Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24.894
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Cell ; 182(3): 685-712.e19, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32645325

RESUMEN

The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Neumonía Viral/metabolismo , Proteómica/métodos , Células A549 , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , COVID-19 , Células CACO-2 , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Pandemias , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Fosforilación , Neumonía Viral/virología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Tirosina Quinasa del Receptor Axl
2.
Cell ; 182(4): 872-885.e19, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32783915

RESUMEN

Cell function and activity are regulated through integration of signaling, epigenetic, transcriptional, and metabolic pathways. Here, we introduce INs-seq, an integrated technology for massively parallel recording of single-cell RNA sequencing (scRNA-seq) and intracellular protein activity. We demonstrate the broad utility of INs-seq for discovering new immune subsets by profiling different intracellular signatures of immune signaling, transcription factor combinations, and metabolic activity. Comprehensive mapping of Arginase 1-expressing cells within tumor models, a metabolic immune signature of suppressive activity, discovers novel Arg1+ Trem2+ regulatory myeloid (Mreg) cells and identifies markers, metabolic activity, and pathways associated with these cells. Genetic ablation of Trem2 in mice inhibits accumulation of intra-tumoral Mreg cells, leading to a marked decrease in dysfunctional CD8+ T cells and reduced tumor growth. This study establishes INs-seq as a broadly applicable technology for elucidating integrated transcriptional and intra-cellular maps and identifies the molecular signature of myeloid suppressive cells in tumors.


Asunto(s)
Glicoproteínas de Membrana/metabolismo , Neoplasias/patología , ARN Citoplasmático Pequeño/química , Receptores Inmunológicos/metabolismo , Animales , Arginasa/genética , Arginasa/metabolismo , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/metabolismo , ARN Citoplasmático Pequeño/metabolismo , Receptores Inmunológicos/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Microambiente Tumoral , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
3.
Cell ; 175(4): 947-961.e17, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401435

RESUMEN

Interactions between the gut microbiota, diet, and the host potentially contribute to the development of metabolic diseases. Here, we identify imidazole propionate as a microbially produced histidine-derived metabolite that is present at higher concentrations in subjects with versus without type 2 diabetes. We show that imidazole propionate is produced from histidine in a gut simulator at higher concentrations when using fecal microbiota from subjects with versus without type 2 diabetes and that it impairs glucose tolerance when administered to mice. We further show that imidazole propionate impairs insulin signaling at the level of insulin receptor substrate through the activation of p38γ MAPK, which promotes p62 phosphorylation and, subsequently, activation of mechanistic target of rapamycin complex 1 (mTORC1). We also demonstrate increased activation of p62 and mTORC1 in liver from subjects with type 2 diabetes. Our findings indicate that the microbial metabolite imidazole propionate may contribute to the pathogenesis of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal , Imidazoles/metabolismo , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/microbiología , Células HEK293 , Histidina/metabolismo , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Sequestosoma-1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Nat Immunol ; 21(1): 54-64, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31819256

RESUMEN

Ptpn6 is a cytoplasmic phosphatase that functions to prevent autoimmune and interleukin-1 (IL-1) receptor-dependent, caspase-1-independent inflammatory disease. Conditional deletion of Ptpn6 in neutrophils (Ptpn6∆PMN) is sufficient to initiate IL-1 receptor-dependent cutaneous inflammatory disease, but the source of IL-1 and the mechanisms behind IL-1 release remain unclear. Here, we investigate the mechanisms controlling IL-1α/ß release from neutrophils by inhibiting caspase-8-dependent apoptosis and Ripk1-Ripk3-Mlkl-regulated necroptosis. Loss of Ripk1 accelerated disease onset, whereas combined deletion of caspase-8 and either Ripk3 or Mlkl strongly protected Ptpn6∆PMN mice. Ptpn6∆PMN neutrophils displayed increased p38 mitogen-activated protein kinase-dependent Ripk1-independent IL-1 and tumor necrosis factor production, and were prone to cell death. Together, these data emphasize dual functions for Ptpn6 in the negative regulation of p38 mitogen-activated protein kinase activation to control tumor necrosis factor and IL-1α/ß expression, and in maintaining Ripk1 function to prevent caspase-8- and Ripk3-Mlkl-dependent cell death and concomitant IL-1α/ß release.


Asunto(s)
Apoptosis/inmunología , Caspasa 8/inmunología , Neutrófilos/inmunología , Proteínas Quinasas/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Animales , Caspasa 8/genética , Células Cultivadas , Eliminación de Gen , Inflamación/inmunología , Interleucina-1/inmunología , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Receptores Tipo I de Interleucina-1/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Nat Immunol ; 21(6): 615-625, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32251403

RESUMEN

Increasing age alters innate immune-mediated responses; however, the mechanisms underpinning these changes in humans are not fully understood. Using a human dermal model of acute inflammation, we found that, although inflammatory onset is similar between young and elderly individuals, the resolution phase was substantially impaired in elderly individuals. This arose from a reduction in T cell immunoglobulin mucin receptor-4 (TIM-4), a phosphatidylserine receptor expressed on macrophages that enables the engulfment of apoptotic bodies, so-called efferocytosis. Reduced TIM-4 in elderly individuals was caused by an elevation in macrophage p38 mitogen-activated protein kinase (MAPK) activity. Administering an orally active p38 inhibitor to elderly individuals rescued TIM-4 expression, cleared apoptotic bodies and restored a macrophage resolution phenotype. Thus, inhibiting p38 in elderly individuals rejuvenated their resolution response to be more similar to that of younger people. This is the first resolution defect identified in humans that has been successfully reversed, thereby highlighting the tractability of targeting pro-resolution biology to treat diseases driven by chronic inflammation.


Asunto(s)
Inflamación/etiología , Inflamación/metabolismo , Fagocitosis/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Factores de Edad , Anciano , Animales , Apoptosis , Vesícula/inmunología , Vesícula/metabolismo , Vesícula/patología , Cantaridina , Expresión Génica , Humanos , Inmunidad Innata , Inflamación/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Receptores de Superficie Celular/metabolismo , Transducción de Señal
6.
Mol Cell ; 84(1): 142-155, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38118452

RESUMEN

Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Quinasas Quinasa Quinasa PAM , Animales , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Mamíferos/metabolismo
7.
Mol Cell ; 83(17): 3140-3154.e7, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37572670

RESUMEN

Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.


Asunto(s)
Peroxirredoxinas , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Cisteína/metabolismo , Disulfuros , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Mol Cell ; 81(11): 2303-2316.e8, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33991485

RESUMEN

Glutaminase regulates glutaminolysis to promote cancer cell proliferation. However, the mechanism underlying glutaminase activity regulation is largely unknown. Here, we demonstrate that kidney-type glutaminase (GLS) is highly expressed in human pancreatic ductal adenocarcinoma (PDAC) specimens with correspondingly upregulated glutamine dependence for PDAC cell proliferation. Upon oxidative stress, the succinyl-coenzyme A (CoA) synthetase ADP-forming subunit ß (SUCLA2) phosphorylated by p38 mitogen-activated protein kinase (MAPK) at S79 dissociates from GLS, resulting in enhanced GLS K311 succinylation, oligomerization, and activity. Activated GLS increases glutaminolysis and the production of nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione, thereby counteracting oxidative stress and promoting tumor cell survival and tumor growth in mice. In addition, the levels of SUCLA2 pS79 and GLS K311 succinylation, which were mutually correlated, were positively associated with advanced stages of PDAC and poor prognosis for patients. Our findings reveal critical regulation of GLS by SUCLA2-coupled GLS succinylation regulation and underscore the regulatory role of metabolites in glutaminolysis and PDAC development.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Glutaminasa/genética , Neoplasias Pancreáticas/genética , Succinato-CoA Ligasas/genética , Animales , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/mortalidad , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glutaminasa/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , NADP/metabolismo , Estrés Oxidativo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/mortalidad , Fosforilación , Pronóstico , Procesamiento Proteico-Postraduccional , Transducción de Señal , Succinato-CoA Ligasas/metabolismo , Ácido Succínico/metabolismo , Análisis de Supervivencia , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
EMBO J ; 43(17): 3604-3626, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39020149

RESUMEN

Tumor necrosis factor receptors (TNFRs) control pleiotropic pro-inflammatory functions that range from apoptosis to cell survival. The ability to trigger a particular function will depend on the upstream cues, association with regulatory complexes, and downstream pathways. In Drosophila melanogaster, two TNFRs have been identified, Wengen (Wgn) and Grindelwald (Grnd). Although several reports associate these receptors with JNK-dependent apoptosis, it has recently been found that Wgn activates a variety of other functions. We demonstrate that Wgn is required for survival by protecting cells from apoptosis. This is mediated by dTRAF1 and results in the activation of p38 MAP kinase. Remarkably, Wgn is required for apoptosis-induced regeneration and is activated by the reactive oxygen species (ROS) produced following apoptosis. This ROS activation is exclusive for Wgn, but not for Grnd, and can occur after knocking down Eiger/TNFα. The extracellular cysteine-rich domain of Grnd is much more divergent than that of Wgn, which is more similar to TNFRs from other animals, including humans. Our results show a novel TNFR function that responds to stressors by ensuring p38-dependent regeneration.


Asunto(s)
Apoptosis , Proteínas de Drosophila , Drosophila melanogaster , Especies Reactivas de Oxígeno , Regeneración , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Proteínas de la Membrana
10.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191811

RESUMEN

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Asunto(s)
Ácidos Láuricos , Síndrome Metabólico , Humanos , Ratones , Animales , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Hígado/metabolismo , Ácidos Grasos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/farmacología
11.
Nat Immunol ; 16(5): 495-504, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25848864

RESUMEN

The molecules and pathways that fine-tune innate inflammatory responses mediated by Toll-like receptor 7 (TLR7) remain to be fully elucidated. Using an unbiased genome-scale screen with short hairpin RNA (shRNA), we identified the receptor TREML4 as an essential positive regulator of TLR7 signaling. Macrophages from Treml4(-/-) mice were hyporesponsive to TLR7 agonists and failed to produce type I interferons due to impaired phosphorylation of the transcription factor STAT1 by the mitogen-activated protein kinase p38 and decreased recruitment of the adaptor MyD88 to TLR7. TREML4 deficiency reduced the production of inflammatory cytokines and autoantibodies in MRL/lpr mice, which are prone to systemic lupus erythematosus (SLE), and inhibited the antiviral immune response to influenza virus. Our data identify TREML4 as a positive regulator of TLR7 signaling and provide insight into the molecular mechanisms that control antiviral immunity and the development of autoimmunity.


Asunto(s)
Lupus Eritematoso Sistémico/inmunología , Macrófagos/fisiología , Glicoproteínas de Membrana/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Receptores Inmunológicos/metabolismo , Receptor Toll-Like 7/metabolismo , Animales , Autoanticuerpos/metabolismo , Autoinmunidad/genética , Células Cultivadas , Citocinas/metabolismo , Humanos , Inmunidad Innata/genética , Mediadores de Inflamación/metabolismo , Interferón Tipo I/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , ARN Interferente Pequeño/genética , Receptores Inmunológicos/genética , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Nature ; 599(7884): 296-301, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707293

RESUMEN

Adipocytes increase energy expenditure in response to prolonged sympathetic activation via persistent expression of uncoupling protein 1 (UCP1)1,2. Here we report that the regulation of glycogen metabolism by catecholamines is critical for UCP1 expression. Chronic ß-adrenergic activation leads to increased glycogen accumulation in adipocytes expressing UCP1. Adipocyte-specific deletion of a scaffolding protein, protein targeting to glycogen (PTG), reduces glycogen levels in beige adipocytes, attenuating UCP1 expression and responsiveness to cold or ß-adrenergic receptor-stimulated weight loss in obese mice. Unexpectedly, we observed that glycogen synthesis and degradation are increased in response to catecholamines, and that glycogen turnover is required to produce reactive oxygen species leading to the activation of p38 MAPK, which drives UCP1 expression. Thus, glycogen has a key regulatory role in adipocytes, linking glucose metabolism to thermogenesis.


Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Glucógeno/metabolismo , Homeostasis , Termogénesis , Adaptación Fisiológica , Adipocitos Beige/metabolismo , Animales , Frío , Metabolismo Energético , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Desacopladora 1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Nature ; 600(7888): 314-318, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819664

RESUMEN

Thermogenesis in brown and beige adipose tissue has important roles in maintaining body temperature and countering the development of metabolic disorders such as obesity and type 2 diabetes1,2. Although much is known about commitment and activation of brown and beige adipose tissue, its multiple and abundant immunological factors have not been well characterized3-6. Here we define a critical role of IL-27-IL-27Rα signalling in improving thermogenesis, protecting against diet-induced obesity and ameliorating insulin resistance. Mechanistic studies demonstrate that IL-27 directly targets adipocytes, activating p38 MAPK-PGC-1α signalling and stimulating the production of UCP1. Notably, therapeutic administration of IL-27 ameliorated metabolic morbidities in well-established mouse models of obesity. Consistently, individuals with obesity show significantly decreased levels of serum IL-27, which can be restored after bariatric surgery. Collectively, these findings show that IL-27 has an important role in orchestrating metabolic programs, and is a highly promising target for anti-obesity immunotherapy.


Asunto(s)
Adipocitos/metabolismo , Metabolismo Energético , Interleucina-27/metabolismo , Termogénesis , Animales , Cirugía Bariátrica , Modelos Animales de Enfermedad , Femenino , Humanos , Resistencia a la Insulina , Interleucina-27/sangre , Interleucina-27/uso terapéutico , Masculino , Ratones , Obesidad/sangre , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal , Proteína Desacopladora 1/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Mol Cell ; 74(2): 254-267.e10, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30824372

RESUMEN

DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill defined. Here, we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates RNA polymerase II (Pol II) transcription and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb) via its release from the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP). This is mediated by activation of p38MAPK, which triggers enhanced binding of RBM7 with core subunits of 7SK snRNP. In turn, P-TEFb relocates to chromatin to induce transcription of short units, including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with the axis of RBM7 and P-TEFb provokes cellular hypersensitivity to DNA-damage-inducing agents due to activation of apoptosis. Our work uncovers the importance of stress-dependent stimulation of Pol II pause release, which enables a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/genética , ARN Polimerasa II/genética , Proteínas de Unión al ARN/genética , Transcripción Genética , Apoptosis/genética , Supervivencia Celular/genética , Daño del ADN/genética , Células HEK293 , Humanos , ARN Largo no Codificante/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
15.
Proc Natl Acad Sci U S A ; 121(29): e2320709121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38985760

RESUMEN

The Type-I interferon (IFN-I) response is the major outcome of stimulator of interferon genes (STING) activation in innate cells. STING is more abundantly expressed in adaptive T cells; nevertheless, its intrinsic function in T cells remains unclear. Intriguingly, we previously demonstrated that STING activation in T cells activates widespread IFN-independent activities, which stands in contrast to the well-known STING-mediated IFN response. Here, we have identified that STING activation induces regulatory T cells (Tregs) differentiation independently of IRF3 and IFN. Specifically, the translocation of STING from the endoplasmic reticulum to the Golgi activates mitogen-activated protein kinase (MAPK) activity, which subsequently triggers transcription factor cAMP response element-binding protein (CREB) activation. The activation of the STING-MAPK-CREB signaling pathway induces the expression of many cytokine genes, including interleukin-2 (IL-2) and transforming growth factor-beta 2 (TGF-ß2), to promote the Treg differentiation. Genetic knockdown of MAPK p38 or pharmacological inhibition of MAPK p38 or CREB markedly inhibits STING-mediated Treg differentiation. Administration of the STING agonist also promotes Treg differentiation in mice. In the Trex1-/- autoimmune disease mouse model, we demonstrate that intrinsic STING activation in CD4+ T cells can drive Treg differentiation, potentially counterbalancing the autoimmunity associated with Trex1 deficiency. Thus, STING-MAPK-CREB represents an IFN-independent signaling axis of STING that may have profound effects on T cell effector function and adaptive immunity.


Asunto(s)
Diferenciación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Proteínas de la Membrana , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones , Transducción de Señal , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Transporte de Proteínas , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Ratones Noqueados , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
EMBO J ; 41(17): e111650, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35899396

RESUMEN

Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction-induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKß is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKß's ability to recognize stress fibers in cells and Z-discs in muscle fibers when mechanically perturbed. Consequently, ZAK-deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Músculo Esquelético , Animales , Quinasas Quinasa Quinasa PAM , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Fosforilación , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/genética
17.
Nat Immunol ; 15(10): 965-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25151490

RESUMEN

In T lymphocytes, the mitogen-activated protein kinase (MAPK) p38 regulates pleiotropic functions and is activated by canonical MAPK signaling or the alternative activation pathway downstream of the T cell antigen receptor (TCR). Here we found that senescent human T cells lacked the canonical and alternative pathways for the activation of p38 but spontaneously engaged the metabolic master regulator AMPK to trigger recruitment of p38 to the scaffold protein TAB1, which caused autophosphorylation of p38. Signaling via this pathway inhibited telomerase activity, T cell proliferation and the expression of key components of the TCR signalosome. Our findings identify a previously unrecognized mode for the activation of p38 in T cells driven by intracellular changes such as low-nutrient and DNA-damage signaling (an 'intrasensory' pathway). The proliferative defect of senescent T cells was reversed by blockade of AMPK-TAB1-dependent activation of p38.


Asunto(s)
Proteínas Quinasas Activadas por AMP/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Linfocitos T CD4-Positivos/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Anciano , Linfocitos T CD4-Positivos/metabolismo , Proliferación Celular , Células Cultivadas , Senescencia Celular/genética , Senescencia Celular/inmunología , Activación Enzimática/inmunología , Femenino , Expresión Génica/inmunología , Humanos , Immunoblotting , Masculino , Persona de Mediana Edad , Fosforilación/inmunología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Telomerasa/genética , Telomerasa/inmunología , Telomerasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Nat Immunol ; 15(8): 717-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24952503

RESUMEN

Type I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined. We found that RIG-I like receptors (RLRs) induce type III interferon expression in a variety of human cell types, and identified factors that differentially regulate expression of type I and type III interferons. We identified peroxisomes as a primary site of initiation of type III interferon expression, and revealed that the process of intestinal epithelial cell differentiation upregulates peroxisome biogenesis and promotes robust type III interferon responses in human cells. These findings highlight the importance of different intracellular organelles in specific innate immune responses.


Asunto(s)
Inmunidad Innata , Interferones/inmunología , Peroxisomas/inmunología , Animales , Antineoplásicos/farmacología , Bencimidazoles/farmacología , Diferenciación Celular , Línea Celular , Ciclohexanos/farmacología , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , Inhibidores Enzimáticos/farmacología , Humanos , Interferones/biosíntesis , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Ratones , Piridonas/farmacología , Interferencia de ARN , ARN Interferente Pequeño , Receptores Inmunológicos , Reoviridae/inmunología , Infecciones por Reoviridae/inmunología , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/inmunología , Transducción de Señal/inmunología , Tirfostinos/farmacología , Vidarabina/análogos & derivados , Vidarabina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
19.
Immunity ; 47(3): 421-434.e3, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930658

RESUMEN

Environmental insults are often detected by multiple sensors that activate diverse signaling pathways and transcriptional regulators, leading to a tailored transcriptional output. To understand how a tailored response is coordinated, we examined the inflammatory response elicited in mouse macrophages by ionizing radiation (IR). RNA-sequencing studies revealed that most radiation-induced genes were strongly dependent on only one of a small number of sensors and signaling pathways, notably the DNA damage-induced kinase ATM, which regulated many IR-response genes, including interferon response genes, via an atypical IRF1-dependent, STING-independent mechanism. Moreover, small, defined sets of genes activated by p53 and NRF2 accounted for the selective response to radiation in comparison to a microbial inducer of inflammation. Our findings reveal that genes comprising an environmental response are activated by defined sensing mechanisms with a high degree of selectivity, and they identify distinct components of the radiation response that might be susceptible to therapeutic perturbation.


Asunto(s)
Regulación de la Expresión Génica/efectos de la radiación , Inflamación/genética , Inflamación/metabolismo , Radiación Ionizante , Transducción de Señal , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Análisis por Conglomerados , Proteína Quinasa Activada por ADN/metabolismo , Relación Dosis-Respuesta en la Radiación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Interferones/metabolismo , Interferones/farmacología , Macrófagos/metabolismo , Macrófagos/efectos de la radiación , Proteínas de la Membrana/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Transcripción Genética/efectos de la radiación , Activación Transcripcional , Regulador Transcripcional ERG/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
PLoS Biol ; 21(9): e3002320, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37773960

RESUMEN

Animals integrate developmental and nutritional signals before committing crucial resources to growth and reproduction; however, the pathways that perceive and respond to these inputs remain poorly understood. Here, we demonstrate that DRL-1 and FLR-4, which share similarity with mammalian mitogen-activated protein kinases, maintain lipid homeostasis in the C. elegans intestine. DRL-1 and FLR-4 function in a protein complex at the plasma membrane to promote development, as mutations in drl-1 or flr-4 confer slow growth, small body size, and impaired lipid homeostasis. To identify factors that oppose DRL-1/FLR-4, we performed a forward genetic screen for suppressors of the drl-1 mutant phenotypes and identified mutations in flr-2 and fshr-1, which encode the orthologues of follicle stimulating hormone and its putative G protein-coupled receptor, respectively. In the absence of DRL-1/FLR-4, neuronal FLR-2 acts through intestinal FSHR-1 and protein kinase A signaling to restrict growth. Furthermore, we show that opposing signaling through DRL-1 and FLR-2 coordinates TIR-1 oligomerization, which modulates downstream p38/PMK-1 activity, lipid homeostasis, and development. Finally, we identify a surprising noncanonical role for the developmental transcription factor PHA-4/FOXA in the intestine where it restricts growth in response to impaired DRL-1 signaling. Our work uncovers a complex multi-tissue signaling network that converges on p38 signaling to maintain homeostasis during development.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Glicoproteínas/metabolismo , Homeostasis , Hormonas/metabolismo , Lípidos , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda