Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 179(4): 909-922.e12, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31668805

RESUMEN

The axoneme of motile cilia is the largest macromolecular machine of eukaryotic cells. In humans, impaired axoneme function causes a range of ciliopathies. Axoneme assembly, structure, and motility require a radially arranged set of doublet microtubules, each decorated in repeating patterns with non-tubulin components. We use single-particle cryo-electron microscopy to visualize and build an atomic model of the repeating structure of a native axonemal doublet microtubule, which reveals the identities, positions, repeat lengths, and interactions of 38 associated proteins, including 33 microtubule inner proteins (MIPs). The structure demonstrates how these proteins establish the unique architecture of doublet microtubules, maintain coherent periodicities along the axoneme, and stabilize the microtubules against the repeated mechanical stress induced by ciliary motility. Our work elucidates the architectural principles that underpin the assembly of this large, repetitive eukaryotic structure and provides a molecular basis for understanding the etiology of human ciliopathies.


Asunto(s)
Axonema/ultraestructura , Cilios/ultraestructura , Ciliopatías/patología , Microtúbulos/ultraestructura , Axonema/química , Axonema/genética , Movimiento Celular/genética , Cilios/química , Cilios/genética , Ciliopatías/genética , Ciliopatías/metabolismo , Microscopía por Crioelectrón , Humanos , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/química , Microtúbulos/genética , Estrés Mecánico
2.
Andrologia ; 52(6): e13575, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32207550

RESUMEN

Multiple morphological abnormalities of the sperm flagella (MMAF) is a rare disease associated with male infertility. In our previous study, we identified a homozygous CFAP43 splice-site variant, c.3661-2delA, in a patient with MMAF. However, the mutational effect of this variant was unknown. Here, using a minigene assay, we demonstrated that the c.3661-2delA variant may cause exon-30 to be skipped, thus generating the p.E1221_K1256del protein. By secondary and three-dimensional structural biology prediction analysis, we found that the mutant protein became 'tighter' in comparison with the wild-type protein, resulting in amino acid rearrangements in CFAP43 protein structure. We elucidated the molecular mechanism of the c.3661-2delA splice-site variant causing MMAF in the current study.


Asunto(s)
Infertilidad Masculina/genética , Proteínas de Microtúbulos/genética , Cola del Espermatozoide/patología , Células HEK293 , Humanos , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Proteínas de Microtúbulos/metabolismo , Proteínas de Microtúbulos/ultraestructura , Modelos Moleculares , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Sitios de Empalme de ARN/genética , Eliminación de Secuencia
3.
Nano Lett ; 18(12): 7435-7440, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30431282

RESUMEN

Liquid-phase electron microscopy (LPEM) is capable of imaging native (unstained) protein structure in liquid, but the achievable spatial resolution is limited by radiation damage. This damaging effect is more pronounced when targeting small molecular features than for larger structures. The matter is even more complicated because the critical dose that a sample can endure before radiation damage not only varies between proteins but also critically depends on the experimental conditions. Here, we examined the effect of the electron beam on the observed protein structure for optimized conditions using a liquid sample enclosure assembled from graphene sheets. It has been shown that graphene can reduce the damaging effect of electrons on biological materials. We used radiation sensitive microtubule proteins and investigated the radiation damage on these structures as a function of the spatial frequencies of the observed features with transmission electron microscopy (TEM). Microtubule samples were also examined using cryo-electron microscopy (cryo-TEM) for comparison. We used an electron flux of 11 ± 1-16 ± 1 e-/Å2s and obtained a series of images from the same sample region. Our results show that graphene-encapsulated microtubules can maintain their structural features of spatial frequencies of up to 0.20 nm-1 (5 nm), reflecting protofilaments for electron densities of up to 7.2 ± 1.4 × 102 e-/Å2, an order of magnitude higher than measured for frozen microtubules in amorphous ice.


Asunto(s)
Grafito/química , Microscopía Electrónica de Transmisión/métodos , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Animales , Microscopía por Crioelectrón/métodos , Electrones , Proteínas de Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Conformación Proteica , Porcinos , Tubulina (Proteína)/química , Tubulina (Proteína)/ultraestructura
4.
Bull Exp Biol Med ; 161(4): 451-5, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27591874

RESUMEN

Al(3+), Fe(3+), and Zn(2+) ions can disturb microtubule assembly from tubulin and microtubuleassociated proteins in rat brain. The main structural forms of these microtubules are rings and tangled bundles. These structures are formed only in the presence of Al(3+) and Fe(3+) ions. Therefore, Zn(2+) ions can be excluded from possible causes of structural abnormalities in microtubules during Alzheimer's disease. Al(3+) ions are the most probable etiological cause of Alzheimer's disease. The concentration of Al(3+) ions affecting the structure of microtubules is one order of magnitude lower than that of Fe(3+) ions (10 and 100 µM, respectively), which corresponds to their brain concentration reported in Alzheimer's disease.


Asunto(s)
Aluminio/farmacología , Encéfalo/metabolismo , Hierro/farmacología , Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Zinc/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/ultraestructura , Cognición/efectos de los fármacos , Memoria/efectos de los fármacos , Proteínas de Microtúbulos/efectos de los fármacos , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Ratas
5.
J Struct Biol ; 184(2): 335-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24099757

RESUMEN

Kar3Cik1 is a heterodimeric kinesin-14 from Saccharomyces cerevisiae involved in spindle formation during mitosis and karyogamy in mating cells. Kar3 represents a canonical kinesin motor domain that interacts with microtubules under the control of ATP-hydrolysis. In vivo, the localization and function of Kar3 is differentially regulated by its interacting stoichiometrically with either Cik1 or Vik1, two closely related motor homology domains that lack the nucleotide-binding site. Indeed, Vik1 structurally resembles the core of a kinesin head. Despite being closely related, Kar3Cik1 and Kar3Vik1 are each responsible for a distinct set of functions in vivo and also display different biochemical behavior in vitro. To determine a structural basis for their distinct functional abilities, we used cryo-electron microscopy and helical reconstruction to investigate the 3-D structure of Kar3Cik1 complexed to microtubules in various nucleotide states and compared our 3-D data of Kar3Cik1 with that of Kar3Vik1 and the homodimeric kinesin-14 Ncd from Drosophila melanogaster. Due to the lack of an X-ray crystal structure of the Cik1 motor homology domain, we predicted the structure of this Cik1 domain based on sequence similarity to its relatives Vik1, Kar3 and Ncd. By molecular docking into our 3-D maps, we produced a detailed near-atomic model of Kar3Cik1 complexed to microtubules in two distinct nucleotide states, a nucleotide-free state and an ATP-bound state. Our data show that despite their functional differences, heterodimeric Kar3Cik1 and Kar3Vik1 and homodimeric Ncd, all share striking structural similarities at distinct nucleotide states indicating a common mechanistic theme within the kinesin-14 family.


Asunto(s)
Proteínas de Microtúbulos/ultraestructura , Proteínas Asociadas a Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Adenilil Imidodifosfato/química , Microscopía por Crioelectrón , Proteínas de Microtúbulos/química , Proteínas Asociadas a Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química
6.
Nat Commun ; 12(1): 3065, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031406

RESUMEN

In living cells, microtubules (MTs) play pleiotropic roles, which require very different mechanical properties. Unlike the dynamic MTs found in the cytoplasm of metazoan cells, the specialized cortical MTs from Toxoplasma gondii, a prevalent human pathogen, are extraordinarily stable and resistant to detergent and cold treatments. Using single-particle cryo-EM, we determine their ex vivo structure and identify three proteins (TrxL1, TrxL2 and SPM1) as bona fide microtubule inner proteins (MIPs). These three MIPs form a mesh on the luminal surface and simultaneously stabilize the tubulin lattice in both longitudinal and lateral directions. Consistent with previous observations, deletion of the identified MIPs compromises MT stability and integrity under challenges by chemical treatments. We also visualize a small molecule like density at the Taxol-binding site of ß-tubulin. Our results provide the structural basis to understand the stability of cortical MTs and suggest an evolutionarily conserved mechanism of MT stabilization from the inside.


Asunto(s)
Microscopía por Crioelectrón , Interacciones Huésped-Parásitos/fisiología , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Toxoplasma/metabolismo , Sitios de Unión , Sistemas CRISPR-Cas , Humanos , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Paclitaxel/química , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
7.
J Microsc ; 237(1): 63-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20055919

RESUMEN

Myoblast therapy relies on the integration of skeletal muscle stem cells into distinct muscular compartments for the prevention of clinical conditions such as heart failure, or bladder dysfunction. Understanding the fundamentals of myogenesis is hence crucial for the success of these potential medical therapies. In this report, we followed the rearrangement of the surface membrane structure and the actin cytoskeletal organization in C2C12 myoblasts at different stages of myogenesis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). AFM imaging of living myoblasts undergoing fusion unveiled that within minutes of making cell-cell contact, membrane tubules appear that unite the myoblasts and increase in girth as fusion proceeds. CLSM identified these membrane tubules as built on scaffolds of actin filaments that nucleate at points of contact between fusing myoblasts. In contrast, similarly behaving membrane tubules are absent during cytokinesis. The results from our study in combination with recent findings in literature further expand the understanding of the biochemical and membrane structural rearrangements involved in the two fundamental cellular processes of division and fusion.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Desarrollo de Músculos , Actinas/fisiología , Actinas/ultraestructura , Animales , Fusión Celular , Línea Celular , Citocinesis , Insuficiencia Cardíaca/terapia , Humanos , Ratones , Microscopía Confocal/métodos , Proteínas de Microtúbulos/fisiología , Proteínas de Microtúbulos/ultraestructura , Mioblastos/citología , Mioblastos/fisiología , Sensibilidad y Especificidad , Trasplante de Células Madre , Factores de Tiempo , Enfermedades de la Vejiga Urinaria/terapia
8.
J Cell Biol ; 116(5): 1231-41, 1992 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-1740474

RESUMEN

Microtubules (MTs) in the axon have a uniform polarity orientation that is recapitulated during recovery from episodes of MT depolymerization (Heidemann, S. R., M. A. Hamborg, S. J. Thomas, B. Song, S. Lindley, and D. Chu. 1984. J. Cell Biol. 99:1289-1295). This tight regulation of their organization indicates that axonal MTs are spatially regulated by discrete nucleating structures comparable in function to the centrosome. Several authors have proposed that an especially stable class of MTs in the axon may serve as these nucleating structures. In a previous report (Baas, P. W., and M. M. Black. 1990. J. Cell Biol. 111:495-509), we determined that the axons of cultured sympathetic neurons contain two classes of MT polymer, stable and labile, that differ in their sensitivity to nocodazole by roughly 35-fold. The stable and labile polymer represent long-lived and recently assembled polymer, respectively. We also determined that these two classes of polymer can be visually distinguished at the immunoelectron microscopic level based on their content of tyrosinated alpha-tubulin: the labile polymer stains densely, while the stable polymer does not stain. In the present study, we have taken advantage of these observations to directly identify MT nucleating structures in the axon. Neuron cultures were treated with nocodazole for 6 h to completely depolymerize the labile polymer in the axon, and substantially shorten the stable polymer. The cultures were then rinsed free of the drug, permitted to reassemble polymer for various periods of time, and prepared for immunoelectron microscopic localization of tyrosinated alpha-tubulin. Serial reconstruction of consecutive thin sections was undertaken to determine the spatial relationship between the stable MTs and the newly assembled polymer. All of the new polymer assembled in direct continuity with the plus ends of stable MTs, indicating that these ends are assembly competent, and hence capable of acting as nucleating structures. Our results further indicate that no self-assembly of MTs occurs in the axon, nor do any MT nucleating structures exist in the axon other than the plus ends of stable MTs. Thus the plus ends of stable MTs are the exclusive nucleating structures for MTs in the axon.


Asunto(s)
Axones/química , Microtúbulos/química , Animales , Animales Recién Nacidos , Axones/ultraestructura , Polaridad Celular , Células Cultivadas , Ganglios Simpáticos/citología , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Estructura Molecular , Nocodazol/farmacología , Ratas , Tubulina (Proteína)/análisis , Tirosina/análisis
9.
J Cell Biol ; 131(4): 833-43, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7490288

RESUMEN

The nod kinesin-like protein is localized along the arms of meiotic chromosomes and is required to maintain the position of achiasmate chromosomes on the developing meiotic spindle. Here we show that the localization of ectopically expressed nod protein on mitotic chromosomes precisely parallels that observed for wild-type nod protein on meiotic chromosomes. Moreover, the carboxyl-terminal half of the nod protein also binds to chromosomes when overexpressed in mitotic cells, whereas the overexpressed amino-terminal motor domain binds only to microtubules. Chromosome localization of the carboxyl-terminal domain of nod depends upon an 82-amino acid region comprised of three copies of a sequence homologous to the DNA-binding domain of HMG 14/17 proteins. These data map the two primary functional domains of the nod protein in vivo and provide a molecular explanation for the directing of the nod protein to a specific subcellular component, the chromosome.


Asunto(s)
Cromosomas/química , Proteínas de Drosophila , Drosophila/genética , Proteínas de Microtúbulos/genética , Animales , Secuencia de Bases , Cartilla de ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Embrión no Mamífero/citología , Expresión Génica , Cinesinas/genética , Proteínas de Microtúbulos/análisis , Proteínas de Microtúbulos/ultraestructura , Mitosis/genética , Datos de Secuencia Molecular
10.
J Cell Biol ; 160(2): 201-12, 2003 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-12538640

RESUMEN

Fragmentation of the mammalian Golgi apparatus during mitosis requires the phosphorylation of a specific subset of Golgi-associated proteins. We have used a biochemical approach to characterize these proteins and report here the identification of golgin-84 as a novel mitotic target. Using cryoelectron microscopy we could localize golgin-84 to the cis-Golgi network and found that it is enriched on tubules emanating from the lateral edges of, and often connecting, Golgi stacks. Golgin-84 binds to active rab1 but not cis-Golgi matrix proteins. Overexpression or depletion of golgin-84 results in fragmentation of the Golgi ribbon. Strikingly, the Golgi ribbon is converted into mini-stacks constituting only approximately 25% of the volume of a normal Golgi apparatus upon golgin-84 depletion. These mini-stacks are able to carry out protein transport, though with reduced efficiency compared with a normal Golgi apparatus. Our results suggest that golgin-84 plays a key role in the assembly and maintenance of the Golgi ribbon in mammalian cells.


Asunto(s)
Autoantígenos , Células Eucariotas/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microtúbulos/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Células Eucariotas/ultraestructura , Regulación de la Expresión Génica/fisiología , Aparato de Golgi/ultraestructura , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/ultraestructura , Microscopía Electrónica , Proteínas de Microtúbulos/ultraestructura , Mitosis/genética , Fosfoproteínas/metabolismo , Transporte de Proteínas/genética , ARN Interferente Pequeño , Ratas , Proteínas Recombinantes de Fusión , Fracciones Subcelulares , Proteínas de Transporte Vesicular , Proteínas Virales , Proteínas de Unión al GTP rab1/ultraestructura
11.
J Cell Biol ; 126(2): 403-12, 1994 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-7518465

RESUMEN

The dynactin complex visualized by deepetch electron microscopy appears as a short filament 37-nm in length, which resembles F-actin, plus a thinner, laterally oriented filament that terminates in two globular heads. The locations of several of the constituent polypeptides were identified on this structure by applying antibodies to decorate the dynactin complex before processing for electron microscopy. Antibodies to the actin-related protein Arp1 (previously referred to as actin-RPV), bound at various sites along the filament, demonstrating that this protein assembles in a polymer similar to conventional actin. Antibodies to the barbed-end actin-binding protein, capping protein, bound to one end of the filament. Thus, an actin-binding protein that binds conventional actin may also bind to Arp1 to regulate its polymerization. Antibodies to the 62-kD component of the dynactin complex also bound to one end of the filament. An antibody that binds the COOH-terminal region of the 160/150-kD dynactin polypeptides bound to the globular domains at the end of the thin lateral filament, suggesting that the dynactin polypeptide comprises at least part of the sidearm structure.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/metabolismo , Proteínas de Microfilamentos , Proteínas de Microtúbulos/metabolismo , Proteínas de Microtúbulos/ultraestructura , Proteínas Asociadas a Microtúbulos , Actinas/análisis , Actinas/química , Actinas/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Especificidad de Anticuerpos , Reacciones Antígeno-Anticuerpo , Química Encefálica , Proteína CapZ , Embrión de Pollo , Complejo Dinactina , Dineínas/aislamiento & purificación , Dineínas/metabolismo , Epítopos , Punto Isoeléctrico , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/inmunología , Proteínas de Microtúbulos/aislamiento & purificación , Modelos Biológicos , Datos de Secuencia Molecular , Peso Molecular , Proteínas Musculares/genética , Proteínas Musculares/inmunología , Proteínas Musculares/metabolismo , Músculos/química , Análisis de Secuencia
12.
Nat Commun ; 10(1): 993, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30824690

RESUMEN

Centrioles are vital cellular structures that form centrosomes and cilia. The formation and function of cilia depends on a set of centriole's distal appendages. In this study, we use correlative super resolution and electron microscopy to precisely determine where distal appendage proteins localize in relation to the centriole microtubules and appendage electron densities. Here we characterize a novel distal appendage protein ANKRD26 and detail, in high resolution, the initial steps of distal appendage assembly. We further show that distal appendages undergo a dramatic ultra-structural reorganization before mitosis, during which they temporarily lose outer components, while inner components maintain a nine-fold organization. Finally, using electron tomography we reveal that mammalian distal appendages associate with two centriole microtubule triplets via an elaborate filamentous base and that they appear as almost radial finger-like protrusions. Our findings challenge the traditional portrayal of mammalian distal appendage as a pinwheel-like structure that is maintained throughout mitosis.


Asunto(s)
Centriolos/ultraestructura , Cilios/ultraestructura , Tomografía con Microscopio Electrónico/métodos , Microscopía Electrónica/métodos , Microtúbulos/ultraestructura , Animales , Aurora Quinasa A , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/ultraestructura , Proteínas de Unión al ADN , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , Proteínas de Microtúbulos/ultraestructura , Mitosis , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Especificidad de la Especie , Factores de Transcripción , Quinasa Tipo Polo 1
13.
Nat Commun ; 9(1): 2023, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789620

RESUMEN

Distal appendages (DAPs) are nanoscale, pinwheel-like structures protruding from the distal end of the centriole that mediate membrane docking during ciliogenesis, marking the cilia base around the ciliary gate. Here we determine a super-resolved multiplex of 16 centriole-distal-end components. Surprisingly, rather than pinwheels, intact DAPs exhibit a cone-shaped architecture with components filling the space between each pinwheel blade, a new structural element we term the distal appendage matrix (DAM). Specifically, CEP83, CEP89, SCLT1, and CEP164 form the backbone of pinwheel blades, with CEP83 confined at the root and CEP164 extending to the tip near the membrane-docking site. By contrast, FBF1 marks the distal end of the DAM near the ciliary membrane. Strikingly, unlike CEP164, which is essential for ciliogenesis, FBF1 is required for ciliary gating of transmembrane proteins, revealing DAPs as an essential component of the ciliary gate. Our findings redefine both the structure and function of DAPs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/ultraestructura , Centriolos/ultraestructura , Cilios/ultraestructura , Proteínas de Microtúbulos/ultraestructura , Proteínas Asociadas a Microtúbulos/ultraestructura , Canales de Sodio/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Centriolos/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Edición Génica , Expresión Génica , Células HEK293 , Humanos , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Imagen Molecular , Multimerización de Proteína , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura , Canales de Sodio/genética , Canales de Sodio/metabolismo
14.
J Cell Biol ; 216(9): 2669-2677, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28652389

RESUMEN

Microtubules are polymers of αß-tubulin heterodimers essential for all eukaryotes. Despite sequence conservation, there are significant structural differences between microtubules assembled in vitro from mammalian or budding yeast tubulin. Yeast MTs were not observed to undergo compaction at the interdimer interface as seen for mammalian microtubules upon GTP hydrolysis. Lack of compaction might reflect slower GTP hydrolysis or a different degree of allosteric coupling in the lattice. The microtubule plus end-tracking protein Bim1 binds yeast microtubules both between αß-tubulin heterodimers, as seen for other organisms, and within tubulin dimers, but binds mammalian tubulin only at interdimer contacts. At the concentrations used in cryo-electron microscopy, Bim1 causes the compaction of yeast microtubules and induces their rapid disassembly. Our studies demonstrate structural differences between yeast and mammalian microtubules that likely underlie their differing polymerization dynamics. These differences may reflect adaptations to the demands of different cell size or range of physiological growth temperatures.


Asunto(s)
Microscopía por Crioelectrón , Microtúbulos/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Tubulina (Proteína)/ultraestructura , Animales , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Guanosina Trifosfato/metabolismo , Hidrólisis , Proteínas de Microtúbulos/metabolismo , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/genética , Microtúbulos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Sus scrofa , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
FEBS J ; 284(14): 2183-2193, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28548391

RESUMEN

Mutations of human MID1 are associated with X-linked Opitz G Syndrome (XLOS), which is characterized by midline birth defects. XLOS-observed mutations within the MID1 B-box1 domain are associated with cleft lip/palate, wide-spaced eyes and hyperspadias. Three of the four XLOS-observed mutations in the B-box1 domain results in unfolding but the structural and functional effects of the P151L mutation is not characterized. Here, we demonstrate that the P151L mutation does not disrupt the overall tertiary structure of the B-box1 domain and the adjacent domains. In fact, MID1 E3 ligase activity is slightly enhanced. However, the P151L mutation disrupted the ability of MID1 to catalyze the poly-ubiquitination of alpha4, a novel regulator of PP2A. This observation is consistent with results observed with the other three structure-destabilizing B-box1 mutations in targeting alpha4 but not PP2A. Alpha4 is shown to bind and sequester the catalytic subunit of PP2A and protect it from MID1-mediated ubiquitination and as a result, an increase in alpha4 can contribute to an increase in PP2A, playing a greater role in midline development during embryogenesis.


Asunto(s)
Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Esófago/anomalías , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Hipertelorismo/genética , Hipertelorismo/metabolismo , Hipospadias/genética , Hipospadias/metabolismo , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/metabolismo , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Fisura del Paladar/patología , Esófago/metabolismo , Esófago/patología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Hipertelorismo/patología , Hipospadias/patología , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/ultraestructura , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestructura , Dominios Proteicos , Proteína Fosfatasa 2/metabolismo , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/ultraestructura , Ubiquitina-Proteína Ligasas , Ubiquitinación
18.
J Mol Biol ; 260(5): 743-55, 1996 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-8709152

RESUMEN

We have used cryo-electron microscopy and image analysis to obtain the three-dimensional (3D) structure of 11, 12, 14 and 15 protofilament microtubules decorated with the motor domain of ncd. To obtain the 3D maps, we developed a back-projection method that does not require a helical arrangement of the tubulin heterodimers. This method allows the calculation of 3D maps even when lattice discontinuities (seams) are present. The maps show that the microtubules we studied conform to a B-type lattice with one or more seams. In the presence of 5'-adenylim-idodiphosphate (AMP-PNP), the motor domain of ncd binds to the microtubule protofilament crest interacting with only one protofilament. Viewing the structures along the microtubule axis shows that the ncd motor domain and the tubulin are titled in opposite directions. We determined that a clockwise tilt of the tubulin subunits corresponds to a view from the minus end towards the plus end of the microtubule.


Asunto(s)
Proteínas de Drosophila , Cinesinas , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/ultraestructura , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Proteínas de Microtúbulos/química , Microtúbulos/química , Modelos Moleculares , Topografía de Moiré , Tubulina (Proteína)/química
19.
J Mol Biol ; 231(2): 521-30, 1993 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-8510163

RESUMEN

The flagellate Giardia is reportedly (and controversially) the most primitive eukaryotic organism known to us. The trophozoite is without organelles but has an extensive cytoskeleton of microtubules and associated structural proteins. We have cloned and sequenced overlapping cDNAs and genomic DNAs for a 101,000 M(r) protein involved in microtubule bundling in the median body of G. lamblia cells. The polypeptide chain appears to be mainly alpha-helical with the repeating amphipathic heptapeptides characteristic of a coiled coil molecule, but without homology to known microtubule-associated proteins. Domain analysis suggests a structure in which a rod of three linked coils spans 695 residues (approximately 103 nm), with the ends of the chain forming compact globular head and tail domains of approximately 11 kDa and approximately 7 kDa. The rod domain has internal sequence repeats of 24 residues caused by multiple phase shifts in the coiled coil heptapeptide positions. These repeats have a conserved side-chain pattern which contributes the most significant periodicities in Fourier transforms of the linear distributions of apolar and charged residues. Our best alignment of the pattern has 21 complete repeats of 24 residues and 9 partial repeats of 21 or fewer residues. The apolar residue phase shifts will produce a regular stutter in the hydrophobic core of the coiled coil. This structure is reminiscent of beta-giardin, another coiled coil protein with a broken seam found in the Giardia cytoskeleton. Although the underlying sequence motif is different for the two proteins, the general feature of being regularly divided into segments might relate to a similar mechanism of interaction with microtubules.


Asunto(s)
ADN Protozoario/genética , Giardia/genética , Proteínas de Microtúbulos/genética , Microtúbulos/ultraestructura , Secuencias Repetitivas de Ácidos Nucleicos , Secuencia de Aminoácidos , Animales , Clonación Molecular , Análisis de Fourier , Genoma , Giardia/ultraestructura , Proteínas de Microtúbulos/ultraestructura , Datos de Secuencia Molecular , Conformación Proteica , ARN Mensajero/genética , Análisis de Secuencia
20.
J Mol Biol ; 265(5): 553-64, 1997 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-9048948

RESUMEN

Kinesin and ncd (non-claret disjunctional) are microtubule associated motor proteins which share several structural features: both motors are dimers; each monomer is composed of a stalk region, a cargo binding domain and a motor domain; the motor domains have approximately 41% sequence identity. Despite these similarities the two motors have strikingly different movement properties: kinesin is a plus-end directed molecular motor, while ncd is minus-end directed. Here we compare the structure and the microtubule-binding properties of these oppositely directed molecular motors. We determined the three-dimensional structure of tubulin sheets decorated with the motor domains of either kinesin or ncd to a resolution of < 20 A by negative stain electron microscopy and tilt series reconstruction. Comparisons with a control structure of tubulin alone revealed that in both cases the motor domain binds to the outer crest of a single protofilament making contacts with both alpha and beta tubulin. Despite their opposite directionality, the geometry of attachment of the motor domain to the protofilament in the presence of AMP-PNP is very similar for both motors. These data rule out models for directionality which have the motors binding in an opposite orientation to the microtubules. Binding of the ncd as well as the kinesin motor domain appears to induce conformational changes in tubulin. This observation suggests an active role of tubulin in motor movement and/or in the determination of directionality.


Asunto(s)
Proteínas de Drosophila , Cinesinas/metabolismo , Proteínas de Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Sitios de Unión , Bovinos , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Cinesinas/química , Cinesinas/ultraestructura , Microscopía Electrónica , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/ultraestructura , Microtúbulos/química , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestructura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda