RESUMEN
Spatially organized reaction dynamics between proto-oncogenic epidermal growth factor receptor (EGFR) and protein tyrosine phosphatases determine EGFR phosphorylation dynamics in response to growth factors and thereby cellular behavior within developing tissues. We show that the reaction dynamics of mutual inhibition between RPTPγ phosphatase and autocatalytic ligandless EGFR phosphorylation enable highly sensitive promigratory EGFR signaling responses to subnanomolar EGF levels, when < 5% receptors are occupied by EGF. EGF thereby triggers an autocatalytic phospho-EGFR reaction by the initial production of small amounts of phospho-EGFR through transient, asymmetric EGF-EGFR2 dimers. Single cell RPTPγ oxidation imaging revealed that phospho-EGFR induces activation of NADPH oxidase, which in turn inhibits RPTPγ-mediated dephosphorylation of EGFR, tilting the autocatalytic RPTPγ/EGFR toggle switch reaction towards ligandless phosphorylated EGFR. Reversibility of this reaction to EGF is maintained by the constitutive phosphatase activity of endoplasmic reticulum-associated TCPTP. This RPTPγ/EGFR reaction at the plasma membrane causes promigratory signaling that is separated from proliferative signaling induced by accumulated, liganded, phosphorylated EGF-EGFR in endosomes. Accordingly, loss of RPTPγ results in constitutive promigratory signaling from phosphorylated EGFR monomers. RPTPγ is thus a suppressor of promigratory oncogenic but not of proliferative EGFR signaling.
Asunto(s)
Factor de Crecimiento Epidérmico , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal , Fosforilación , Oxidación-ReducciónRESUMEN
Growing evidence has shown that besides the protein coding genes, the non-coding elements of the genome are indispensable for maintaining the property of self-renewal in human embryonic stem cells and in cell fate determination. However, the regulatory mechanisms and the landscape of interactions between the coding and non-coding elements is poorly understood. In this work, we used weighted gene co-expression network analysis (WGCNA) on transcriptomic data retrieved from RNA-seq and small RNA-seq experiments and reconstructed the core human pluripotency network (called PluriMLMiNet) consisting of 375 mRNA, 57 lncRNA and 207 miRNAs. Furthermore, we derived networks specific to the naïve and primed states of human pluripotency (called NaiveMLMiNet and PrimedMLMiNet respectively) that revealed a set of molecular markers (RPS6KA1, ZYG11A, ZNF695, ZNF273, and NLRP2 for naive state, and RAB34, TMEM178B, PTPRZ1, USP44, KIF1A and LRRN1 for primed state) which can be used to distinguish the pluripotent state from the non-pluripotent state and also to identify the intra-pluripotency states (i.e., naïve and primed state). The lncRNA DANT1 was found to be a crucial as it formed a bridge between the naive and primed state-specific networks. Analysis of the genes neighbouring DANT1 suggested its possible role as a competing endogenous RNA (ceRNA) for the induction and maintenance of human pluripotency. This was computationally validated by predicting the missing DANT1-miRNA interactions to complete the ceRNA circuit. Here we first report that DANT1 might harbour binding sites for miRNAs hsa-miR-30c-2-3p, hsa-miR-210-3p and hsa-let-7b-5p which may influence pluripotency.
Asunto(s)
Células Madre Embrionarias Humanas , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , Células Madre Embrionarias Humanas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Proteínas de Ciclo Celular/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismoRESUMEN
Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.
Asunto(s)
Glioma , N-Acetilglucosaminiltransferasas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Animales , Humanos , Ratones , Encéfalo/enzimología , Encéfalo/fisiopatología , Glioma/fisiopatología , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/metabolismo , Línea Celular Tumoral , Femenino , Ratones SCID , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/deficiencia , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Técnicas de Silenciamiento del GenRESUMEN
Neural plasticity, the ability to alter the structure and function of neural circuits, varies throughout the age of an individual. The end of the hyperplastic period in the central nervous system coincides with the appearance of honeycomb-like structures called perineuronal nets (PNNs) that surround a subset of neurons. PNNs are a condensed form of neural extracellular matrix that include the glycosaminoglycan hyaluronan and extracellular matrix proteins such as aggrecan and tenascin-R (TNR). PNNs are key regulators of developmental neural plasticity and cognitive functions, yet our current understanding of the molecular interactions that help assemble them remains limited. Disruption of Ptprz1, the gene encoding the receptor protein tyrosine phosphatase RPTPζ, altered the appearance of nets from a reticulated structure to puncta on the surface of cortical neuron bodies in adult mice. The structural alterations mirror those found in Tnr-/- mice, and TNR is absent from the net structures that form in dissociated cultures of Ptprz1-/- cortical neurons. These findings raised the possibility that TNR and RPTPζ cooperate to promote the assembly of PNNs. Here, we show that TNR associates with the RPTPζ ectodomain and provide a structural basis for these interactions. Furthermore, we show that RPTPζ forms an identical complex with tenascin-C, a homolog of TNR that also regulates neural plasticity. Finally, we demonstrate that mutating residues at the RPTPζ-TNR interface impairs the formation of PNNs in dissociated neuronal cultures. Overall, this work sets the stage for analyzing the roles of protein-protein interactions that underpin the formation of nets.
Asunto(s)
Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Tenascina , Animales , Ratones , Tenascina/genética , Tenascina/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Matriz Extracelular/metabolismo , Agrecanos/metabolismo , Plasticidad NeuronalRESUMEN
BACKGROUND: Stroke is an important cause of death and disability worldwide, ranking second in the cause of death, and it is thought to be related to genetic factors. The purpose of our study is to investigate the association between CASZ1, WNT2B and PTPRG single nucleotide polymorphisms (SNPs) and stroke risk in the Chinese population. METHODS: We recruited 1418 volunteers, comprised of 710 stroke cases and 708 controls in this study. We used MassARRAY iPLEX GOLD method to genotype the three SNPs on CASZ1, WNT2B and PTPRG. Logistic regression was used to analyse the association between these SNPs and stroke, and odds ratios (ORs) and 95% confidence intervals (CIs) were then calculated. What's more, the interactions among SNPs were predicted by multi-factor dimensionality reduction (MDR) analysis. RESULTS: This research demonstrated that CASZ1 rs880315 and PTPRG rs704341 were associated with reduced stroke susceptibility. More precisely, CASZ1 rs880315 was associated with reduced stroke susceptibility in people aged ≤64 years and women. PTPRG rs704341 was associated with reduced stroke susceptibility in people aged >64 years, women, non-smokers and non-drinkers. Conversely, WNT2B rs12037987 was related to elevated stroke susceptibility in people aged >64 years, women and non-smokers. In addition, CASZ1 rs880315, WNT2B rs12037987 and PTPRG rs704341 had a strong redundancy relationship. CONCLUSION: Our study concludes that CASZ1 rs880315, WNT2B rs12037987 and PTPRG rs704341 are associated with stroke, and the study provides a basis for assessing genetic variants associated with stroke risk in the Han Chinese population.
Asunto(s)
Predisposición Genética a la Enfermedad , Accidente Cerebrovascular , Humanos , Femenino , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genética , Genotipo , China/epidemiología , Estudios de Casos y Controles , Glicoproteínas , Proteínas Wnt/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genéticaRESUMEN
Little is known as to whether there may be any pathogenetic link between pulmonary carcinoids and neuroendocrine carcinomas (NECs). A gene signature we previously found to cluster pulmonary carcinoids, large cell neuroendocrine carcinoma (LCNEC) and small cell lung carcinoma (SCLC), and which encompassed MEN1, MYC, MYCL1, RICTOR, RB1, SDHA, SRC and TP53 mutations or copy number variations (CNVs), was used to reclassify an independent cohort of 54 neuroendocrine neoplasms (NENs) [31 typical carcinoids (TC), 11 atypical carcinoids (AC) and 12 SCLC], by means of transcriptome and mutation data. Unsupervised clustering analysis identified two histology-independent clusters, namely CL1 and CL2, where 17/42 (40.5%) carcinoids and all the SCLC samples fell into the latter. CL2 carcinoids affected survival adversely, were enriched in T to G transversions or T > C/C > T transitions in the context of specific mutational signatures, presented with at least 1.5-fold change (FC) increase of gene mutations including TSC2, SMARCA2, SMARCA4, ERBB4 and PTPRZ1, differed for gene expression and showed epigenetic changes in charge of MYC and MTORC1 pathways, cellular senescence, inflammation, high-plasticity cell state and immune system exhaustion. Similar results were also found in two other independent validation sets comprising 101 lung NENs (24 carcinoids, 21 SCLC and 56 LCNEC) and 30 carcinoids, respectively. We herein confirmed an unexpected sharing of molecular traits along the spectrum of lung NENs, with a subset of genomically distinct aggressive carcinoids sharing molecular features of high-grade neuroendocrine neoplasms.
Asunto(s)
Tumor Carcinoide , Carcinoma de Células Grandes , Carcinoma Neuroendocrino , Neoplasias Pulmonares , Tumores Neuroendocrinos , Humanos , Variaciones en el Número de Copia de ADN/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Carcinoma Neuroendocrino/genética , Tumor Carcinoide/genética , Tumor Carcinoide/patología , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patología , Pulmón/patología , ADN Helicasas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genéticaRESUMEN
BACKGROUND: Anaplastic ependymoma and H3K27M-mutant diffuse midline glioma are two common subtypes of brain tumors with poor long-term prognosis. The present study analyzed and compared the differences in cell types between two tumors by single-cell RNA sequencing (scRNA-seq) technology. METHODS: ScRNA-seq was performed to profile cells from cancer tissue from anaplastic ependymoma patient and H3K27M-mutant diffuse midline glioma patient. Cell clustering, marker gene identification, cell type annotation, copy number variation analysis and function analysis of differentially expressed genes were then performed. RESULTS: A total of 11,219 cells were obtained from anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and these cells categorized into 12 distinct clusters. Each cell cluster could be characterized with specific cell markers to indicate cellular heterogeneity. Five cell types were annotated in each sample, including astrocyte, oligodendrocytes, microglial cell, neural progenitor cell and immune cell. The cluster types and proportion of cell types were not consistent between the two brain tumors. Functional analyses suggest that these cell clusters are involved in tumor-associated pathways, with slight differences in the cells of origin between the two tumors. In addition, cell communication analysis showed that the NRG3-ERBB4 pair is a key Ligand-receptor pair for anaplastic ependymoma, while in H3K27M-mutant diffuse midline glioma it is the PTN-PTPRZ1 pair that establishes contact with other cells. CONCLUSION: There was intratumor heterogeneity in anaplastic ependymoma and H3K27M mutant diffuse midline glioma, and that the subtype differences may be due to differences in the origin of the cells.
Asunto(s)
Neoplasias Encefálicas , Ependimoma , Glioma , Humanos , Glioma/genética , Glioma/patología , Histonas/genética , Variaciones en el Número de Copia de ADN , Mutación/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ependimoma/genética , Análisis de Secuencia de ARN , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genéticaRESUMEN
Nasopharyngeal carcinoma (NPC) is an epithelial carcinoma arising from the nasopharyngeal mucosal lining. The present study sought to analyze the mechanism by which homeobox A10 (HOXA10) affects NPC cell proliferation. The expression levels of HOXA10/long noncoding RNA (lncRNA) PTPRG antisense RNA 1 (PTPRG-AS1)/ubiquitin-specific peptidase 1 (USP1) in NPC tissues and cells were determined. Cell proliferation was evaluated. The enrichment of HOXA10 on the PTPRG-AS1 promoter was determined. The binding of PTPRG-AS1, HuR, and USP1 to each other was analyzed via RNA immunoprecipitation. USP1 mRNA stability was determined after actinomycin D treatment. The role of the PTPRG-AS1/USP1 axis in NPC cell proliferation was analyzed in combined experiments. The role of HOXA10 in vivo was confirmed in xenograft tumor models. The results revealed that HOXA10 was overexpressed in NPC. HOXA10 downregulation reduced NPC cell proliferation. PTPRG-AS1 and USP1 were upregulated in NPC. HOXA10 bound to the PTPRG-AS1 promoter to increase PTPRG-AS1 expression, and the binding of PTPRG-AS1 to HuR increased USP1 expression. PTPRG-AS1 or USP1 overexpression attenuated the inhibitory effects of HOXA10 downregulation on NPC cell proliferation. HOXA10 downregulation inhibited in vivo NPC proliferation through the PTPRG-AS1/USP1 axis. In conclusion, HOXA10 facilitates NPC cell proliferation in vitro and in vivo through the PTPRG-AS1/USP1 axis.
Asunto(s)
Proliferación Celular , Proteínas Homeobox A10 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Homeobox A10/metabolismo , Proteínas Homeobox A10/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/genética , ARN sin SentidoRESUMEN
Gestational diabetes mellitus (GDM) poses significant health risks to both mothers and infants, emphasizing the need for early detection strategies to mitigate its impact. However, the existing diagnostic methods, particularly the oral glucose tolerance test (OGTT) administered in the second or third trimester, show limitations in the detection of GDM during its early stages. This study aimed to explore the potential of the genes Protein Tyrosine Phosphatase Receptor-type Gamma (PTPRG) and Immunoglobulin Kappa Variable 2D-28 (IGKV2D-28) as early indicators for GDM among Filipino pregnant women. Utilizing reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the gene expressions were analyzed in first-trimester blood samples obtained from 24 GDM and 36 non-GDM patients. The diagnostic performance of PTPRG and IGKV2D-28 was analyzed and evaluated using receiver operating characteristic (ROC) curves. The findings revealed elevated expression levels of PTPRG and IGKV2D-28 within the GDM cohort. Remarkably, PTPRG exhibited a sensitivity of 83%, while IGKV2D-28 demonstrated a specificity of 94% at determined cut-off values. Combining both genes yielded an improved but limited diagnostic accuracy with an area under the curve (AUC) of 0.63. This preliminary investigation of PTPRG and IGKV2D-28 sheds light on novel avenues for early GDM detection. While these findings are promising, further validation studies in larger cohorts are necessary to confirm these results and explore additional biomarkers to enhance diagnostic precision in GDM pregnancies and, ultimately, to improve maternal and fetal outcomes.
Asunto(s)
Biomarcadores , Diabetes Gestacional , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/sangre , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Femenino , Embarazo , Biomarcadores/sangre , Adulto , Curva ROC , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismoRESUMEN
Pleiotrophin (PTN) is a secreted factor that regulates endothelial cell migration through protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) and αvß3 integrin. Genetic deletion of Ptprz1 results in enhanced endothelial cell proliferation and migration, due to the decreased expression of ß3 integrin and the subsequent, enhanced cMet phosphorylation. In the present study, we investigated the effect of PTN and PTPRZ1 on activating the mTORC1 kinase and protein synthesis and identified part of the implicated signaling pathway in endothelial cells. PTN or genetic deletion of Ptprz1 activates protein synthesis in a mTORC1-dependent manner, as shown by the enhanced phosphorylation of the mTORC1-downstream targets ribosomal protein S6 kinase 1 (SK61) and 4E-binding protein 1 (4EBP1) and the upregulation of HIF-1α. The cMet tyrosine kinase inhibitor crizotinib abolishes the stimulatory effects of PTN or PTPRZ1 deletion on mTORC1 activation and protein synthesis, suggesting that mTORC1 activation is downstream of cMet. The mTORC1 inhibitor rapamycin abolishes the stimulatory effect of PTN or PTPRZ1 deletion on endothelial cell migration, suggesting that mTORC1 is involved in the PTN/PTPRZ1-dependent cell migration. The αvß3 integrin blocking antibody LM609 and the peptide PTN112-136, both known to bind to ανß3 and inhibit PTN-induced endothelial cell migration, increase cMet phosphorylation and activate mTORC1, suggesting that cMet and mTORC1 activation are required but are not sufficient to stimulate cell migration. Overall, our data highlight novel aspects of the signaling pathway downstream of the PTN/PTPRZ1 axis that regulates endothelial cell functions.
Asunto(s)
Proteínas Portadoras , Citocinas , Integrina alfaVbeta3 , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Integrina alfaVbeta3/metabolismo , Citocinas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Portadoras/metabolismo , Humanos , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Transducción de Señal , Biosíntesis de Proteínas/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Fosforilación , Animales , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , RatonesRESUMEN
This study aims to investigate the effect of Naotaifang(NTF) on the proteins associated with microglial polarization and glial scar in the rat model of cerebral ischemia reperfusion injury(CIRI). The CIRI model was established by middle cerebral artery occlusion/reperfusion. The 48 successfully modeled rats were randomized into model 7 d, model 14 d, NTF 7 d, and NTF 14 d groups(n=12). In addition, 12 SD rats were selected as the sham group. The NTF group was administrated with NTF suspension at 27 g·kg~(-1)·d~(-1) by gavage, and the sham, model 7 d, and model 14 d groups were administrated with the same volume of normal saline every day by gavage for 7 and 14 days, respectively. After the intervention, Longa score was evaluated. The infarct volume was measured by 2,3,5-triphenyl-2H-tetrazolium chloride(TTC) staining. Morris water maze and open field tests were carried out to evaluate the spatial learning, memory, cognitive function, and anxiety degree of rats. Hematoxylin-eosin(HE) staining was employed to observe the morphological structure and damage of the brain tissue. The immunofluorescence assay was employed to measure the expression of glial fibrillary acidic protein(GFAP) and glial scar. Western blot was employed to determine the protein levels of GFAP, neurocan, phosphacan, CD206, arginase-1(Arg-1), interleukin(IL)-1ß, IL-6, and IL-4. Compared with the sham, model 7 d and model 14 d groups showed cerebral infarction of different degrees, severe pathological injury of cerebral cortex and hippocampus, neurological impairment, reduced spatial learning and memory, cognitive dysfunction, severe anxiety, astrocyte hyperplasia, thickening penumbra glial scar, and up-regulated protein levels of IL-1ß, IL-6, GFAP, neurocan, phosphacan, CD206, and Arg-1(P<0.01). Compared with the model group, NTF 7 d and NTF 14 d groups improved spatial learning, memory, and cognitive function, reduced anxiety, improved nerve function, reduced cerebral infarction volume, reduced astrocyte hyperplasia, thinned penumbra glial scar, down-regulated the protein levels of GFAP, neurocan, phosphacan, IL-6, and IL-1ß, and up-regulated the protein levels of IL-4, CD206, and Arg-1(P<0.05 or P<0.01). NTF exerts a neuroprotective effect on CIRI by inducing the M2 polarization of microglia, inhibiting inflammatory response, and reducing the formation of glial scar.
Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Daño por Reperfusión , Ratas , Animales , Microglía/metabolismo , Gliosis/patología , Ratas Sprague-Dawley , Hiperplasia , Interleucina-4 , Interleucina-6 , Neurocano , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Infarto de la Arteria Cerebral Media , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismoRESUMEN
Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.
Asunto(s)
Enfermedad de Alzheimer , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Sulfato de Queratano/metabolismo , Ligandos , Ratones , Microglía/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismoRESUMEN
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) expressed in endothelial cells and required for stimulation of cell migration by vascular endothelial growth factor A165 (VEGFA165 ) and pleiotrophin (PTN). It is also over or under-expressed in various tumor types. In this study, we used genetically engineered Ptprz1-/- and Ptprz1+/+ mice to study mechanistic aspects of PTPRZ1 involvement in angiogenesis and investigate its role in lung adenocarcinoma (LUAD) growth. Ptprz1-/- lung microvascular endothelial cells (LMVEC) have increased angiogenic features compared with Ptprz1+/+ LMVEC, in line with the increased lung angiogenesis and the enhanced chemically induced LUAD growth in Ptprz1-/- compared with Ptprz1+/+ mice. In LUAD cells isolated from the lungs of urethane-treated mice, PTPRZ1 TP inhibition also enhanced proliferation and migration. Expression of beta 3 (ß3 ) integrin is decreased in Ptprz1-/- LMVEC, linked to enhanced VEGF receptor 2 (VEGFR2), c-Met tyrosine kinase (TK) and Akt kinase activities. However, only c-Met and Akt seem responsible for the enhanced endothelial cell activation in vitro and LUAD growth and angiogenesis in vivo in Ptprz1-/- mice. A selective PTPRZ1 TP inhibitor, VEGFA165 and PTN also activate c-Met and Akt in a PTPRZ1-dependent manner in endothelial cells, and their stimulatory effects are abolished by the c-Met TK inhibitor (TKI) crizotinib. Altogether, our data suggest that low PTPRZ1 expression is linked to worse LUAD prognosis and response to c-Met TKIs and uncover for the first time the role of PTPRZ1 in mediating c-Met activation by VEGFA and PTN.
Asunto(s)
Adenocarcinoma del Pulmón , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Animales , Ratones , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Células Endoteliales/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tirosina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismoRESUMEN
MET amplification and exon 14 skipping are well known as oncogenic drivers in multiple cancer types. However, MET fusions in most cancer types are poorly defined. To explore the profile and analyze the characteristics of MET fusions, a large-cohort study was conducted to screen MET fusions in clinical samples (n = 10 882) using DNA-based NGS. A total of 37 potentially functional MET fusions containing the intact tyrosine kinase domain (TKD) of MET were identified in 36 samples. Further, 15 novel MET fusions were identified in five cancer types, and the incidence of novel MET fusions accounted for 40.5% (15/37). Brain cancer had the highest incidence of MET fusion, with PTPRZ1-MET as the most common fusion (37.0%). All MET breakpoints in brain cancer (n = 27) were also located in intron 1, while those in lung cancer (n = 4) occurred in intron 1, intron 11, intron 14 and exon 14, respectively. The positive consistency of the common fusion group was 100% (11/11), while that of the rare fusion group was 53.8% (7/13). In conclusion, we provided a comprehensive genomic landscape of MET rearrangement and updated the MET fusions database for clinical test. In addition, we revealed that DNA-based NGS might serve as the clinical test for common MET fusions; however, rare MET fusions must be validated by both DNA-based NGS and RNA-based NGS. Prospective trials are necessary to confirm the treatment efficacy of MET inhibitors.
Asunto(s)
Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Neoplasias Encefálicas/genética , Estudios de Cohortes , Neoplasias Pulmonares/genética , Proteínas de Fusión Oncogénica/genética , Estudios Prospectivos , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genéticaRESUMEN
OBJECTIVE: Myelin regeneration in the human central nervous system relies on progenitor cells within the tissue parenchyma, with possible contribution from previously myelinating oligodendrocytes (OLs). In multiple sclerosis, a demyelinating disorder, variables affecting remyelination efficiency include age, severity of initial injury, and progenitor cell properties. Our aim was to investigate the effects of age and differentiation on the myelination potential of human OL lineage cells. METHODS: We derived viable primary OL lineage cells from surgical resections of pediatric and adult brain tissue. Ensheathment capacity using nanofiber assays and transcriptomic profiles from RNA sequencing were compared between A2B5+ antibody-selected progenitors and mature OLs (non-selected cells). RESULTS: We demonstrate that pediatric progenitor and mature cells ensheathed nanofibers more robustly than did adult progenitor and mature cells, respectively. Within both age groups, the percentage of fibers ensheathed and ensheathment length per fiber were greater for A2B5+ progenitors. Gene expression of OL progenitor markers PDGFRA and PTPRZ1 were higher in A2B5+ versus A2B5- cells and in pediatric A2B5+ versus adult A2B5+ cells. The p38 MAP kinases and actin cytoskeleton-associated pathways were upregulated in pediatric cells; both have been shown to regulate OL process outgrowth. Significant upregulation of "cell senescence" genes was detected in pediatric samples; this could reflect their role in development and the increased susceptibility of pediatric OLs to activating cell death responses to stress. INTERPRETATION: Our findings identify specific biological pathways relevant to myelination that are differentially enriched in human pediatric and adult OL lineage cells and suggest potential targets for remyelination enhancing therapies. ANN NEUROL 2022;91:178-191.
Asunto(s)
Envejecimiento/fisiología , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Adulto , Muerte Celular , Linaje de la Célula , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Células-Madre Neurales , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Transcriptoma , Adulto JovenRESUMEN
The regulatory role of protein tyrosine kinases in ß1- and ß2-integrin activation and in the survival of chronic lymphocytic leukemia (CLL) cells is well established. In contrast, the involvement of protein tyrosine phosphatases in CLL biology was less investigated. We show that selective activation of the protein tyrosine phosphatase receptor type γ (PTPRG) strongly suppresses integrin activation and survival in leukemic B cells isolated from patients with CLL. Activation of PTPRG specifically inhibits CXCR4- as well as BCR-induced triggering of LFA-1 and VLA-4 integrins and mediated rapid adhesion. Triggering of LFA-1 affinity is also prevented by PTPRG activity. Analysis of signaling mechanisms shows that activation of PTPRG blocks chemokine-induced triggering of JAK2 and Bruton's tyrosine kinase protein tyrosine kinases and of the small GTP-binding protein RhoA. Furthermore, activated PTPRG triggers rapid and robust caspase-3/7-mediated apoptosis in CLL cells in a manner quantitatively comparable to the Bruton's tyrosine kinase inhibitor ibrutinib. However, in contrast to ibrutinib, PTPRG-triggered apoptosis is insensitive to prosurvival signals generated by CXCR4 and BCR signaling. Importantly, PTPRG activation does not trigger apoptosis in healthy B lymphocytes. The data show that activated PTPRG inhibits, at once, the signaling pathways controlling adhesion and survival of CLL cells, thus emerging as a negative regulator of CLL pathogenesis. These findings suggest that pharmacological potentiation of PTPRG tyrosine-phosphatase enzymatic activity could represent a novel approach to CLL treatment.
Asunto(s)
Agammaglobulinemia Tirosina Quinasa/metabolismo , Adhesión Celular/fisiología , Supervivencia Celular/fisiología , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Integrina alfa4beta1/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1α, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Goα translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gsα, and L-type voltage-dependent calcium channels are discussed.
Asunto(s)
Glicoesfingolípidos , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Glicoesfingolípidos/metabolismo , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Cerebelo/metabolismo , Microdominios de Membrana/metabolismoRESUMEN
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a type V transmembrane tyrosine phosphatase that is highly expressed during embryonic development, while its expression during adulthood is limited. PTPRZ1 is highly detected in the central nervous system, affecting oligodendrocytes' survival and maturation. In gliomas, PTPRZ1 expression is significantly upregulated and is being studied as a potential cancer driver and as a target for therapy. PTPRZ1 expression is also increased in other cancer types, but there are no data on the potential functional significance of this finding. On the other hand, low PTPRZ1 expression seems to be related to a worse prognosis in some cancer types, suggesting that in some cases, it may act as a tumor-suppressor gene. These discrepancies may be due to our limited understanding of PTPRZ1 signaling and tumor microenvironments. In this review, we present evidence on the role of PTPRZ1 in angiogenesis and cancer and discuss the phenomenal differences among the different types of cancer, depending on the regulation of its tyrosine phosphatase activity or ligand binding. Clarifying the involved signaling pathways will lead to its efficient exploitation as a novel therapeutic target or as a biomarker, and the development of proper therapeutic approaches.
Asunto(s)
Glioma , Tirosina , Humanos , Transducción de Señal , Proteínas Portadoras/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Microambiente Tumoral , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismoRESUMEN
Myeloid cell mediated mechanisms regulate synovial joint inflammation. IL-34, a macrophage (Mø) growth and differentiation molecule, is markedly expressed in neutrophil and Mø-rich arthritic synovium. IL-34 engages a newly identified independent receptor, protein-tyrosine phosphatase, receptor-type, zeta (PTPRZ), that we find is expressed by Mø. As IL-34 is prominent in rheumatoid arthritis, we probed for the IL-34 and PTPRZ-dependent myeloid cell mediated mechanisms central to arthritis using genetic deficient mice in K/BxN serum-transfer arthritis. Unanticipatedly, we now report that IL-34 and PTPRZ limited arthritis as intra-synovial pathology and bone erosion were more severe in IL-34 and PTPRZ KO mice during induced arthritis. We found that IL-34 and PTPRZ: (i) were elevated, bind, and induce downstream signaling within the synovium in arthritic mice and (ii) were upregulated in the serum and track with disease activity in rheumatoid arthritis patients. Mechanistically, IL-34 and PTPRZ skewed Mø toward a reparative phenotype, and enhanced Mø clearance of apoptotic neutrophils, thereby decreasing neutrophil recruitment and intra-synovial neutrophil extracellular traps. With fewer neutrophils and neutrophil extracellular traps in the synovium, destructive inflammation was restricted, and joint pathology and bone erosion diminished. These novel findings suggest that IL-34 and PTPRZ-dependent mechanisms in the inflamed synovium limit, rather than promote, inflammatory arthritis.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Interleucinas , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores , Animales , Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Proteínas Portadoras , Inflamación , Interleucinas/metabolismo , Ratones , Ratones Noqueados , Proteínas Tirosina Fosfatasas Clase 5 Similares a Receptores/metabolismo , Membrana Sinovial/metabolismoRESUMEN
Phosphacan, a chondroitin sulfate proteoglycan, is a repulsive cue of cerebellar granule cells. This study aims to explore the molecular mechanism. The glycosylphosphatidylinositol-anchored neural adhesion molecule TAG-1 is a binding partner of phosphacan, suggesting that the repulsive effect of phosphacan is possibly because of its interaction with TAG-1. The repulsive effect was greatly reduced on primary cerebellar granule cells of TAG-1-deficient mice. Surface plasmon resonance analysis confirmed the direct interaction of TAG-1 with chondroitin sulfate C. On postnatal days 1, 4, 7, 11, 15, and 20 and in adulthood, phosphacan was present in the molecular layer and internal granular layer, but not in the external granular layer. In contrast, transient TAG-1 expression was observed exclusively within the premigratory zone of the external granular layer on postnatal days 1, 4, 7, and 11. Boyden chamber cell migration assay demonstrated that phosphacan exerted its repulsive effect on the spontaneous and brain-derived neurotrophic factor (BDNF)-induced migration of cerebellar granule cells. The BDNF-induced migration was inhibited by MK-2206, an Akt inhibitor. The pre-treatment with a raft-disrupting agent, methyl-ß-cyclodextrin, also inhibited the BDNF-induced migration, suggesting that lipid rafts are involved in the migration of cerebellar granule cells. In primary cerebellar granule cells obtained on postnatal day 7 and cultured for 7 days, the ganglioside GD3 and TAG-1 preferentially localized in the cell body, whereas the ganglioside GD1b and NB-3 localized in not only the cell body but also neurites. Pre-treatment with the anti-GD3 antibody R24, but not the anti-GD1b antibody GGR12, inhibited the spontaneous and BDNF-induced migration, and attenuated BDNF-induced Akt activation. These findings suggest that phosphacan is responsible for the repulsion of TAG-1-expressing cerebellar granule cells via GD3 rafts to attenuate BDNF-induced migration signaling.