Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Neurochem Res ; 46(3): 494-503, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398639

RESUMEN

The vesicular glutamate transporter (VGLUT) facilitates the uptake of glutamate (Glu) into neuronal vesicles. VGLUT has not yet been fully characterized pharmacologically but a body of work established that certain azo-dyes bearing two Glu isosteres via a linker were potent inhibitors. However, the distance between the isostere groups that convey potent inhibition has not been delineated. This report describes the synthesis and pharmacologic assessment of Congo Red analogs that contain one or two glutamate isostere or mimic groups; the latter varied in the interatomic distance and spacer properties to probe strategic binding interactions within VGLUT. The more potent inhibitors had two glutamate isosteres symmetrically linked to a central aromatic group and showed IC50 values ~ 0.3-2.0 µM at VGLUT. These compounds contained phenyl, diphenyl ether (PhOPh) or 1,2-diphenylethane as the linker connecting 4-aminonaphthalene sulfonic acid groups. A homology model for VGLUT2 using D-galactonate transporter (DgoT) to dock and identify R88, H199 and F219 as key protein interactions with Trypan Blue, Congo Red and selected potent analogs prepared and tested in this report.


Asunto(s)
Rojo Congo/análogos & derivados , Rojo Congo/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Animales , Rojo Congo/farmacología , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Ratas , Relación Estructura-Actividad , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores
2.
J Neurosci ; 38(35): 7741-7752, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30037833

RESUMEN

The arginine-rich dipeptide repeats (DPRs) are highly toxic products from the C9orf72 repeat expansion mutations, which are the most common causes of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the effects of DPRs in the synaptic regulation and excitotoxicity remain elusive, and how they contribute to the development of FTD is primarily unknown. By expressing DPRs with different toxicity strength in various neuronal populations in a Drosophila model, we unexpectedly found that Glycine-Arginine/Proline-Arginine (GR/PR) with 36 repeats could lead to neurodegenerative phenotypes only when they were expressed in glutamatergic neurons, including motor neurons. We detected increased extracellular glutamate and intracellular calcium levels in GR/PR-expressing larval ventral nerve cord and/or adult brain, accompanied by significant increase of synaptic boutons and active zones in larval neuromuscular junctions. Inhibiting the vesicular glutamate transporter expression or blocking the NMDA receptor in presynaptic glutamatergic motor neurons could effectively rescue the motor deficits and shortened life span caused by poly GR/PR, thus indicating a cell-autonomous excitotoxicity mechanism. Therefore, our results have revealed a novel mode of synaptic regulation by arginine-rich C9 DPRs expressed at more physiologically relevant toxicity levels and provided a mechanism that could contribute to the development of C9-related ALS and FTD.SIGNIFICANCE STATEMENT C9orf72 dipeptide repeats (DPRs) are key toxic species causing ALS/FTD, but their roles in synaptic regulation and excitotoxicity are unclear. Using C9orf72 DPRs with various toxicity strength, we have found that the arginine-rich DPRs cause selective degeneration in Drosophila glutamatergic neurons and revealed an NMDA receptor-dependent cell-autonomous excitotoxicity mechanism. Therefore, this study has advanced our understanding of C9orf72 DPR functions in synaptic regulation and excitotoxicity and provided a new mechanism that could contribute to the development of C9-related ALS and FTD.


Asunto(s)
Proteína C9orf72/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Ácido Glutámico/fisiología , Repeticiones de Minisatélite , Degeneración Nerviosa/genética , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Arginina , Proteína C9orf72/química , Dipéptidos , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Genes Reporteros , Glicina , Larva , Longevidad , Masculino , Actividad Motora , Neuronas Motoras/fisiología , Prolina , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores
3.
Brain ; 140(8): 2210-2225, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899017

RESUMEN

See Huang and Liston (doi:10.1093/awx166) for a scientific commentary on this article.Human depression is associated with glutamatergic dysfunction and alterations in resting state network activity. However, the indirect nature of human in vivo glutamate and activity assessments obscures mechanistic details. Using the chronic social defeat mouse model of depression, we determine how mesoscale glutamatergic networks are altered after chronic stress, and in response to the rapid acting antidepressant, ketamine. Transgenic mice (Ai85) expressing iGluSnFR (a recombinant protein sensor) permitted real-time in vivo selective characterization of extracellular glutamate and longitudinal imaging of mesoscale cortical glutamatergic functional circuits. Mice underwent chronic social defeat or a control condition, while spontaneous cortical activity was longitudinally sampled. After chronic social defeat, we observed network-wide glutamate functional hyperconnectivity in defeated animals, which was confirmed with voltage sensitive dye imaging in an independent cohort. Subanaesthetic ketamine has unique effects in defeated animals. Acutely, subanaesthetic ketamine induces large global cortical glutamate transients in defeated animals, and an elevated subanaesthetic dose resulted in sustained global increase in cortical glutamate. Local cortical inhibition of glutamate transporters in naïve mice given ketamine produced a similar extracellular glutamate phenotype, with both glutamate transients and a dose-dependent accumulation of glutamate. Twenty-four hours after ketamine, normalization of depressive-like behaviour in defeated animals was accompanied by reduced glutamate functional connectivity strength. Altered glutamate functional connectivity in this animal model confirms the central role of glutamate dynamics as well as network-wide changes after chronic stress and in response to ketamine.


Asunto(s)
Corteza Cerebral/fisiología , Depresión/fisiopatología , Ácido Glutámico/efectos de los fármacos , Ketamina/farmacología , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Animales , Antidepresivos/farmacología , Ácido Aspártico/farmacología , Conducta Animal/efectos de los fármacos , Depresión/metabolismo , Depresión/psicología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Ácido Glutámico/genética , Ácido Glutámico/metabolismo , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Conducta Social , Imagen de Colorante Sensible al Voltaje
4.
Neurochem Res ; 39(1): 117-28, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24248859

RESUMEN

The increased concentration of glutamate in synaptic vesicles, mediated by the vesicular glutamate transporter (VGLUT), is an initial vital step in glutamate synaptic transmission. Evidence indicates that aberrant overexpression of VGLUT is involved in certain pathophysiologies of the central nervous system. VGLUT is subject to inhibition by various types of agents. The most potent VGLUT-specific inhibitor currently known is Trypan Blue, which is highly charged, hence membrane-impermeable. We have sought a potent, VGLUT-specific agent amenable to easy modification to a membrane-permeable analog. We provide evidence that Brilliant Yellow exhibits potent, VGLUT-specific inhibition, with a Ki value of 12 nM. Based upon structure-activity relationship studies and molecular modeling, we have defined the potent inhibitory pharmacophore of Brilliant Yellow. This study provides new insight into development of a membrane-permeable agent to lead to specific blockade, with high potency, of accumulation of glutamate into synaptic vesicles in neurons.


Asunto(s)
Compuestos Azo/farmacología , Bencenosulfonatos/farmacología , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Animales , Apraxia Ideomotora , Compuestos Azo/antagonistas & inhibidores , Bencenosulfonatos/antagonistas & inhibidores , Bovinos , Diarilheptanoides/farmacología , Ácido Glutámico/metabolismo , Indoles/farmacología , Ratas , Relación Estructura-Actividad , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
5.
Bioorg Med Chem Lett ; 24(3): 850-4, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24424130

RESUMEN

Substituted quinoline-2,4-dicarboxylates (QDCs) are conformationally-restricted mimics of glutamate that were previously reported to selectively block the glutamate vesicular transporters (VGLUTs). We find that expanding the QDC scaffold to benzoquinoline dicarboxylic acids (BQDC) and naphthoquinoline dicarboxylic acids (NQDCs) improves inhibitory activity with the NQDCs showing IC50∼70 µM. Modeling overlay studies showed that the polycyclic QDCs resembled steroid structures and led to the identification and testing of estrone sulfate, pregnenolone sulfate and pregnanolone sulfate that blocked the uptake of l-Glu by 50%, 70% and 85% of control, respectively. Pregnanolone sulfate was further characterized by kinetic pharmacological determinations that demonstrated competitive inhibition and a Ki of ≈20 µM.


Asunto(s)
Ácidos Dicarboxílicos/síntesis química , Ácidos Dicarboxílicos/farmacología , Naftoles/síntesis química , Neurotransmisores/síntesis química , Neurotransmisores/farmacología , Quinolinas/síntesis química , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Unión Competitiva/efectos de los fármacos , Ciclización , Ácidos Dicarboxílicos/química , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Modelos Moleculares , Estructura Molecular , Naftoles/química , Naftoles/farmacología , Neurotransmisores/química , Pregnanolona/química , Pregnanolona/farmacocinética , Quinolinas/química , Quinolinas/farmacología , Estándares de Referencia
6.
Behav Pharmacol ; 24(8): 653-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24128751

RESUMEN

Accumulating evidence suggests that vesicular glutamate transporters (VGLUTs), which control the storage and release of glutamate, may play a role in pain processing. Chicago sky blue 6B (CSB6B), which is structurally related to glutamate, is a competitive VGLUT inhibitor without affecting plasma membrane transporters. The present study was designed to investigate the antinociceptive effects of CSB6B in a number of pain models. The hot-plate test was used as an acute thermal pain test. Inflammatory pain was evaluated using acetic acid writhing, formalin, and complete Freund's adjuvant tests. Intracerebroventricular administration of CSB6B did not affect acute thermal pain responses in 50 or 55°C hot plate tests. However, CSB6B attenuated acetic acid-induced writhing in a dose-dependent and time-dependent manner. In addition, CSB6B reduced licking/biting behavior during the second phase, but not during the first phase, following an intraplantar injection of formalin. In the complete Freund's adjuvant test, a significant attenuation of thermal hyperalgesia was also observed in CSB6B-treated mice. At antinociceptive doses, CSB6B did not affect mice spontaneous locomotor activity. The present study shows that pharmacological inhibition of VGLUT activity was sufficient to attenuate experimental inflammatory pain and suggests that regulation of VGLUTs might be a novel therapeutic strategy for the treatment of pain.


Asunto(s)
Analgésicos/administración & dosificación , Analgésicos/farmacología , Dimensión del Dolor/efectos de los fármacos , Azul de Tripano/administración & dosificación , Azul de Tripano/farmacología , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Infusiones Intraventriculares , Masculino , Ratones , Actividad Motora/efectos de los fármacos
7.
Glia ; 59(11): 1600-11, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21748804

RESUMEN

We have previously demonstrated that human astrocytes are GABAergic cells. Throughout the adult human brain, they express the GABA synthesizing enzyme GAD 67, the GABA metabolizing enzyme GABA-T, and the GABA(A) and GABA(B) receptors. GABA modulates the actions of microglia, indicating an important role for astrocytes beyond that of influencing neurotransmitter function. Here we report on the mechanisms by which astrocytes release GABA. Astrocytes were found to express the mRNA and protein for multiple GABA transporters, and multiple receptors for glutamate, GABA, and glycine. In culture, untreated human astrocytes maintained an intracellular GABA level of 2.32 mM. They exported GABA into the culture medium so that an intracellular-extracellular gradient of 3.64 fold was reached. Inhibitors of the GABA transporters GAT1, GAT2, and GAT3, significantly reduced this export in a Ca(2+)-independent fashion. Intracellular GABA levels were enhanced by treatment with the GABA-T inhibitors gabaculine or vigabatrin. Treatment with glutamate increased GABA release in a concentration-dependent fashion. This was partially inhibited by blockers of N-methyl-D-aspartate and kainate receptors. Conversely, glycine and D-serine, co-agonists of NMDA receptors, enhanced the GABA release. GABA release was accompanied by an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and was reduced by adding the Ca(2+) chelator, BAPTA-AM to the medium. These data indicate that astrocytes continuously synthesize GABA and that there are multiple mechanisms which can mediate its release. Each of these may play a role in the physiological functioning of astrocytes.


Asunto(s)
Astrocitos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Astrocitos/química , Western Blotting , Calcio/análisis , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quelantes/farmacología , Medios de Cultivo , Ácidos Ciclohexanocarboxílicos/farmacología , Cartilla de ADN , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Humanos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Glutamato/metabolismo , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Glutamato/genética , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Vigabatrin/farmacología
8.
Bioorg Med Chem Lett ; 21(14): 4358-62, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21669531

RESUMEN

Evidence was acquired prior to suggest that the vesicular glutamate transporter (VGLUT) but not other glutamate transporters were inhibited by structures containing a weakly basic α-amino group. To test this hypothesis, a series of analogs using a hydantoin (pK(a)∼9.1) isostere were synthesized and analyzed as inhibitors of VGLUT and the obligate cystine-glutamate transporter (system x(c)(-)). Of the hydantoin analogs tested, a thiophene-5-carboxaldehyde analog 2l and a bis-hydantoin 4b were relatively strong inhibitors of VGLUT reducing uptake to less than 6% of control at 5mM but few inhibited system x(c)(-) greater than 50% of control. The benzene-2,4-disulfonic acid analog 2b and p-diaminobenzene analog 2e were also good hydantoin-based inhibitors of VGLUT reducing uptake by 11% and 23% of control, respectively, but neither analog was effective as a system x(c)(-) inhibitor. In sum, a hydantoin isostere adds the requisite chemical properties needed to produce selective inhibitors of VGLUT.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/antagonistas & inhibidores , Hidantoínas/química , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos y+/metabolismo , Ácido Glutámico/metabolismo , Hidantoínas/síntesis química , Hidantoínas/farmacología , Relación Estructura-Actividad , Proteínas de Transporte Vesicular de Glutamato/metabolismo
9.
Bioorg Med Chem ; 18(18): 6922-33, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20708942

RESUMEN

Vesicular glutamate transporters (VGLUTs) allow the loading of presynaptic glutamate vesicles and thus play a critical role in glutamatergic synaptic transmission. Rose Bengal (RB) is the most potent known VGLUT inhibitor (Ki 25 nM); therefore we designed, synthesized and tested in brain preparations, a series of analogs based on this scaffold. We showed that among the two tautomers of RB, the carboxylic and not the lactonic form is active against VGLUTs and generated a pharmacophore model to determine the minimal structure requirements. We also tested RB specificity in other neurotransmitter uptake systems. RB proved to potently inhibit VMAT (Ki 64 nM) but weakly VACHT (Ki>9.7 microM) and may be a useful tool in glutamate/acetylcholine co-transmission studies.


Asunto(s)
Rosa Bengala/análogos & derivados , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Animales , Modelos Químicos , Modelos Moleculares , Ratas , Ratas Sprague-Dawley , Rosa Bengala/química , Rosa Bengala/farmacología , Relación Estructura-Actividad , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo
10.
Biochim Biophys Acta Biomembr ; 1862(12): 183175, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31923412

RESUMEN

The vesicular glutamate transporters (VGLUTs) bind and move glutamate (Glu) from the cytosol into the lumen of synaptic vesicles using a H+-electrochemical gradient (ΔpH and Δψ) generated by the vesicular H+-ATPase. VGLUTs show very low Glu binding and to date, no three-dimensional structure has been elucidated. Prior studies have attempted to identify the key residues involved in binding VGLUT substrates and inhibitors using homology models and docking experiments. Recently, the inward and outward oriented crystal structures of d-galactonate transporter (DgoT) emerged as possible structure templates for VGLUT. In this review, a new homology model for VGLUT2 based on DgoT has been developed and used to conduct docking experiments to identify and differentiate residues and binding orientations involved in ligand interactions. This review describes small molecule-ligand interactions including docking using a VGLUT2 homology model derived from DgoT.


Asunto(s)
Simulación del Acoplamiento Molecular , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Ácido Glutámico/análogos & derivados , Ácido Glutámico/metabolismo , Humanos , Proteínas de Transporte de Monosacáridos/química , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Unión Periplasmáticas/química , Proteínas de Unión Periplasmáticas/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Especificidad por Sustrato , Termodinámica , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores
11.
Neuropharmacology ; 164: 107902, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31811873

RESUMEN

Vesicular glutamate transporters (VGLUT1-3) mediate the uptake of glutamate into synaptic vesicles. VGLUTs are pivotal actors of excitatory transmission and of almost all brain functions. Their implication in various pathologies has been clearly documented. Despite their functional importance, the pharmacology of VGLUTs is limited to a few dyes such as Trypan Blue, Rose Bengal or Brilliant Yellow type. Here, we report the design and evaluation of new potent analogs based on Trypan Blue scaffold. Our best compound, named LSP5-2157, has an EC50 of 50 nM on glutamate vesicular uptake. Using a 3D homology model of VGLUT1 and docking experiments, we determined its putative binding subdomains within vesicular glutamate transporters and validated the structural requirement for VGLUT inhibition. To better estimate the specificity and potency of LSP5-2157, we also investigated its ability to block glutamatergic transmission in autaptic hippocampal cells. Neither glutamate receptors nor GABAergic transmission or transmission machinery were affected by LSP5-2157. Low doses of compound reversibly reduce glutamatergic neurotransmission in hippocampal autpases. LSP5-2157 had a low and depressing effect on synaptic efficacy in hippocampal slice. Furthermore, LSP5-2157 had no effect on NMDA-R- mediated fEPSP but reduce synaptic plasticity induced by 3 trains of 100 Hz. Finally, LSP5-2157 had the capacity to inhibit VGLUT3-dependent auditory synaptic transmission in the guinea pig cochlea. In this model, it abolished the compound action potential of auditory nerve at high concentration showing the limited permeation of LSP5-2157 in an in-vivo model. In summary, the new ligand LSP5-2157, has a high affinity and specificity for VGLUTs and shows some permeability in isolated neuron, tissue preparations or in vivo in the auditory system. These findings broaden the field of VGLUTs inhibitors and open the way to their use to assess glutamatergic functions in vitro and in vivo.


Asunto(s)
Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Potenciales de Acción/efectos de los fármacos , Animales , Cóclea/efectos de los fármacos , Nervio Coclear/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Cobayas , Hipocampo/citología , Hipocampo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Proteínas de Transporte Vesicular de Glutamato/metabolismo
12.
Synapse ; 63(9): 773-81, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19489007

RESUMEN

Propofol is now the most commonly used intravenous anesthetic-for general anesthesia and sedation because of its rapid onset and recovery. Besides the well-known adverse effects of cardiovascular and respiratory depression, recent studies indicate that propofol may cause excitatory phenomena such as myoclonus, opisthotonus, and even seizure. However, the mechanisms of these excitatory effects of propofol have not been elucidated. Considering glutamate as the principle excitatory neurotransmitter in the central nervous system and excessive glutamatergic synaptic transmission can cause seizure, we examined the effect of propofol on the release of glutamate from rat cerebral cortex nerve terminals (synaptosomes). Results showed that subanesthetic concentration propofol facilitated 4-aminopyridine (4-AP), but not KCl- or ionomycin-evoked glutamate release from nerve terminals. The facilitation of 4-AP-evoked glutamate release by propofol also occurred in the calcium chelation and significantly attenuated by glutamate transporter inhibitors, DL-threo-beta-benzyloxyaspartic acid (DL-TBOA) and L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC). In addition, propofol increased 4-AP-evoked depolarization of the plasma membrane potential. Furthermore, protein kinase C (PKC) inhibition suppressed propofol-mediated facilitation of glutamate release. These results suggest that subanesthetic concentration propofol facilitates glutamate release from rat cerebrocortical glutamatergic terminals by increasing nerve terminal excitability, likely through the activation of PKC pathway. This finding may provide an explanation for propofol-induced excitatory phenomena.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Ácido Glutámico/metabolismo , Terminales Presinápticos/efectos de los fármacos , Propofol/farmacología , Convulsiones/inducido químicamente , Transmisión Sináptica/efectos de los fármacos , 4-Aminopiridina/farmacología , Anestésicos Intravenosos/farmacología , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Relación Dosis-Respuesta a Droga , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Terminales Presinápticos/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Convulsiones/metabolismo , Convulsiones/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Sinaptosomas , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Glutamato/metabolismo
13.
Neuropharmacology ; 161: 107623, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31047920

RESUMEN

Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and ß-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/genética , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/patología , Glutamatos/genética , Glutamatos/metabolismo , Proteínas de Transporte Vesicular de Glutamato/genética , Animales , Transporte Biológico , Dolor Crónico/genética , Humanos , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Patología Molecular , Médula Espinal/efectos de los fármacos , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Glutamato/biosíntesis
14.
Neurochem Int ; 52(6): 979-89, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18037536

RESUMEN

The effect of alpha-tocopherol, the major vitamin E component, on the release of endogenous glutamate has been investigated using rat cerebrocortical nerve terminals. Results showed that alpha-tocopherol facilitated the Ca2+-dependent but not the Ca2+-independent glutamate release evoked by 4-aminopyridine (4AP). This release facilitation was insensitive to glutamate transporter inhibitor L-trans-PDC or DL-TBOA, and blocked by the exocytotic neurotransmitter release inhibitor tetanus neurotoxin, indicating that alpha-tocopherol affects specifically the physiological exocytotic vesicular release without affecting the non-vesicular release. Facilitation of glutamate exocytosis by alpha-tocopherol was not due to its increasing synaptosomal excitability, because alpha-tocopherol did not alter the 4AP-evoked depolarization of the synaptosomal plasma membrane potential. Rather, examination of the effect of alpha-tocopherol on cytoplasmic free Ca2+ concentration revealed that the facilitation of glutamate release could be attributed to an increase in voltage-dependent Ca2+ influx. Consistent with this, the alpha-tocopherol-mediated facilitation of glutamate release was significantly reduced in synaptosomes pretreated with omega-CgTX MVIIC, a wide spectrum blocker of N- and P/Q-type Ca2+ channels. In addition, alpha-tocopherol modulation of glutamate release appeared to involve a protein kinase C (PKC) signalling cascade, insofar as pretreatment of synaptosomes with the PKC inhibitor GF109203X effectively suppressed the facilitatory effect of alpha-tocopherol on 4AP- or ionomycin-evoked glutamate release. Furthermore, alpha-tocopherol increased the phosphorylation of MARCKS, the major presynapic substrate for PKC, and this effect was also significantly attenuated by PKC inhibition. Together, these results suggest that alpha-tocopherol exerts an increase in PKC activation, which subsequently enhances voltage-dependent Ca2+ influx and vesicular release machinery to cause an increase in evoked glutamate release from rat cerebrocortical glutamatergic terminals. This finding might provide important information regarding to the action of vitamin E in the central nervous system.


Asunto(s)
Corteza Cerebral/metabolismo , Exocitosis/fisiología , Ácido Glutámico/metabolismo , Terminales Presinápticos/metabolismo , alfa-Tocoferol/metabolismo , 4-Aminopiridina/farmacología , Animales , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Corteza Cerebral/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Exocitosis/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/farmacología , Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada , Bloqueadores de los Canales de Potasio/farmacología , Terminales Presinápticos/efectos de los fármacos , Proteína Quinasa C/efectos de los fármacos , Proteína Quinasa C/metabolismo , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Sinaptosomas , Toxina Tetánica/farmacología , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Proteínas de Transporte Vesicular/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo , alfa-Tocoferol/farmacología
15.
Brain Res ; 1231: 113-20, 2008 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-18655777

RESUMEN

Glutamate is the main excitatory neurotransmitter in the mammalian nervous system and is essential for its normal functions. However, overstimulation of glutamatergic system due to hyperactivation of NMDA receptors and/or impairment of glutamate reuptake system has been implicated in many acute and chronic neurological diseases. Regulation of extracellular glutamate concentrations relies on the function of glutamate transporters which can be reversed in situations related to excitotoxicity. Guanosine-5'-monophosphate (GMP), a guanine nucleotide which displays important extracellular roles, such as trophic effects to neurons and astrocytes, behaves as antagonist of glutamate receptors and is neuroprotective in hippocampal slices against excitotoxicity or ischemic conditions. Hippocampal slices exposed to 1 or 10 mM glutamate, or 100 microM NMDA with 10 microM glycine for 1 h and evaluated after 6 or 18 h, showed reduced cell viability and DNA fragmentation, respectively. Glutamate- or NMDA-induced cell death was prevented by 50 microM MK-801, but only NMDA-induced cell damage was prevented by GMP (1 mM). Glutamate-induced cell viability impairment and glutamate-induced l-[(3)H]glutamate release were both prevented by adding DL-TBOA (10 microM). Otherwise, NMDA-induced cell viability loss was not prevented by 10 microM of DL-TBOA and NMDA did not induce l-[(3)H]glutamate release. Our results demonstrate that GMP is neuroprotective when acting selectively at NMDA receptors. Glutamate-induced hippocampal slice damage and glutamate release were blocked by glutamate transporter inhibitor, indicating that glutamate-induced toxicity also involves the reversal of glutamate uptake, which cannot be prevented by GMP.


Asunto(s)
Ácido Glutámico/metabolismo , Guanosina Monofosfato/farmacología , Hipocampo/efectos de los fármacos , N-Metilaspartato/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Animales , Ácido Aspártico/farmacología , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/fisiopatología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/toxicidad , Guanosina Monofosfato/uso terapéutico , Hipocampo/metabolismo , Hipocampo/fisiopatología , Masculino , N-Metilaspartato/antagonistas & inhibidores , N-Metilaspartato/toxicidad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/metabolismo , Neurotoxinas/toxicidad , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo
16.
Protein Sci ; 16(9): 1819-29, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17660252

RESUMEN

As membrane transporter proteins, VGLUT1-3 mediate the uptake of glutamate into synaptic vesicles at presynaptic nerve terminals of excitatory neural cells. This function is crucial for exocytosis and the role of glutamate as the major excitatory neurotransmitter in the central nervous system. The three transporters, sharing 76% amino acid sequence identity in humans, are highly homologous but differ in regional expression in the brain. Although little is known regarding their three-dimensional structures, hydropathy analysis on these proteins predicts 12 transmembrane segments connected by loops, a topology similar to other members in the major facilitator superfamily, where VGLUT1-3 have been phylogenetically classified. In this work, we present a three-dimensional model for the human VGLUT1 protein based on its distant bacterial homolog in the same superfamily, the glycerol-3-phosphate transporter from Escherichia coli. This structural model, stable during molecular dynamics simulations in phospholipid bilayers solvated by water, reveals amino acid residues that face its pore and are likely to affect substrate translocation. Docking of VGLUT1 substrates to this pore localizes two different binding sites, to which inhibitors also bind with an overall trend in binding affinity that is in agreement with previously published experimental data.


Asunto(s)
Ácido Glutámico/metabolismo , Conformación Proteica , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Glutamato/química , Proteínas de Transporte Vesicular/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Secuencia Conservada , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Propiedades de Superficie , Vesículas Transportadoras/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Proteína 1 de Transporte Vesicular de Glutamato/química , Proteína 2 de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Proteína 2 de Transporte Vesicular de Glutamato/química , Proteínas de Transporte Vesicular de Glutamato/metabolismo
17.
Neuroscience ; 142(4): 1005-17, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16920271

RESUMEN

Neuronal death associated with cerebral ischemia and hypoglycemia is related to increased release of excitatory amino acids (EAA) and energy failure. The intrahippocampal administration of the glycolysis inhibitor, iodoacetate (IOA), induces the accumulation of EAA and neuronal death. We have investigated by microdialysis the role of exocytosis, glutamate transporters and volume-sensitive organic anion channel (VSOAC) on IOA-induced EAA release. Results show that the early component of EAA release is inhibited by riluzole, a voltage-dependent sodium channel blocker, and by the VSOAC blocker, tamoxifen, while the early and late components are blocked by the glutamate transport inhibitors, L-trans-pyrrolidine 2,4-dicarboxylate (PDC) and DL-threo-beta-benzyloxyaspartate (DL-TBOA); and by the VSOAC blocker 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS). Riluzole, DL-TBOA and tamoxifen did not prevent IOA-induced neuronal death, while PDC and DNDS did. The VSOAC blockers 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) and phloretin had no effect either on EAA efflux or neuronal damage. Results suggest that acute inhibition of glycolytic metabolism promotes the accumulation of EAA by exocytosis, impairment or reverse action of glutamate transporters and activation of a DNDS-sensitive mechanism. The latest is substantially involved in the triggering of neuronal death. To our knowledge, this is the first study to show protection of neuronal death by DNDS in an in vivo model of neuronal damage, associated with deficient energy metabolism and EAA release, two conditions involved in some pathological states such as ischemia and hypoglycemia.


Asunto(s)
Aminoácidos Excitadores/metabolismo , Glucólisis/fisiología , Hipocampo/metabolismo , Degeneración Nerviosa/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Ácido Aspártico/farmacología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Glucólisis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Masculino , Microdiálisis , Degeneración Nerviosa/fisiopatología , Nitrobenzoatos/farmacología , Floretina/farmacología , Ratas , Ratas Wistar , Riluzol/farmacología , Estilbenos/farmacología , Tamoxifeno/farmacología , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Canales Aniónicos Dependientes del Voltaje/antagonistas & inhibidores
18.
Eur J Med Chem ; 78: 236-47, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24686010

RESUMEN

Vesicular Glutamate Transporters (VGLUTs) allow the loading of presynapic glutamate vesicles and thus play a critical role in glutamatergic synaptic transmission. VGLUTs have proved to be involved in several major neuropathologies and directly correlated to clinical dementia in Alzheimer and Parkinson's disease. Accordingly VGLUT represent a key biological target or biomarker for neuropathology treatment or diagnostic. Yet, despite the pivotal role of VGLUTs, their pharmacology appears quite limited. Known competitive inhibitors are restricted to some dyes as Trypan Blue (TB) and glutamate mimics. This lack of pharmacological tools has heavily hampered VGLUT investigations. Here we report a rapid access to small molecules that combine benefits of TB and dicarboxylic quinolines (DCQs). Their ability to block vesicular glutamate uptake was evaluated. Several compounds displayed low micromolar inhibitory potency when size related compounds are thirty to forty times less potent (i.e. DCQ). We then confirmed the VGLUT selectivity by measuring the effect of the series on vesicular monoamine transport and on metabotropic glutamate receptor activity. These inhibitors are synthesized in only two steps and count among the best pharmacological tools for VGLUTs studies.


Asunto(s)
Compuestos Azo/farmacología , Colorantes/farmacología , Diseño de Fármacos , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Animales , Compuestos Azo/síntesis química , Compuestos Azo/química , Colorantes/síntesis química , Colorantes/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Ratas , Relación Estructura-Actividad
19.
J Clin Invest ; 124(8): 3645-55, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25036707

RESUMEN

During brain ischemia, an excessive release of glutamate triggers neuronal death through the overactivation of NMDA receptors (NMDARs); however, the underlying pathways that alter glutamate homeostasis and whether synaptic or extrasynaptic sites are responsible for excess glutamate remain controversial. Here, we monitored ischemia-gated currents in pyramidal cortical neurons in brain slices from rodents in response to oxygen and glucose deprivation (OGD) as a real-time glutamate sensor to identify the source of glutamate release and determined the extent of neuronal damage. Blockade of excitatory amino acid transporters or vesicular glutamate release did not inhibit ischemia-gated currents or neuronal damage after OGD. In contrast, pharmacological inhibition of the cystine/glutamate antiporter dramatically attenuated ischemia-gated currents and cell death after OGD. Compared with control animals, mice lacking a functional cystine/glutamate antiporter exhibited reduced anoxic depolarization and neuronal death in response to OGD. Furthermore, glutamate released by the cystine/glutamate antiporter activated extrasynaptic, but not synaptic, NMDARs, and blockade of extrasynaptic NMDARs reduced ischemia-gated currents and cell damage after OGD. Finally, PET imaging showed increased cystine/glutamate antiporter function in ischemic rats. Altogether, these data suggest that cystine/glutamate antiporter function is increased in ischemia, contributing to elevated extracellular glutamate concentration, overactivation of extrasynaptic NMDARs, and ischemic neuronal death.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/fisiología , Isquemia Encefálica/etiología , Ácido Glutámico/metabolismo , Sistema de Transporte de Aminoácidos y+/deficiencia , Sistema de Transporte de Aminoácidos y+/genética , Animales , Benzoatos/farmacología , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Muerte Celular , Proteínas de Transporte de Glutamato en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Glicina/análogos & derivados , Glicina/farmacología , Activación del Canal Iónico/fisiología , Ratones , Ratones Endogámicos C3H , Ratones Noqueados , Células Piramidales/efectos de los fármacos , Células Piramidales/patología , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Glutamato/fisiología
20.
Behav Brain Res ; 267: 1-5, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24613241

RESUMEN

Accumulating evidence suggests that glutamatergic system plays a crucial role in methamphetamine (METH) addiction. In the glutamatergic transmission, vesicular glutamate transporters (VGLUTs) are responsible for transporting glutamate into synaptic vesicles and affect the glutamate concentrations in the synaptic cleft. It is well documented that VGLUTs play an essential role in pathophysiology of several psychiatric and neurological diseases, however, whether VGLUTs also have a role in addiction caused by psychostimulant drugs is still unknown. The present study was underwent to investigate the effect of inhibition of VGLUTs on METH-induced induce conditioned place preference in rats. Rats were induced to conditioned place preference with METH (0.5, 1.0 and 2.0mg/kg) by intraperitoneal injection. Intracerebroventricular administration of 1.0 or 5.0µg Chicago sky blue 6B (CSB6B), a VGLUTs inhibitor, and 2.5h prior to METH was to observe its effect on METH-induced conditioned place preference in rats. The rats receiving METH showed stronger place preference at the dose of 1.0mg/kg than that of other doses. The intracerebroventricular administration of CSB6B (1.0, 5.0µg) 2.5h prior to the exposure to METH attenuated the acquisition of METH-induced conditioned place preference, while CSB6B itself had no effect on place preference. These results indicate that VGLUTs are involved in the effect of METH-induced conditioned place preference and may be a new target against METH addiction.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Condicionamiento Psicológico/efectos de los fármacos , Metanfetamina/farmacología , Percepción Espacial/efectos de los fármacos , Proteínas de Transporte Vesicular de Glutamato/antagonistas & inhibidores , Trastornos Relacionados con Anfetaminas/tratamiento farmacológico , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Fármacos del Sistema Nervioso Central/farmacología , Condicionamiento Psicológico/fisiología , Relación Dosis-Respuesta a Droga , Infusiones Intraventriculares , Inyecciones Intraperitoneales , Masculino , Ratas Sprague-Dawley , Percepción Espacial/fisiología , Factores de Tiempo , Azul de Tripano/farmacología , Proteínas de Transporte Vesicular de Glutamato/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda