Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
Nature ; 586(7830): 606-611, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32814902

RESUMEN

Islets derived from stem cells hold promise as a therapy for insulin-dependent diabetes, but there remain challenges towards achieving this goal1-6. Here we generate human islet-like organoids (HILOs) from induced pluripotent stem cells and show that non-canonical WNT4 signalling drives the metabolic maturation necessary for robust ex vivo glucose-stimulated insulin secretion. These functionally mature HILOs contain endocrine-like cell types that, upon transplantation, rapidly re-establish glucose homeostasis in diabetic NOD/SCID mice. Overexpression of the immune checkpoint protein programmed death-ligand 1 (PD-L1) protected HILO xenografts such that they were able to restore glucose homeostasis in immune-competent diabetic mice for 50 days. Furthermore, ex vivo stimulation with interferon-γ induced endogenous PD-L1 expression and restricted T cell activation and graft rejection. The generation of glucose-responsive islet-like organoids that are able to avoid immune detection provides a promising alternative to cadaveric and device-dependent therapies in the treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Evasión Inmune , Islotes Pancreáticos/citología , Islotes Pancreáticos/inmunología , Organoides/citología , Organoides/inmunología , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular , Epigénesis Genética , Femenino , Glucosa/metabolismo , Rechazo de Injerto , Xenoinjertos , Homeostasis , Humanos , Tolerancia Inmunológica , Secreción de Insulina , Trasplante de Islotes Pancreáticos , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Organoides/trasplante , Linfocitos T/citología , Linfocitos T/inmunología , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt4/metabolismo , Proteína Wnt4/farmacología
2.
Proc Natl Acad Sci U S A ; 120(20): e2221499120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155872

RESUMEN

In mammals, male and female gonads initially develop from bipotential progenitor cells, which can differentiate into either testicular or ovarian cells. The decision to adopt a testicular or ovarian fate relies on robust genetic forces, i.e., activation of the testis-determining gene Sry, as well as a delicate balance of expression levels for pro-testis and pro-ovary factors. Recently, epigenetic regulation has been found to be a key element in activation of Sry. Nevertheless, the mechanism by which epigenetic regulation controls the expression balance of pro-testis and pro-ovary factors remains unclear. Chromodomain Y-like protein (CDYL) is a reader protein for repressive histone H3 methylation marks. We found that a subpopulation of Cdyl-deficient mice exhibited XY sex reversal. Gene expression analysis revealed that the testis-promoting gene Sox9 was downregulated in XY Cdyl-deficient gonads during the sex determination period without affecting Sry expression. Instead, we found that the ovary-promoting gene Wnt4 was derepressed in XY Cdyl-deficient gonads prior to and during the sex-determination period. Wnt4 heterozygous deficiency restored SOX9 expression in Cdyl-deficient XY gonads, indicating that derepressed Wnt4 is a cause of the repression of Sox9. We found that CDYL directly bound to the Wnt4 promoter and maintained its H3K27me3 levels during the sex-determination period. These findings indicate that CDYL reinforces male gonadal sex determination by repressing the ovary-promoting pathway in mice.


Asunto(s)
Epigénesis Genética , Procesos de Determinación del Sexo , Animales , Femenino , Masculino , Ratones , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Mamíferos/genética , Ovario/metabolismo , Procesos de Determinación del Sexo/genética , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
3.
J Cell Sci ; 136(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37505110

RESUMEN

Multiciliated cells contain hundreds of cilia whose directional movement powers the mucociliary clearance of the airways, a vital host defense mechanism. Multiciliated cell specification requires canonical Wnt signaling, which then must be turned off. Next, ciliogenesis and polarized ciliary orientation are regulated by noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling. The mechanistic relationship between the Wnt pathways is unknown. We show that DKK3, a secreted canonical Wnt regulator and WNT4, a noncanonical Wnt ligand act together to facilitate a canonical to noncanonical Wnt signaling switch during multiciliated cell formation. In primary human airway epithelial cells, DKK3 and WNT4 CRISPR knockout blocks, whereas ectopic expression promotes, multiciliated cell formation by inhibiting canonical Wnt signaling. Wnt4 and Dkk3 single-knockout mice also display defective ciliated cells. DKK3 and WNT4 are co-secreted from basal stem cells and act directly on multiciliated cells via KREMEN1 and FZD6, respectively. We provide a novel mechanism that links specification to cilium biogenesis and polarization for proper multiciliated cell formation.


Asunto(s)
Células Epiteliales , Vía de Señalización Wnt , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Ratones Noqueados , Proteína Wnt4/metabolismo
4.
Development ; 149(23)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448532

RESUMEN

Undescended testis (UDT) affects 6% of male births. Despite surgical correction, some men with unilateral UDT may experience infertility with the contralateral descended testis (CDT) showing no A-dark spermatogonia. To improve our understanding of the etiology of infertility in UDT, we generated a novel murine model of left unilateral UDT. Gubernaculum-specific Wnt4 knockout (KO) mice (Wnt4-cKO) were generated using retinoic acid receptor ß2-cre mice and were found to have a smaller left-unilateral UDT. Wnt4-cKO mice with abdominal UDT had an increase in serum follicle-stimulating hormone and luteinizing hormone and an absence of germ cells in the undescended testicle. Wnt4-cKO mice with inguinal UDT had normal hormonal profiles, and 50% of these mice had no sperm in the left epididymis. Wnt4-cKO mice had fertility defects and produced 52% fewer litters and 78% fewer pups than control mice. Wnt4-cKO testes demonstrated increased expression of estrogen receptor α and SOX9, upregulation of female gonadal genes, and a decrease in male gonadal genes in both CDT and UDT. Several WNT4 variants were identified in boys with UDT. The presence of UDT and fertility defects in Wnt4-cKO mice highlights the crucial role of WNT4 in testicular development.


Asunto(s)
Criptorquidismo , Infertilidad , Femenino , Masculino , Humanos , Ratones , Animales , Gubernáculo , Criptorquidismo/genética , Fertilidad/genética , Espermatogonias , Ratones Noqueados , Proteína Wnt4/genética
5.
Mol Ther ; 32(5): 1479-1496, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429926

RESUMEN

Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-ß1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-ß1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-ß1, was suppressed directly by TGF-ß1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-ß1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/ß-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.


Asunto(s)
Regeneración Ósea , Inflamación , Células Madre Mesenquimatosas , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Osteogénesis , Proteína Wnt4 , Células Madre Mesenquimatosas/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Osteogénesis/genética , Regeneración Ósea/genética , Animales , Ratones , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Humanos , Inflamación/genética , Inflamación/metabolismo , Regulación de la Expresión Génica , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/genética , Vía de Señalización Wnt , Masculino , Transcripción Genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Modelos Animales de Enfermedad
6.
Genesis ; 62(1): e23562, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37846177

RESUMEN

BACKGROUND: Over the past few years, it has been established that wnt genes are involved in the regenerative processes of holothurians. The wnt4 gene was identified as one of the most active genes in Eupentacta fraudatrix regeneration using differential gene expression analysis and qPCR of individual genes. Also, the wntA gene was found in holothurians, which is present only in invertebrates and can perform unique functions. RESULTS: In this regard, both these genes and proteins were studied in this work. During regeneration, the Wnt4 protein is found in the cells of the coelomic and ambulacral epithelium, retractor muscles, and radial nerves. Single cells with this protein are also found in the connective tissue of the developing aquapharyngeal bulb and in the hypoderm of the body wall. Cells with WntA are found exclusively in the hypoderm of the body wall. CONCLUSION: We assume that both genes are involved in regeneration, but Wnt4 coordinates the formation of the epithelial tissue structure, while WntA maintains the state of the intercellular substance of the body wall.


Asunto(s)
Pepinos de Mar , Animales , Proteína Wnt4/genética , Proteína Wnt4/metabolismo , Pepinos de Mar/metabolismo , Epitelio
7.
Development ; 148(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34128985

RESUMEN

Epithelial attachment to the basement membrane (BM) is essential for mammary gland development, yet the exact roles of specific BM components remain unclear. Here, we show that Laminin α5 (Lama5) expression specifically in the luminal epithelial cells is necessary for normal mammary gland growth during puberty, and for alveologenesis during pregnancy. Lama5 loss in the keratin 8-expressing cells results in reduced frequency and differentiation of hormone receptor expressing (HR+) luminal cells. Consequently, Wnt4-mediated crosstalk between HR+ luminal cells and basal epithelial cells is compromised during gland remodeling, and results in defective epithelial growth. The effects of Lama5 deletion on gland growth and branching can be rescued by Wnt4 supplementation in the in vitro model of branching morphogenesis. Our results reveal a surprising role for BM-protein expression in the luminal mammary epithelial cells, and highlight the function of Lama5 in mammary gland remodeling and luminal differentiation.


Asunto(s)
Diferenciación Celular/genética , Epitelio/metabolismo , Laminina/genética , Glándulas Mamarias Animales/metabolismo , Transducción de Señal , Proteína Wnt4/genética , Animales , Biomarcadores , Células Epiteliales , Femenino , Técnica del Anticuerpo Fluorescente , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Laminina/metabolismo , Glándulas Mamarias Animales/embriología , Ratones , Modelos Biológicos , Morfogénesis/genética , Organogénesis/genética , Proteína Wnt4/metabolismo
8.
Development ; 148(1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441379

RESUMEN

Cryptorchidism is the most common urologic birth defect in men and is a predisposing factor of male infertility and testicular cancer, yet the etiology remains largely unknown. E2F1 microdeletions and microduplications contribute to cryptorchidism, infertility and testicular tumors. Although E2f1 deletion or overexpression in mice causes spermatogenic failure, the mechanism by which E2f1 influences testicular function is unknown. This investigation revealed that E2f1-null mice develop cryptorchidism with severe gubernacular defects and progressive loss of germ cells resulting in infertility and, in rare cases, testicular tumors. It was hypothesized that germ cell depletion resulted from an increase in WNT4 levels. To test this hypothesis, the phenotype of a double-null mouse model lacking both Wnt4 and E2f1 in germ cells was analyzed. Double-null mice are fertile. This finding indicates that germ cell maintenance is dependent on E2f1 repression of Wnt4, supporting a role for Wnt4 in germ cell survival. In the future, modulation of WNT4 expression in men with cryptorchidism and spermatogenic failure due to E2F1 copy number variations may provide a novel approach to improve their spermatogenesis and perhaps their fertility potential after orchidopexy.


Asunto(s)
Factor de Transcripción E2F1/metabolismo , Espermatogénesis , Testículo/metabolismo , Proteína Wnt4/metabolismo , Envejecimiento/patología , Animales , Animales Recién Nacidos , Barrera Hematotesticular/patología , Ciclo Celular/genética , Criptorquidismo/genética , Criptorquidismo/patología , Factor de Transcripción E2F1/deficiencia , Fertilidad , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Transducción de Señal , Espermatozoides/metabolismo , Testículo/patología
9.
J Biol Chem ; 298(8): 102193, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35764169

RESUMEN

Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow-derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C-mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow-derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.


Asunto(s)
Aterosclerosis , Fosforilación Oxidativa , Aterosclerosis/metabolismo , Ácidos Grasos/metabolismo , Humanos , Ligandos , Lípidos , Macrófagos/metabolismo , Mitocondrias/metabolismo , Proteína Wnt4/metabolismo
10.
Cytokine ; 172: 156400, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839333

RESUMEN

BACKGROUND: WNT4 gene polymorphism are common in endometriosis and may functionally link estrogen and estrogen receptor signaling. Previous study confirmed estrogen and estrogen receptor signaling recruit macrophage to promote the pathogenesis of endometriosis. To investigate the effect of WNT4 in endometriosis involved in macrophage polarization and whether WNT4 could reduce the apoptosis of granulosa cells. METHODS: An observational study consisting of 8 cases of women with endometriosis (diagnosed by surgery and histology) and 22 mice of endometriosis animal model was conducted. Granulosa cells were isolated from 16 patients with endometriosis and co-cultured with macrophage under WNT4 treatment using TUNEL assay, quantitative reverse transcription PCR, flow cytometry and ELISA analysis. 22 mice of endometriosis animal model confirmed the WNT4 treatment effects using histology and immunohistochemistry, Western blot and flow cytometry. RESULTS: We observed that the apoptotic proportion of granulosa cells was significantly decreased and M2 macrophage was significantly increased after WNT4 treatment during the granulosa cell and macrophage co-culture system. To reveal the underlying mechanism for this, we conducted a series of experiments and found that high expression of granulosa cell M-CSF led to the M2 polarization of macrophages. The animal model also suggested that the anti-apoptotic effect of WNT4 on granulosa cells were conducted by the M2 polarized macrophage. CONCLUSIONS: WNT4 could reduce granulosa cell apoptosis and improve ovarian reserve by promoting macrophage polarization in endometriosis. M-CSF secreted by granulosa cell after WNT4 treatment was the main mediator of macrophage polarization.


Asunto(s)
Endometriosis , Factor Estimulante de Colonias de Macrófagos , Humanos , Femenino , Ratones , Animales , Factor Estimulante de Colonias de Macrófagos/metabolismo , Endometriosis/metabolismo , Receptores de Estrógenos/metabolismo , Macrófagos/metabolismo , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Apoptosis , Estrógenos/metabolismo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
11.
PLoS Genet ; 16(6): e1008805, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32497039

RESUMEN

Osteoporosis is a genetic disease characterized by progressive reductions in bone mineral density (BMD) leading to an increased risk of fracture. Over the last decade, genome-wide association studies (GWASs) have identified over 1000 associations for BMD. However, as a phenotype BMD is challenging as bone is a multicellular tissue affected by both local and systemic physiology. Here, we focused on a single component of BMD, osteoblast-mediated bone formation in mice, and identified associations influencing osteoblast activity on mouse Chromosomes (Chrs) 1, 4, and 17. The locus on Chr. 4 was in an intergenic region between Wnt4 and Zbtb40, homologous to a locus for BMD in humans. We tested both Wnt4 and Zbtb40 for a role in osteoblast activity and BMD. Knockdown of Zbtb40, but not Wnt4, in osteoblasts drastically reduced mineralization. Additionally, loss-of-function mouse models for both genes exhibited reduced BMD. Our results highlight that investigating the genetic basis of in vitro osteoblast mineralization can be used to identify genes impacting bone formation and BMD.


Asunto(s)
Densidad Ósea/genética , Proteínas de Unión al ADN/fisiología , Osteoblastos/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteogénesis/genética , Proteína Wnt4/genética
12.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139440

RESUMEN

MicroRNAs and the WNT signaling cascade regulate the pathogenetic mechanisms of atherosclerotic coronary artery disease (CAD) development. OBJECTIVE: To evaluate the expression of microRNAs (miR-21a, miR-145, and miR-221) and the role of the WNT signaling cascade (WNT1, WNT3a, WNT4, and WNT5a) in obstructive CAD and ischemia with no obstructive coronary arteries (INOCA). METHOD: The cross-sectional observational study comprised 94 subjects. The expression of miR-21a, miR-145, miR-221 (RT-PCR) and the protein levels of WNT1, WNT3a, WNT4, WNT5a, LRP6, and SIRT1 (ELISA) were estimated in the plasma of 20 patients with INOCA (66.5 [62.8; 71.2] years; 25% men), 44 patients with obstructive CAD (64.0 [56.5; 71,0] years; 63.6% men), and 30 healthy volunteers without risk factors for cardiovascular diseases (CVD). RESULTS: Higher levels of WNT1 (0.189 [0.184; 0.193] ng/mL vs. 0.15 [0.15-0.16] ng/mL, p < 0.001) and WNT3a (0.227 [0.181; 0.252] vs. 0.115 [0.07; 0.16] p < 0.001) were found in plasma samples from patients with obstructive CAD, whereas the INOCA group was characterized by higher concentrations of WNT4 (0.345 [0.278; 0.492] ng/mL vs. 0.203 [0.112; 0.378] ng/mL, p = 0.025) and WNT5a (0.17 [0.16; 0.17] ng/mL vs. 0.01 [0.007; 0.018] ng/mL, p < 0.001). MiR-221 expression level was higher in all CAD groups compared to the control group (p < 0.001), whereas miR-21a was more highly expressed in the control group than in the obstructive (p = 0.012) and INOCA (p = 0.003) groups. Correlation analysis revealed associations of miR-21a expression with WNT1 (r = -0.32; p = 0.028) and SIRT1 (r = 0.399; p = 0.005) protein levels in all CAD groups. A positive correlation between miR-145 expression and the WNT4 protein level was observed in patients with obstructive CAD (r = 0.436; p = 0.016). Based on multivariate regression analysis, a mathematical model was constructed that predicts the type of coronary lesion. WNT3a and LRP6 were the independent predictors of INOCA (p < 0.001 and p = 0.002, respectively). CONCLUSIONS: Activation of the canonical cascade of WNT-ß-catenin prevailed in patients with obstructive CAD, whereas in the INOCA and control groups, the activity of the non-canonical pathway was higher. It can be assumed that miR-21a has a negative effect on the formation of atherosclerotic CAD. Alternatively, miR-145 could be involved in the development of coronary artery obstruction, presumably through the regulation of the WNT4 protein. A mathematical model with WNT3a and LRP6 as predictors allows for the prediction of the type of coronary artery lesion.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , MicroARNs , Vía de Señalización Wnt , Femenino , Humanos , Masculino , Enfermedad de la Arteria Coronaria/metabolismo , Estudios Transversales , MicroARNs/genética , MicroARNs/metabolismo , Sirtuina 1/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt4/genética
13.
Stem Cells ; 39(9): 1207-1220, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33882146

RESUMEN

Although intracellular Wnt signaling pathways need to be tightly regulated to promote hematopoietic stem cell self-renewal, the source and identity of important Wnt ligands in the bone marrow is still largely unknown. The noncanonical ligand Wnt4 is expressed in the bone marrow as well as in the stroma, and its overexpression in fetal liver cells facilitates thymic recovery; however, its impact on adult hematopoietic stem cell function remains unclear. Here, we report that the deletion of Wnt4 from hematopoietic cells in mice (Wnt4Δ/Δ ) resulted in decreased lymphopoiesis at steady state. This was likely at least in part due to the increased proinflammatory environment present in the bone marrow of Wnt4Δ/Δ mice. Wnt4Δ/Δ hematopoietic stem cells displayed reduced reconstitution capacity in serial transplants, thus demonstrating defective self-renewal, and they expanded poorly in response to lipopolysaccharide stimulation. This appeared to be the result of the absence of Wnt4 in stem/progenitor cells, as myeloid-restricted Wnt4 deletion had no notable effect. Finally, we observed that Wnt4Δ/Δ stem/progenitor cells were more quiescent, presenting enhanced levels of stress-associated JNK phosphorylation and p16INK4a expression, likely contributing to the reduced expansion observed in transplants. In conclusion, our results identify a new, largely autocrine role for Wnt4 in hematopoietic stem cell self-renewal, suggesting that regulation of Wnt signaling in hematopoiesis may not need Wnt secretion and could be independent of morphogen gradients.


Asunto(s)
Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Animales , Diferenciación Celular , Autorrenovación de las Células , Células Madre Hematopoyéticas/metabolismo , Linfopoyesis , Ratones , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
14.
Reprod Biol Endocrinol ; 20(1): 51, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300692

RESUMEN

BACKGROUND: Demystifying the events around early pregnancy is challenging. A wide network of mediators and signaling cascades orchestrate the processes of implantation and trophoblast proliferation. Dysregulation of these pathways could be implicated in early pregnancy loss. There is accumulating evidence around the role of Wnt pathway in implantation and early pregnancy. The purpose of this study was to explore alterations in the expression of Wnt4, Wnt6 and ß-catenin in placental tissue obtained from human first trimester euploid miscarriages versus normally developing early pregnancies. METHODS: The study group consisted of first trimester miscarriages (early embryonic demises and incomplete miscarriages) and the control group of social terminations of pregnancy (TOPs). The placental mRNA expression of Wnt4, Wnt6 and ß-catenin was studied using reverse transcription PCR and real time PCR. Only euploid conceptions were included in the analysis. RESULTS: Wnt4 expression was significantly increased in placental tissue from first trimester miscarriages versus controls (p = 0.003). No significant difference was documented in the expression of Wnt6 (p = 0.286) and ß-catenin (p = 0.793). There was a 5.1fold increase in Wnt4 expression for early embryonic demises versus TOPs and a 7.6fold increase for incomplete miscarriages versus TOPs - no significant difference between the two subgroups of miscarriage (p = 0.533). CONCLUSIONS: This is, to our knowledge, the first study demonstrating significant alteration of Wnt4 expression in human placental tissue, from failed early pregnancies compared to normal controls. Undoubtedly, a more profound study is needed to confirm these preliminary findings and explore Wnt mediators as potential targets for strategies to predict and prevent miscarriage.


Asunto(s)
Aborto Espontáneo/genética , Placenta/metabolismo , Primer Trimestre del Embarazo/genética , Proteínas Wnt/genética , Proteína Wnt4/genética , beta Catenina/genética , Adulto , Proliferación Celular/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Proyectos Piloto , Embarazo , Trofoblastos/citología , Trofoblastos/metabolismo , Vía de Señalización Wnt/genética
15.
J Bone Miner Metab ; 40(1): 66-80, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34778905

RESUMEN

INTRODUCTION: Human umbilical cord blood-derived MSCs (hUC-MSCs) have the potential to differentiate into osteoblasts. This study investigated the function and potential mechanisms of a novel lncRNA LINC02381 in hUC-MSC osteogenic differentiation. MATERIALS AND METHODS: hUC-MSCs were maintained in osteogenic differentiation medium. RT-qPCR assay was performed to assess LINC02381 expression. Alizarin Red S (ARS) and alkaline phosphatase (ALP) staining were performed to evaluate osteogenic differentiation. The interaction between miR-21 and LINC0238/KLF12 was determined by luciferase reporter and RNA immunoprecipitation (RIP) assays. Chromatin immunoprecipitation (ChIP) assay was used to confirm the transcriptional regulation of KLF12 on Wnt4 promoter. The nuclear translocation of ß-catenin was evaluated using immunofluorescence. hUC-MSCs seeded on Bio-Oss Collagen scaffolds were transplanted into nude mice to assess in vivo osteogenesis. Bone formation was observed by H&E and Masson's trichrome staining. OSX and OPN levels were assessed by immunohistochemistry. RESULTS: LINC02381 was up-regulated in the clinical samples of osteoporotic patients. However, LINC02381 expression was reduced during osteogenic differentiation of hUC-MSCs. Enforced expression of LINC02381 suppressed the osteogenic differentiation of hUC-MSCs. Mechanistically, LINC02381 sponged miR-21 to enhance KLF12 expression, which led to the inactivation of Wnt/ß-catenin signaling pathway. Furthermore, miR-21 mimics or KLF12 silencing counteracted LINC02381-induced inhibition of osteogenic differentiation, whereas IWP-4 (an inhibitor of Wnt pathway) abolished this effect. CONCLUSION: In summary, LINC02381 repressed osteogenic differentiation of hUS-MSCs through sponging miR-21 to enhance KLF12-mediated inactivation of Wnt/ß-catenin pathway, indicating that LINC02381 might be a therapeutic target for osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteogénesis , ARN Largo no Codificante/genética , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Desnudos , MicroARNs/genética , Osteogénesis/genética , Vía de Señalización Wnt/genética , Proteína Wnt4
16.
J Periodontal Res ; 57(3): 461-469, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35137408

RESUMEN

BACKGROUND AND OBJECTIVE: Occlusal trauma is one of the most important local contributing factors of periodontitis. It has been reported that Wnt4, a noncanonical Wnt ligand, can inhibit osteoclast formation and inflammation and promote bone formation in vivo. However, the prospects of Wnt4 application in occlusal trauma and periodontitis have not yet been described. This study aimed to investigate the function and the corresponding mechanism of Wnt4 to regulate bone metabolism in occlusal trauma and periodontitis. MATERIAL AND METHODS: Osteogenic-induced MC3T3-E1 cells were treated with or without Porphyromonas gingivalis lipopolysaccharide (Pg. LPS) under cyclic uniaxial compressive stress. After treatment with mouse recombinant protein Wnt4 (rWnt4), the expression of osteogenic markers and activation of the IKK-NF-κB signaling pathway were evaluated in vitro. To investigate whether Wnt4 can promote osteogenesis via the ROCK signaling pathway, the expression of RhoA was evaluated in vitro. Finally, we evaluated the change in bone quantity and the activation of the IKK-NF-κB and ROCK signaling in mice with occlusal trauma and periodontitis to demonstrate the therapeutic efficacy of rWnt4 injection. RESULTS: Stimulation of traumatic force and Pg. LPS stimulation suppressed the expression of osteoblast markers, but their expression was rescued after rWnt4 treatment in vitro. In addition, the inhibition of the ROCK signaling pathway induced by force loading was reversed when rWnt4 was applied in vitro. Micro-CT, H&E, and TRAP staining of the mandibles showed increased bone loss in the occlusal trauma-aggravated periodontitis group, whereas it was rescued after rWnt4 injection. The expression levels of IκBα and p65 were upregulated in occlusal trauma and periodontitis-bearing mice, whereas the expression levels of Runx2 and RhoA were downregulated. After rWnt4 injection, remarkably upregulation of Runx2 and RhoA expression was observed in occlusal trauma and periodontitis- bearing mice. CONCLUSION: Wnt4 not only inhibits IKK-NF-κB signaling but also activates ROCK signaling to inhibit osteoclast formation and promote bone regeneration in occlusal trauma and periodontitis-bearing mice.


Asunto(s)
Oclusión Dental Traumática , Periodontitis , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Quinasa I-kappa B/metabolismo , Lipopolisacáridos , Ratones , FN-kappa B/metabolismo , Periodontitis/tratamiento farmacológico , Transducción de Señal , Proteína Wnt4 , Quinasas Asociadas a rho/metabolismo
17.
PLoS Genet ; 15(5): e1007895, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31116734

RESUMEN

XX and XY fetal gonads are initially bipotential, poised between the ovary and testis fate. Multiple lines of evidence suggest that commitment to testis fate requires the repression of genes associated with ovary fate. It was previously shown that loss of CBX2, the subunit of the Polycomb Repressive Complex 1 (PRC1) that binds H3K27me3 and mediates silencing, leads to ovary development in XY mice and humans. While it had been proposed that CBX2 is an activator of the testis-determining gene Sry, we investigated the alternative possibility that CBX2 has a direct role as a repressor of the antagonistic ovary-promoting pathway. To investigate this possibility, we developed a quantitative genome-wide profile of the repressive histone mark H3K27me3 and its active counterpart H3K4me3 in isolated XY and XX gonadal supporting cells before and after sex determination. We show that testis and ovary sex-determining (SD) genes are bivalent before sex determination, providing insight into how the bipotential state of the gonad is established at the epigenetic level. After sex determination, many SD genes of the alternate pathway remain bivalent, possibly contributing to the ability of these cells to transdifferentiate even in adults. The finding that many genes in the Wnt signaling pathway were targeted for H3K27me3-mediated repression in Sertoli cells led us to test whether deletion of Wnt4 could rescue testis development in Cbx2 mutants. We show that Sry expression and testis development were rescued in XY Cbx2-/-;Wnt4-/- mice. Furthermore, we show that CBX2 directly binds the downstream Wnt signaler Lef1, an ovary-promoting gene that remains bivalent in Sertoli cells. Our results suggest that stabilization of the testis fate requires CBX2-mediated repression of bivalent ovary-determining genes, which would otherwise block testis development.


Asunto(s)
Epigénesis Genética , Ovario/metabolismo , Complejo Represivo Polycomb 1/genética , Procesos de Determinación del Sexo , Testículo/metabolismo , Vía de Señalización Wnt/genética , Animales , Embrión de Mamíferos , Femenino , Factor 9 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Masculino , Ratones , Ovario/citología , Ovario/crecimiento & desarrollo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Complejo Represivo Polycomb 1/deficiencia , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Diferenciación Sexual , Testículo/citología , Testículo/crecimiento & desarrollo , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
18.
Genes Dev ; 28(20): 2205-18, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25260709

RESUMEN

Signals from the niche play pivotal roles in regulating adult stem cell self-renewal. Previous studies indicated that the steroid hormones can expand mammary stem cells (MaSCs) in vivo. However, the facilitating local niche factors that directly contribute to the MaSC expansion remain unclear. Here we identify R-spondin1 (Rspo1) as a novel hormonal mediator in the mammary gland. Pregnancy and hormonal treatment up-regulate Rspo1 expression. Rspo1 cooperates with another hormonal mediator, Wnt4, to promote MaSC self-renewal through Wnt/ß-catenin signaling. Knockdown of Rspo1 and Wnt4 simultaneously abolishes the stem cell reconstitution ability. In culture, hormonal treatment that stimulates the expression of both Rspo1 and Wnt4 can completely substitute for exogenous Wnt proteins, potently expand MaSCs, and maintain their full development potential in transplantation. Our data unveil the intriguing concept that hormones induce a collaborative local niche environment for stem cells.


Asunto(s)
Diferenciación Celular , Células Madre/citología , Trombospondinas/metabolismo , Animales , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Ratones Endogámicos BALB C , Transducción de Señal , Trombospondinas/genética , Regulación hacia Arriba , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
19.
Hum Genet ; 140(9): 1353-1365, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34268601

RESUMEN

Endometriosis, polycystic ovary syndrome (PCOS) and uterine fibroids have been proposed as endometrial cancer risk factors; however, disentangling their relationships with endometrial cancer is complicated due to shared risk factors and comorbidities. Using genome-wide association study (GWAS) data, we explored the relationships between these non-cancerous gynecological diseases and endometrial cancer risk by assessing genetic correlation, causal relationships and shared risk loci. We found significant genetic correlation between endometrial cancer and PCOS, and uterine fibroids. Adjustment for genetically predicted body mass index (a risk factor for PCOS, uterine fibroids and endometrial cancer) substantially attenuated the genetic correlation between endometrial cancer and PCOS but did not affect the correlation with uterine fibroids. Mendelian randomization analyses suggested a causal relationship between only uterine fibroids and endometrial cancer. Gene-based analyses revealed risk regions shared between endometrial cancer and endometriosis, and uterine fibroids. Multi-trait GWAS analysis of endometrial cancer and the genetically correlated gynecological diseases identified a novel genome-wide significant endometrial cancer risk locus at 1p36.12, which replicated in an independent endometrial cancer dataset. Interrogation of functional genomic data at 1p36.12 revealed biologically relevant genes, including WNT4 which is necessary for the development of the female reproductive system. In summary, our study provides genetic evidence for a causal relationship between uterine fibroids and endometrial cancer. It further provides evidence that the comorbidity of endometrial cancer, PCOS and uterine fibroids may partly be due to shared genetic architecture. Notably, this shared architecture has revealed a novel genome-wide risk locus for endometrial cancer.


Asunto(s)
Neoplasias Endometriales/genética , Sitios Genéticos , Leiomioma/genética , Proteínas de Neoplasias/genética , Proteína Wnt4/genética , Endometriosis/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Síndrome del Ovario Poliquístico/genética
20.
FASEB J ; 34(1): 82-94, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914702

RESUMEN

Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, yet there are no effective therapies currently due to the failure of reconstructing the interruption of the neuroanatomical circuit. While neural stem cell (NSC) transplantation has been considered a potential strategy to repair the neural circuit after SCI, the efficacy of this strategy remains unproven. The main reason is that most of the transplanted NSC differentiates into astrocyte rather than neuron in the microenvironment of SCI. Our results demonstrated that Wnt4 significantly promotes the differentiation of NSC into neuron by activating both ß-catenin and MAPK/JNK pathways and suppressing the activation of Notch signaling, which is acknowledged as prevention of NSC differentiation into neuron, through downregulating NICD expression, translocating and preventing the combination of NICD and RbpJ in nucleus. In addition, Wnt4 rescues the negative effect of Jagged, the ligand of Notch signaling, to promote neuronal differentiation. Moreover, in vivo study, transplantation of Wnt4-modified NSC efficaciously repairs the injured spinal cord and recovers the motor function of hind limbs after SCI. This study sheds new light into mechanisms that Wnt4-modified NSC transplantation is sufficient to repair the injured spinal cord and recover the motor dysfunction after SCI.


Asunto(s)
Células-Madre Neurales/trasplante , Traumatismos de la Médula Espinal/terapia , Trasplante de Células Madre , Proteína Wnt4/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Femenino , Regulación de la Expresión Génica , Lentivirus , Neuronas , Ratas , Ratas Sprague-Dawley , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factor de Transcripción HES-1/genética , Factor de Transcripción HES-1/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda