein (Naip)1, Naip2, and Naip5/6 are host sensors that detect the cytosolic presence of needle and rod proteins from bacterial type III secretion systems and flagellin, respectively. Previous studies using human-derived macrophage-like cell lines indicate that human macrophages sense the cytosolic needle protein, but not bacterial flagellin. In this study, we show that primary human macrophages readily sense cytosolic flagellin. Infection of primary human macrophages with Salmonella elicits robust cell death and IL-1ß secretion that is dependent on flagellin. We show that flagellin detection requires a full-length isoform of human Naip. This full-length Naip isoform is robustly expressed in primary macrophages from healthy human donors, but it is drastically reduced in monocytic tumor cells, THP-1, and U937, rendering them insensitive to cytosolic flagellin. However, ectopic expression of full-length Naip rescues the ability of U937 cells to sense flagellin. In conclusion, human Naip functions to activate the inflammasome in response to flagellin, similar to murine Naip5/6.


Asunto(s)
Sistemas de Secreción Bacterianos/inmunología , Flagelina/inmunología , Inflamasomas/inmunología , Macrófagos/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Células Cultivadas , Humanos , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Salmonella/inmunología , Infecciones por Salmonella/inmunología , Células U937
8.
Nature ; 477(7366): 592-5, 2011 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-21874021

RESUMEN

Inflammasomes are a family of cytosolic multiprotein complexes that initiate innate immune responses to pathogenic microbes by activating the caspase 1 protease. Although genetic data support a critical role for inflammasomes in immune defence and inflammatory diseases, the molecular basis by which individual inflammasomes respond to specific stimuli remains poorly understood. The inflammasome that contains the NLRC4 (NLR family, CARD domain containing 4) protein was previously shown to be activated in response to two distinct bacterial proteins, flagellin and PrgJ, a conserved component of pathogen-associated type III secretion systems. However, direct binding between NLRC4 and flagellin or PrgJ has never been demonstrated. A homologue of NLRC4, NAIP5 (NLR family, apoptosis inhibitory protein 5), has been implicated in activation of NLRC4 (refs 7-11), but is widely assumed to have only an auxiliary role, as NAIP5 is often dispensable for NLRC4 activation. However, Naip5 is a member of a small multigene family, raising the possibility of redundancy and functional specialization among Naip genes. Here we show in mice that different NAIP paralogues determine the specificity of the NLRC4 inflammasome for distinct bacterial ligands. In particular, we found that activation of endogenous NLRC4 by bacterial PrgJ requires NAIP2, a previously uncharacterized member of the NAIP gene family, whereas NAIP5 and NAIP6 activate NLRC4 specifically in response to bacterial flagellin. We dissected the biochemical mechanism underlying the requirement for NAIP proteins by use of a reconstituted NLRC4 inflammasome system. We found that NAIP proteins control ligand-dependent oligomerization of NLRC4 and that the NAIP2-NLRC4 complex physically associates with PrgJ but not flagellin, whereas NAIP5-NLRC4 associates with flagellin but not PrgJ. Our results identify NAIPs as immune sensor proteins and provide biochemical evidence for a simple receptor-ligand model for activation of the NAIP-NLRC4 inflammasomes.


Asunto(s)
Antígenos Bacterianos/inmunología , Bacterias/inmunología , Inmunidad Innata/inmunología , Inflamasomas/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/inmunología , Caspasa 1/metabolismo , Células Cultivadas , Flagelina/inmunología , Células HEK293 , Humanos , Ligandos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína Inhibidora de la Apoptosis Neuronal/deficiencia , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Salmonella typhimurium/inmunología , Especificidad por Sustrato
9.
Nature ; 477(7366): 596-600, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21918512

RESUMEN

Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages, is a universal component of the flagellin-NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5-NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , Sistemas de Secreción Bacterianos/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/metabolismo , Flagelina/inmunología , Inflamasomas/inmunología , Animales , Caspasa 1/metabolismo , Línea Celular , Chromobacterium/genética , Chromobacterium/inmunología , Chromobacterium/fisiología , Humanos , Inmunidad Innata/inmunología , Inflamasomas/metabolismo , Legionella pneumophila/inmunología , Legionella pneumophila/fisiología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo
10.
Am J Respir Crit Care Med ; 189(12): 1461-8, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24707903

RESUMEN

Lower respiratory tract infections (LRTIs) are a persistent and pervasive public health problem worldwide. Pneumonia and other LRTIs will be among the leading causes of death in adults, and pneumonia is the single largest cause of death in children. LRTIs are also an important cause of acute lung injury and acute exacerbations of chronic obstructive pulmonary disease. Because innate immunity is the first line of defense against pathogens, understanding the role of innate immunity in the pulmonary system is of paramount importance. Pattern recognition molecules (PRMs) that recognize microbial-associated molecular patterns are an integral component of the innate immune system and are located in both cell membranes and cytosol. Toll-like receptors and nucleotide-binding oligomerization domain-like receptors (NLRs) are the major sensors at the forefront of pathogen recognition. Although Toll-like receptors have been extensively studied in host immunity, NLRs have diverse and important roles in immune and inflammatory responses, ranging from antimicrobial properties to adaptive immune responses. The lung contains NLR-expressing immune cells such as leukocytes and nonimmune cells such as epithelial cells that are in constant and close contact with invading microbes. This pulmonary perspective addresses our current understanding of the structure and function of NLR family members, highlighting advances and gaps in knowledge, with a specific focus on immune responses in the respiratory tract during bacterial infection. Further advances in exploring cellular and molecular responses to bacterial pathogens are critical to develop improved strategies to treat and prevent devastating infectious diseases of the lung.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Infecciones Bacterianas/inmunología , Receptores Citoplasmáticos y Nucleares/inmunología , Infecciones del Sistema Respiratorio/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas de Unión al Calcio/inmunología , Proteínas Portadoras/inmunología , Humanos , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Adaptadora de Señalización NOD2/inmunología
11.
Bioessays ; 34(7): 589-98, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22513803

RESUMEN

The innate immune system of mammals encodes several families of immune detector proteins that monitor the cytosol for signs of pathogen invasion. One important but poorly understood family of cytosolic immunosurveillance proteins is the NLR (nucleotide-binding domain, leucine-rich repeat containing) proteins. Recent work has demonstrated that one subfamily of NLRs, the NAIPs (NLR family, apoptosis inhibitory proteins), are activated by specific interaction with bacterial ligands, such as flagellin. NAIP activation leads to assembly of a large multiprotein complex called the inflammasome, which initiates innate immune responses by activation of the Caspase-1 protease. NAIPs therefore appear to detect pathogen molecules via a simple and direct receptor-ligand mechanism. Interestingly, other NLR family members appear to detect pathogens indirectly, perhaps by responding to host cell "stress" caused by the pathogen. Thus, the NLR family may have evolved surprisingly diverse mechanisms for detecting pathogens.


Asunto(s)
Proteínas Bacterianas/inmunología , Citosol/microbiología , Inmunidad Innata , Inflamasomas/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Bacterias/inmunología , Bacterias/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/metabolismo , Citosol/inmunología , Citosol/metabolismo , Flagelina/inmunología , Flagelina/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inflamasomas/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
Nat Rev Immunol ; 24(7): 518-535, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38374299

RESUMEN

Inflammasomes are supramolecular complexes that form in the cytosol in response to pathogen-associated and damage-associated stimuli, as well as other danger signals that perturb cellular homoeostasis, resulting in host defence responses in the form of cytokine release and programmed cell death (pyroptosis). Inflammasome activity is closely associated with numerous human disorders, including rare genetic syndromes of autoinflammation, cardiovascular diseases, neurodegeneration and cancer. In recent years, a range of inflammasome components and their functions have been discovered, contributing to our knowledge of the overall machinery. Here, we review the latest advances in inflammasome biology from the perspective of structural and mechanistic studies. We focus on the most well-studied components of the canonical inflammasome - NAIP-NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 - as well as caspase-4, caspase-5 and caspase-11 of the noncanonical inflammasome, and the inflammasome effectors GSDMD and NINJ1. These structural studies reveal important insights into how inflammasomes are assembled and regulated, and how they elicit the release of IL-1 family cytokines and induce membrane rupture in pyroptosis.


Asunto(s)
Inflamasomas , Piroptosis , Inflamasomas/inmunología , Inflamasomas/metabolismo , Humanos , Piroptosis/inmunología , Animales , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Adaptadoras de Señalización CARD/inmunología , Proteínas Adaptadoras de Señalización CARD/genética , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/genética , Proteínas de Unión a Fosfato/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Caspasas/metabolismo , Caspasas/inmunología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/inmunología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas NLR/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/inmunología , Gasderminas
14.
Infect Immun ; 79(4): 1606-14, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21282416

RESUMEN

Inflammasomes are cytosolic multiprotein complexes that assemble in response to infectious or noxious stimuli and activate the CASPASE-1 protease. The inflammasome containing the nucleotide binding domain-leucine-rich repeat (NBD-LRR) protein NLRC4 (interleukin-converting enzyme protease-activating factor [IPAF]) responds to the cytosolic presence of bacterial proteins such as flagellin or the inner rod component of bacterial type III secretion systems (e.g., Salmonella PrgJ). In some instances, such as infection with Legionella pneumophila, the activation of the NLRC4 inflammasome requires the presence of a second NBD-LRR protein, NAIP5. NAIP5 also is required for NLRC4 activation by the minimal C-terminal flagellin peptide, which is sufficient to activate NLRC4. However, NLRC4 activation is not always dependent upon NAIP5. In this report, we define the molecular requirements for NAIP5 in the activation of the NLRC4 inflammasome. We demonstrate that the N terminus of flagellin can relieve the requirement for NAIP5 during the activation of the NLRC4 inflammasome. We also demonstrate that NLRC4 responds to the Salmonella protein PrgJ independently of NAIP5. Our results indicate that NAIP5 regulates the apparent specificity of the NLRC4 inflammasome for distinct bacterial ligands.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/inmunología , Flagelina/inmunología , Inmunidad Innata/inmunología , Inflamasomas/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Citotoxicidad Inmunológica/inmunología , Citometría de Flujo , Legionella pneumophila/inmunología , Legionelosis/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Péptidos/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmonelosis Animal/inmunología , Salmonella typhimurium/inmunología
15.
PLoS Pathog ; 5(4): e1000361, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19343209

RESUMEN

Legionella pneumophila (L. pneumophila), the causative agent of a severe form of pneumonia called Legionnaires' disease, replicates in human monocytes and macrophages. Most inbred mouse strains are restrictive to L. pneumophila infection except for the A/J, Nlrc4(-/-) (Ipaf(-/-)), and caspase-1(-/-) derived macrophages. Particularly, caspase-1 activation is detected during L. pneumophila infection of murine macrophages while absent in human cells. Recent in vitro experiments demonstrate that caspase-7 is cleaved by caspase-1. However, the biological role for caspase-7 activation downstream of caspase-1 is not known. Furthermore, whether this reaction is pertinent to the apoptosis or to the inflammation pathway or whether it mediates a yet unidentified effect is unclear. Using the intracellular pathogen L. pneumophila, we show that, upon infection of murine macrophages, caspase-7 was activated downstream of the Nlrc4 inflammasome and required caspase-1 activation. Such activation of caspase-7 was mediated by flagellin and required a functional Naip5. Remarkably, mice lacking caspase-7 and its macrophages allowed substantial L. pneumophila replication. Permissiveness of caspase-7(-/-) macrophages to the intracellular pathogen was due to defective delivery of the organism to the lysosome and to delayed cell death during early stages of infection. These results reveal a new mechanism for caspase-7 activation downstream of the Nlrc4 inflammasome and present a novel biological role for caspase-7 in host defense against an intracellular bacterium.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas de Unión al Calcio/inmunología , Caspasa 7/metabolismo , Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/inmunología , Enfermedad de los Legionarios/inmunología , Macrófagos/inmunología , Transducción de Señal/inmunología , Animales , Apoptosis , Caspasa 1/metabolismo , Células Cultivadas , Activación Enzimática , Flagelina/metabolismo , Humanos , Interleucina-18/inmunología , Interleucina-1beta/inmunología , Enfermedad de los Legionarios/microbiología , Lisosomas/inmunología , Macrófagos/enzimología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología
16.
Mediators Inflamm ; 2010: 708713, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20671924

RESUMEN

A/J mice were found to have amino acid differences in Naip5, one of the NOD-like receptors (NLRs) involved in the cytosolic recognition of pathogen-associated molecular patterns and one of the adaptor proteins for caspase-1 activation. This defect was associated with a susceptibility to Legionella infection, suggesting an important role for Naip5 in the immune response also to other intracellular pathogens, such as Mycobacterium leprae. In this study, the immune responses of macrophages from A/J mice against M. leprae were compared to those of macrophages from C57BL/6 mice. Infection with M. leprae induced high levels of TNF-alpha production and NF-kappaB activation in A/J and C57BL/6 macrophages. Caspase-1 activation and IL-1beta secretion were also induced in both macrophages. However, macrophages from A/J mice exhibited reduced caspase-1 activation and IL-1beta secretion compared to C57BL/6 macrophages. These results suggest that NLR family proteins may have a role in the innate immune response to M. leprae.


Asunto(s)
Caspasa 1/metabolismo , Sistema Inmunológico/fisiología , Interleucina-1beta/metabolismo , Lepra/inmunología , Macrófagos/inmunología , Mycobacterium leprae/inmunología , Animales , Ratones , Ratones Endogámicos A , Ratones Endogámicos C57BL , Mycobacterium leprae/patogenicidad , Proteína Inhibidora de la Apoptosis Neuronal/genética , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Especificidad de la Especie
17.
Infect Immun ; 77(1): 196-204, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18981241

RESUMEN

Mouse-derived macrophages have the unique ability to restrict or permit Legionella pneumophila intracellular growth. The common inbred mouse strain C57BL/6J (B6) restricts L. pneumophila growth, whereas macrophages derived from A/J mice allow >10(3)-fold bacterial growth within three days. This phenotypic difference was mapped to the mouse Naip5 allele. The B6 restrictive Naip5 allele is dominant, and six amino acid changes in its product were predicted to control permissiveness. By using the wild-derived mouse strain MOLF/Ei, we found that MOLF/Ei-derived macrophages also restrict L. pneumophila growth, yet the Naip5 protein is identical to the A/J Naip5 at the six-amino-acid signature. The MOLF/Ei restrictive trait, unlike that of B6-derived macrophages, was not dominant over the A/J trait. In spite of this phenotypic difference, the L. pneumophila growth restriction in MOLF/Ei macrophages was mapped to the Naip5 region as well, indicating that the originally predicted change in the A/J Naip5 allele may not be critical for restriction. In the product of the A/J Naip5 permissive allele, there are four unique amino acid changes that map to a NACHT-like domain. Similar misregulating mutations have been identified in the NACHT domains of Nod-like receptor (NLR) proteins. Therefore, one of these mutations may be critical for restriction of L. pneumophila intracellular growth, and this parallels results found with human NLR variants with defects in the innate immune response.


Asunto(s)
Legionella pneumophila/crecimiento & desarrollo , Legionella pneumophila/inmunología , Macrófagos/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Alelos , Secuencia de Aminoácidos , Animales , Células Cultivadas , Mapeo Cromosómico , Recuento de Colonia Microbiana , Citosol/microbiología , Genes Dominantes , Ratones , Ratones Endogámicos A , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación Missense , Polimorfismo Genético , Alineación de Secuencia
18.
J Histochem Cytochem ; 55(9): 911-23, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17510375

RESUMEN

The neuronal apoptosis inhibitory protein (NAIP) gene, also known as the baculovirus inhibitor of apoptosis repeat-containing protein 1 (BIRC1) gene, is a member of the inhibitors of apoptosis (IAP) family and was first characterized as a candidate gene for spinal muscular atrophy (SMA). The expression of NAIP has been thoroughly studied in the central nervous system and overlaps the pattern of neurodegeneration in SMA. Recent studies have pointed to a role for NAIP in non-neuronal cells. We report here the production of a specific anti-NAIP antibody and the profile of NAIP expression in human adult tissues by Western blot and immunohistochemical detection methods. NAIP was detected in a number of tissues by Western blot analysis, but immunohistochemistry revealed that NAIP's presence in certain tissues, such as liver, lung, and spleen, is most likely due to macrophage infiltration. In the small intestine, the expression of NAIP coincides with the expression of p21(WAF1). This observation, coupled with findings from other groups, suggests a role for NAIP in increasing the survival of cells undergoing terminal differentiation as well as the possibility that the protein serves as an intestinal pathogen recognition protein. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Asunto(s)
Proteína Inhibidora de la Apoptosis Neuronal/metabolismo , Adulto , Animales , Anticuerpos , Diferenciación Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Humanos , Inmunohistoquímica , Intestino Delgado/metabolismo , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Ratones , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Especificidad de Órganos , Proteínas Recombinantes/inmunología
19.
Novartis Found Symp ; 281: 156-65; discussion 165-8, 208-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17534072

RESUMEN

The onset, progression and outcome of infections are determined by performance of host defence mechanisms and expression of pathogen virulence determinants. Genetic analysis in mouse can identify host genes that play critical roles at the interface of host-pathogen interactions. Genetic effects detected as variations in susceptibility in inbred, recombinant and mutant strains of mice can be mapped as simple traits or quantitative trait loci followed by identification by positional cloning. We have used mouse models of infection with bacterial (Mycobacterium, Legionella) and parasitic pathogens (Plasmodium) to discover genes and proteins that are important for macrophage function against such infectious agents. These studies have identified Nrampl-mediated exclusion of divalent metals from the phagosomal space as a key regulator of intracellular replication of Mycobacteria. Also, intracellular sensing of Legionella by functional Birc1e/Naip5 protein is essential to prevent replication of this bacterium in macrophages. Finally, we have identified two new loci that affect blood-stage replication of Plasmodium chabaudi AS in mice, and have cloned the corresponding genes.


Asunto(s)
Infecciones Bacterianas/genética , Predisposición Genética a la Enfermedad/genética , Macrófagos/inmunología , Enfermedades Parasitarias/genética , Animales , Infecciones Bacterianas/inmunología , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/inmunología , Clonación Molecular , Legionella/inmunología , Ratones , Mycobacteriaceae/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/genética , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Enfermedades Parasitarias/inmunología , Plasmodium/genética
20.
Science ; 358(6365): 888-893, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29146805

RESUMEN

Robust innate immune detection of rapidly evolving pathogens is critical for host defense. Nucleotide-binding domain leucine-rich repeat (NLR) proteins function as cytosolic innate immune sensors in plants and animals. However, the structural basis for ligand-induced NLR activation has so far remained unknown. NAIP5 (NLR family, apoptosis inhibitory protein 5) binds the bacterial protein flagellin and assembles with NLRC4 to form a multiprotein complex called an inflammasome. Here we report the cryo-electron microscopy structure of the assembled ~1.4-megadalton flagellin-NAIP5-NLRC4 inflammasome, revealing how a ligand activates an NLR. Six distinct NAIP5 domains contact multiple conserved regions of flagellin, prying NAIP5 into an open and active conformation. We show that innate immune recognition of multiple ligand surfaces is a generalizable strategy that limits pathogen evolution and immune escape.


Asunto(s)
Flagelina/inmunología , Interacciones Huésped-Patógeno/inmunología , Inflamasomas/inmunología , Proteína Inhibidora de la Apoptosis Neuronal/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/inmunología , Proteínas Reguladoras de la Apoptosis/ultraestructura , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/ultraestructura , Microscopía por Crioelectrón , Flagelina/química , Flagelina/ultraestructura , Células HEK293 , Humanos , Inmunidad Innata , Inflamasomas/química , Inflamasomas/ultraestructura , Legionella pneumophila , Ratones , Mutación , Proteína Inhibidora de la Apoptosis Neuronal/química , Proteína Inhibidora de la Apoptosis Neuronal/genética , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda