Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-32041714

RESUMEN

Enterococcus faecalis and Enterococcus faecium are commensals of the gastrointestinal tract of most terrestrial organisms, including humans, and are major causes of health care-associated infections. Such infections are difficult or impossible to treat, as the enterococcal strains responsible are often resistant to multiple antibiotics. One intrinsic resistance trait that is conserved among E. faecalis and E. faecium is cephalosporin resistance, and prior exposure to cephalosporins is one of the most well-known risk factors for acquisition of an enterococcal infection. Cephalosporins inhibit peptidoglycan biosynthesis by acylating the active-site serine of penicillin-binding proteins (PBPs) to prevent the PBPs from catalyzing cross-linking during peptidoglycan synthesis. For decades, a specific PBP (known as Pbp4 or Pbp5) that exhibits low reactivity toward cephalosporins has been thought to be the primary PBP required for cephalosporin resistance. We analyzed other PBPs and report that in both E. faecalis and E. faecium, a second PBP, PbpA(2b), is also required for resistance; notably, the cephalosporin ceftriaxone exhibits a lethal effect on the ΔpbpA mutant. Strikingly, PbpA(2b) exhibits low intrinsic reactivity with cephalosporins in vivo and in vitro Unlike the Δpbp5 mutant, the ΔpbpA mutant exhibits a variety of phenotypic defects in growth kinetics, cell wall integrity, and cellular morphology, indicating that PbpA(2b) and Pbp5(4) are not functionally redundant and that PbpA(2b) plays a more central role in peptidoglycan synthesis. Collectively, our results shift the current understanding of enterococcal cephalosporin resistance and suggest a model in which PbpA(2b) and Pbp5(4) cooperate to coordinately mediate peptidoglycan cross-linking in the presence of cephalosporins.


Asunto(s)
Resistencia a las Cefalosporinas/fisiología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Proteínas de Unión a las Penicilinas/fisiología , Acilación , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Electroforesis en Gel de Poliacrilamida , Enterococcus faecalis/metabolismo , Enterococcus faecium/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Immunoblotting , Concentración 50 Inhibidora , Microscopía Electrónica de Transmisión , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/biosíntesis
2.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630428

RESUMEN

Peptidoglycan is generally considered one of the main determinants of cell shape in bacteria. In rod-shaped bacteria, cell elongation requires peptidoglycan synthesis to lengthen the cell wall. In addition, peptidoglycan is synthesized at the division septum during cell division. Sporulation of Bacillus subtilis begins with an asymmetric cell division. Formation of the sporulation septum requires almost the same set of proteins as the vegetative septum; however, these two septa are significantly different. In addition to their differences in localization, the sporulation septum is thinner and it contains SpoIIE, a crucial sporulation specific protein. Here we show that peptidoglycan biosynthesis is linked to the cell division machinery during sporulation septum formation. We detected a direct interaction between SpoIIE and GpsB and found that both proteins co-localize during the early stages of asymmetric septum formation. We propose that SpoIIE is part of a multi-protein complex which includes GpsB, other division proteins and peptidoglycan synthesis proteins, and could provide a link between the peptidoglycan synthesis machinery and the complex morphological changes required for forespore formation during B. subtilis sporulation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Esporas Bacterianas/metabolismo , División Celular Asimétrica/fisiología , Proteínas Bacterianas/metabolismo , Ciclo Celular , División Celular/fisiología , Forma de la Célula , Pared Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Unión a las Penicilinas/fisiología , Peptidoglicano/metabolismo , Esporas Bacterianas/fisiología
3.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510100

RESUMEN

Neisseria gonorrhoeae releases peptidoglycan fragments during growth, and these molecules induce an inflammatory response in the human host. The proinflammatory molecules include peptidoglycan monomers, peptidoglycan dimers, and free peptides. These molecules can be released by the actions of lytic transglycosylases or an amidase. However, >40% of the gonococcal cell wall is cross-linked, where the peptide stem on one peptidoglycan strand is linked to the peptide stem on a neighboring strand, suggesting that endopeptidases may be required for the release of many peptidoglycan fragments. Therefore, we characterized mutants with individual or combined mutations in genes for the low-molecular-mass penicillin-binding proteins PBP3 and PBP4. Mutations in either dacB, encoding PBP3, or pbpG, encoding PBP4, did not significantly reduce the release of peptidoglycan monomers or free peptides. A mutation in dacB caused the appearance of a larger-sized peptidoglycan monomer, the pentapeptide monomer, and an increased release of peptidoglycan dimers, suggesting the involvement of this enzyme in both the removal of C-terminal d-Ala residues from stem peptides and the cleavage of cross-linked peptidoglycan. Mutation of both dacB and pbpG eliminated the release of tripeptide-containing peptidoglycan fragments concomitantly with the appearance of pentapeptide and dipeptide peptidoglycan fragments and higher-molecular-weight peptidoglycan dimers. In accord with the loss of tripeptide peptidoglycan fragments, the level of human NOD1 activation by the dacB pbpG mutants was significantly lower than that by the wild type. We conclude that PBP3 and PBP4 overlap in function for cross-link cleavage and that these endopeptidases act in the normal release of peptidoglycan fragments during growth.


Asunto(s)
Neisseria gonorrhoeae/patogenicidad , Proteína Adaptadora de Señalización NOD1/fisiología , Proteínas de Unión a las Penicilinas/fisiología , Fragmentos de Péptidos/metabolismo , Peptidoglicano/metabolismo , Pared Celular/metabolismo , Endopeptidasas/metabolismo , Glicosiltransferasas/metabolismo , Humanos , Neisseria gonorrhoeae/genética , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteínas de Unión a las Penicilinas/genética , Transducción de Señal/fisiología
4.
BMC Microbiol ; 16(1): 234, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716106

RESUMEN

BACKGROUND: Community and nosocomial infections by Pseudomonas aeruginosa still create a major therapeutic challenge. The resistance of this opportunist pathogen to ß-lactam antibiotics is determined mainly by production of the inactivating enzyme AmpC, a class C cephalosporinase with a regulation system more complex than those found in members of the Enterobacteriaceae family. This regulatory system also participates directly in peptidoglycan turnover and recycling. One of the regulatory mechanisms for AmpC expression, recently identified in clinical isolates, is the inactivation of LMM-PBP4 (Low-Molecular-Mass Penicillin-Binding Protein 4), a protein whose catalytic activity on natural substrates has remained uncharacterized until now. RESULTS: We carried out in vivo activity trials for LMM-PBP4 of Pseudomonas aeruginosa on macromolecular peptidoglycan of Escherichia coli and Pseudomonas aeruginosa. The results showed a decrease in the relative quantity of dimeric, trimeric and anhydrous units, and a smaller reduction in monomer disaccharide pentapeptide (M5) levels, validating the occurrence of D,D-carboxypeptidase and D,D-endopeptidase activities. Under conditions of induction for this protein and cefoxitin treatment, the reduction in M5 is not fully efficient, implying that LMM-PBP4 of Pseudomonas aeruginosa presents better behaviour as a D,D-endopeptidase. Kinetic evaluation of the direct D,D-peptidase activity of this protein on natural muropeptides M5 and D45 confirmed this bifunctionality and the greater affinity of LMM-PBP4 for its dimeric substrate. A three-dimensional model for the monomeric unit of LMM-PBP4 provided structural information which supports its catalytic performance. CONCLUSIONS: LMM-PBP4 of Pseudomonas aeruginosa is a bifunctional enzyme presenting both D,D-carboxypeptidase and D,D-endopeptidase activities; the D,D-endopeptidase function is predominant. Our study provides unprecedented functional and structural information which supports the proposal of this protein as a potential hydrolase-autolysin associated with peptidoglycan maturation and recycling. The fact that mutant PBP4 induces AmpC, may indicate that a putative muropeptide-subunit product of the DD-EPase activity of PBP4 could be a negative regulator of the pathway. This data contributes to understanding of the regulatory aspects of resistance to ß-lactam antibiotics in this bacterial model.


Asunto(s)
Proteínas de Unión a las Penicilinas/fisiología , Pseudomonas aeruginosa/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carboxipeptidasas/metabolismo , Cefoxitina/farmacología , Infección Hospitalaria , ADN Bacteriano/genética , Endopeptidasas/metabolismo , Activación Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/aislamiento & purificación , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética , Proteínas Recombinantes , Resistencia betalactámica/genética , beta-Lactamas/farmacología
5.
Mol Microbiol ; 90(5): 939-55, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118410

RESUMEN

Bacterial cell shapes are manifestations of programs carried out by multi-protein machines that synthesize and remodel the resilient peptidoglycan (PG) mesh and other polymers surrounding cells. GpsB protein is conserved in low-GC Gram-positive bacteria and is not essential in rod-shaped Bacillus subtilis, where it plays a role in shuttling penicillin-binding proteins (PBPs) between septal and side-wall sites of PG synthesis. In contrast, we report here that GpsB is essential in ellipsoid-shaped, ovococcal Streptococcus pneumoniae (pneumococcus), and depletion of GpsB leads to formation of elongated, enlarged cells containing unsegregated nucleoids and multiple, unconstricted rings of fluorescent-vancomycin staining, and eventual lysis. These phenotypes are similar to those caused by selective inhibition of Pbp2x by methicillin that prevents septal PG synthesis. Dual-protein 2D and 3D-SIM (structured illumination) immunofluorescence microscopy (IFM) showed that GpsB and FtsZ have overlapping, but not identical, patterns of localization during cell division and that multiple, unconstricted rings of division proteins FtsZ, Pbp2x, Pbp1a and MreC are in elongated cells depleted of GpsB. These patterns suggest that GpsB, like Pbp2x, mediates septal ring closure. This first dual-protein 3D-SIM IFM analysis also revealed separate positioning of Pbp2x and Pbp1a in constricting septa, consistent with two separable PG synthesis machines.


Asunto(s)
Proteínas Bacterianas/fisiología , Peptidoglicano/metabolismo , Streptococcus pneumoniae/citología , Streptococcus pneumoniae/metabolismo , Factores de Virulencia/fisiología , Proteínas Bacterianas/metabolismo , División Celular , Proteínas del Citoesqueleto/metabolismo , Eliminación de Gen , Imagenología Tridimensional , Meticilina/farmacología , Microscopía Fluorescente , Proteínas de Unión a las Penicilinas/fisiología , Peptidil Transferasas/fisiología , Fenotipo , Transporte de Proteínas , Streptococcus pneumoniae/genética , Factores de Virulencia/metabolismo
6.
Mol Microbiol ; 85(1): 164-78, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22624979

RESUMEN

Chlamydiae are obligate intracellular bacterial pathogens that have extensively reduced their genome in adapting to the intracellular environment. The chlamydial genome contains only three annotated cell division genes and lacks ftsZ. How this obligate intracellular pathogen divides is uncharacterized. Chlamydiae contain two high-molecular-weight (HMW) penicillin binding proteins (Pbp) implicated in peptidoglycan synthesis, Pbp2 and Pbp3/FtsI. We show here, using HMW Pbp-specific penicillin derivatives, that both Pbp2 and Pbp3 are essential for chlamydial cell division. Ultrastructural analyses of antibiotic-treated cultures revealed distinct phenotypes: Pbp2 inhibition induced internal cell bodies within a single outer membrane whereas Pbp3 inhibition induced elongated phenotypes with little internal division. Each HMW Pbp interacts with the Chlamydia cell division protein FtsK. Chlamydiae are coccoid yet contain MreB, a rod shape-determining protein linked to Pbp2 in bacilli. Using MreB-specific antibiotics, we show that MreB is essential for chlamydial growth and division. Importantly, co-treatment with MreB-specific and Pbp-specific antibiotics resulted in the MreB-inhibited phenotype, placing MreB upstream of Pbp function in chlamydial cell division. Finally, we showed that MreB also interacts with FtsK. We propose that, in Chlamydia, MreB acts as a central co-ordinator at the division site to substitute for the lack of FtsZ in this bacterium.


Asunto(s)
División Celular , Chlamydia trachomatis/citología , Proteínas de Unión a las Penicilinas/fisiología , Chlamydia trachomatis/genética , Proteínas del Citoesqueleto/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Unión a las Penicilinas/genética
7.
Clin Pharmacol Ther ; 109(4): 1000-1020, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33576025

RESUMEN

Multidrug-resistant bacteria are causing a serious global health crisis. A dramatic decline in antibiotic discovery and development investment by pharmaceutical industry over the last decades has slowed the adoption of new technologies. It is imperative that we create new mechanistic insights based on latest technologies, and use translational strategies to optimize patient therapy. Although drug development has relied on minimal inhibitory concentration testing and established in vitro and mouse infection models, the limited understanding of outer membrane permeability in Gram-negative bacteria presents major challenges. Our team has developed a platform using the latest technologies to characterize target site penetration and receptor binding in intact bacteria that inform translational modeling and guide new discovery. Enhanced assays can quantify the outer membrane permeability of ß-lactam antibiotics and ß-lactamase inhibitors using multiplex liquid chromatography tandem mass spectrometry. While ß-lactam antibiotics are known to bind to multiple different penicillin-binding proteins (PBPs), their binding profiles are almost always studied in lysed bacteria. Novel assays for PBP binding in the periplasm of intact bacteria were developed and proteins identified via proteomics. To characterize bacterial morphology changes in response to PBP binding, high-throughput flow cytometry and time-lapse confocal microscopy with fluorescent probes provide unprecedented mechanistic insights. Moreover, novel assays to quantify cytosolic receptor binding and intracellular drug concentrations inform target site occupancy. These mechanistic data are integrated by quantitative and systems pharmacology modeling to maximize bacterial killing and minimize resistance in in vitro and mouse infection models. This translational approach holds promise to identify antibiotic combination dosing strategies for patients with serious infections.


Asunto(s)
Técnicas Bacteriológicas/métodos , Descubrimiento de Drogas/métodos , Farmacorresistencia Bacteriana Múltiple/fisiología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Animales , Membrana Celular/fisiología , Modelos Animales de Enfermedad , Humanos , Modelos Teóricos , Proteínas de Unión a las Penicilinas/fisiología , beta-Lactamas/farmacología
8.
Sci Rep ; 10(1): 12588, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32724139

RESUMEN

Chlamydia trachomatis serovar L2 and Chlamydia muridarum, which do not express FtsZ, undergo polarized cell division. During division, peptidoglycan assembles at the pole of dividing Chlamydia trachomatis cells where daughter cell formation occurs, and peptidoglycan regulates at least two distinct steps in the polarized division of Chlamydia trachomatis and Chlamydia muridarum. Cells treated with inhibitors that prevent peptidoglycan synthesis or peptidoglycan crosslinking by penicillin-binding protein 2 (PBP2) are unable to initiate polarized division, while cells treated with inhibitors that prevent peptidoglycan crosslinking by penicillin-binding protein 3 (PBP3/FtsI) initiate polarized division, but the process arrests at an early stage of daughter cell growth. Consistent with their distinct roles in polarized division, peptidoglycan organization is different in cells treated with PBP2 and PBP3-specific inhibitors. Our analyses indicate that the sequential action of PBP2 and PBP3 drives changes in peptidoglycan organization that are essential for the polarized division of these obligate intracellular bacteria. Furthermore, the roles we have characterized for PBP2 and PBP3 in regulating specific steps in chlamydial cell division have not been described in other bacteria.


Asunto(s)
División Celular/fisiología , Chlamydia trachomatis/citología , Proteínas de Unión a las Penicilinas/fisiología , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/metabolismo , Peptidoglicano/biosíntesis , Peptidoglicano/metabolismo
9.
J Bacteriol ; 191(16): 5123-33, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19542290

RESUMEN

Because very little is known about cell division in noncylindrical bacteria and cyanobacteria, we investigated 10 putative cytokinetic proteins in the unicellular spherical cyanobacterium Synechocystis strain PCC 6803. Concerning the eight penicillin-binding proteins (PBPs), which define three classes, we found that Synechocystis can survive in the absence of one but not two PBPs of either class A or class C, whereas the unique class B PBP (also termed FtsI) is indispensable. Furthermore, we showed that all three classes of PBPs are required for normal cell size. Similarly, the putative FtsQ and FtsW proteins appeared to be required for viability and normal cell size. We also used a suitable bacterial two-hybrid system to characterize the interaction web among the eight PBPs, FtsQ, and FtsW, as well as ZipN, the crucial FtsZ partner that occurs only in cyanobacteria and plant chloroplasts. We showed that FtsI, FtsQ, and ZipN are self-interacting proteins and that both FtsI and FtsQ interact with class A PBPs, as well as with ZipN. Collectively, these findings indicate that ZipN, in interacting with FtsZ and both FtsI and FtQ, plays a similar role to the Escherichia coli FtsA protein, which is missing in cyanobacteria and chloroplasts.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Unión a las Penicilinas/fisiología , Synechocystis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citometría de Flujo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Biológicos , Mutación , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Unión Proteica/genética , Unión Proteica/fisiología , Synechocystis/genética , Synechocystis/crecimiento & desarrollo , Técnicas del Sistema de Dos Híbridos
10.
J Bacteriol ; 191(11): 3526-33, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19346310

RESUMEN

In Escherichia coli, the cytoplasmic proteins MreB and FtsZ play crucial roles in ensuring that new muropeptide subunits are inserted into the cell wall in a spatially correct way during elongation and division. In particular, to retain a constant diameter and overall shape, new material must be inserted into the wall uniformly around the cell's perimeter. Current thinking is that MreB accomplishes this feat through intermediary proteins that tether peptidoglycan synthases to the outer face of the inner membrane. We tested this idea in E. coli by using a DD-carboxypeptidase mutant that accumulates pentapeptides in its peptidoglycan, allowing us to visualize new muropeptide incorporation. Surprisingly, inhibiting MreB with the antibiotic A22 did not result in uneven insertion of new wall, although the cells bulged and lost their rod shapes. Instead, uneven (clustered) incorporation occurred only if MreB and FtsZ were inactivated simultaneously, providing the first evidence in E. coli that FtsZ can direct murein incorporation into the lateral cell wall independently of MreB. Inhibiting penicillin binding protein 2 (PBP 2) alone produced the same clustered phenotype, implying that MreB and FtsZ tether peptidoglycan synthases via a common mechanism that includes PBP 2. However, cell shape was determined only by the presence or absence of MreB and not by the even distribution of new wall material as directed by FtsZ.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Unión a las Penicilinas/fisiología , Arabinosa/farmacología , Aztreonam/farmacología , Pared Celular/efectos de los fármacos , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Microscopía Confocal , Modelos Biológicos , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Peptidoglicano/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacología
11.
Res Microbiol ; 160(2): 117-24, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19063962

RESUMEN

The study was focused on the role of the penicillin binding protein PBP4* of Bacillus subtilis during growth in high salinity rich media. Using pbpE-lacZ fusion, we found that transcription of the pbpE gene is induced in stationary phase and by increased salinity. This increase was also corroborated at the translation level for PBP4* by western blot. Furthermore, we showed that a strain harboring gene disruption in the structural gene (pbpE) for the PBP4* endopeptidase resulted in a salt-sensitive phenotype and increased sensitivity to cell envelope active antibiotics (vancomycin, penicillin and bacitracin). Since the pbpE gene seems to be part of a two-gene operon with racX, a racX::pRV300 mutant was obtained. This mutant behaved like the wild-type strain with respect to high salt. Electron microscopy showed that high salt and mutation of pbpE resulted in cell wall defects. Whole cells or purified peptidoglycan from WT cultures grown in high salt medium showed increased autolysis and susceptibility to mutanolysin. We demonstrate through zymogram analysis that PBP4* has murein hydrolyze activity. All these results support the hypothesis that peptidoglycan is modified in response to high salt and that PBP4* contributes to this modification.


Asunto(s)
Bacillus subtilis/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/fisiología , Proteínas de Unión a las Penicilinas/fisiología , Salinidad , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/fisiología , Antibacterianos/farmacología , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/ultraestructura , Bacitracina/farmacología , Bacteriólisis , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Microscopía Electrónica de Transmisión , N-Acetil Muramoil-L-Alanina Amidasa/deficiencia , Penicilina G/farmacología , Proteínas de Unión a las Penicilinas/deficiencia , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/deficiencia , Transcripción Genética , Vancomicina/farmacología
12.
Am J Obstet Gynecol ; 199(5): 548.e1-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18486087

RESUMEN

OBJECTIVE: We sought to determine the role lipid rafts and phosphoinositide 3-kinase (PI3K) in invasiveness of group B streptococci (GBS) to endometrial cells. STUDY DESIGN: Antibiotic protection assay and electron microscopy were used to evaluate the invasion of GBS to human endometrial Ishikawa cells cholesterol-depleted by using methyl-beta-cyclodextrin or treated with PI3K inhibitors: wortmannin or LY294002. Immunoblotting analysis of Akt phosphorylation and cellular imaging of GFP-Akt-PH probe were used to assess PI3Ks activation in infected cells. RESULTS: Infected Ishikawa cells streptococci are associated to membrane ruffles with morphological features of undergoing internalization. GBS remained attached but completely failed to invade to cholesterol-depleted human endometrial cells or displayed decreased invasiveness in the presence of PI3K inhibitors. Cholesterol depletion resulted in loss of membrane ruffling and dispersion of raft-associated molecules: monosialoganglioside GM1 and PI3K. CONCLUSION: This work provides the evidence that lipid rafts and raft-associated PI3K are implicated in GBS invasion to human endometrial cells.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/fisiología , Endometrio/microbiología , Microdominios de Membrana/microbiología , Streptococcus agalactiae/crecimiento & desarrollo , 1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , Androstadienos/farmacología , Adhesión Bacteriana , Cápsulas Bacterianas/fisiología , Células Cultivadas , Colesterol/fisiología , Cromonas/farmacología , Femenino , Humanos , Immunoblotting , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Morfolinas/farmacología , Proteínas de Unión a las Penicilinas/fisiología , Infecciones Estreptocócicas/metabolismo , Streptococcus agalactiae/patogenicidad , Streptococcus agalactiae/ultraestructura , Transfección , Wortmanina , beta-Ciclodextrinas/farmacología
13.
FEMS Microbiol Rev ; 30(5): 673-91, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16911039

RESUMEN

Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful beta-lactam antibiotics. The increasing incidence of beta-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies.


Asunto(s)
Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Proteínas Bacterianas/fisiología , Ciclo Celular , Proteínas de Unión a las Penicilinas/fisiología , Resistencia betalactámica , Bacterias/citología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-29021974

RESUMEN

Yersinia enterocolitica encodes a chromosomal AmpC ß-lactamase under the regulation of the classical ampR-ampC system. To obtain a further understanding to the role of low-molecular-mass penicillin-binding proteins (LMM PBPs) including PBP4, PBP5, PBP6, and PBP7, as well as NagZ and AmpR in ampC regulation of Y. enterocolitica, series of single/multiple mutant strains were systematically constructed and the ampC expression levels were determined by luxCDABE reporter system, reverse transcription-PCR (RT-PCR) and ß-lactamase activity test. Sequential deletion of PBP5 and other LMM PBPs result in a continuously growing of ampC expression level, the ß-lactamse activity of quadruple deletion strain YEΔ4Δ5Δ6Δ7 (pbp4, pbp5, pbp6, and pbp7 inactivated) is approached to the YEΔD123 (ampD1, ampD2, and ampD3 inactivated). Deletion of nagZ gene caused two completely different results in YEΔD123 and YEΔ4Δ5Δ6Δ7, NagZ is indispensable for YEΔ4Δ5Δ6Δ7 ampC derepression phenotype but dispensable for YEΔD123. AmpR is essential for ampC hyperproduction in these two types of strains, inactivation of AmpR notable reduced the ampC expression level in both YEΔD123 and YEΔ4Δ5Δ6Δ7.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de Unión a las Penicilinas/fisiología , Yersinia enterocolitica/metabolismo , beta-Lactamasas/fisiología , Acetilglucosaminidasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Pruebas de Sensibilidad Microbiana , Mutación , N-Acetil Muramoil-L-Alanina Amidasa , Proteínas de Unión a las Penicilinas/genética , Regiones Promotoras Genéticas , Yersinia enterocolitica/enzimología , Yersinia enterocolitica/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
15.
FEMS Microbiol Lett ; 255(1): 66-74, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16436063

RESUMEN

The recent emergence of a decreased susceptibility of Neisseria gonorrhoeae strains to penicillin in New Caledonia has lead clinicians to operate a change in the treatment strategy. In addition, this important health issue has emphasized the need for a rapid means of detecting penicillin resistance in N. gonorrhoeae in order to select an effective treatment and limit the spread of resistant strains. In recent years, the use of fluorescence resonance energy transfer on the LightCycler has proven to be a valuable tool for the screening of mutations occurring in the genome of various microorganisms. In this study, we developed a real-time PCR assay coupled with a fluorometric hybridization probes system to detect a penicillin resistance-associated mutation on the N. gonorrhoeae ponA gene. Following an extensive evaluation involving 136 isolates, melting curve analysis correctly evidenced a 5 degrees C T(m) shift in all N. gonorrhoeae strains possessing this mutation, as determined by conventional sequencing analysis. Moreover, the mutation profiles obtained with the real-time PCR showed good correlation with the pattern of penicillin susceptibility generated with classical antibiograms. Overall, our molecular assay allowed an accurate and reproducible determination of the susceptibility to penicillin corresponding to a mutation present in all chromosomally mediated resistant strains of N. gonorrhoeae.


Asunto(s)
Proteínas Bacterianas/genética , Neisseria gonorrhoeae/genética , Resistencia a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/genética , Penicilinas/farmacología , Proteínas Bacterianas/fisiología , Cromosomas Bacterianos , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Mutación , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/aislamiento & purificación , Proteínas de Unión a las Penicilinas/fisiología , Reacción en Cadena de la Polimerasa
16.
FEMS Microbiol Lett ; 263(1): 61-7, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16958852

RESUMEN

The penicillin-binding proteins (PBPs) catalyze the synthesis and modification of bacterial cell wall peptidoglycan. Although the biochemical activities of these proteins have been determined in Escherichia coli, the physiological roles of many PBPs remain enigmatic. Previous studies have cast doubt on the individual importance of the majority of PBPs during log phase growth. We show here that PBP1b is vital for competitive survival of E. coli during extended stationary phase, but the other nine PBPs studied are dispensable. Loss of PBP1b leads to the stationary phase-specific competition defective phenotype and causes cells to become more sensitive to osmotic stress. Additionally, we present evidence that this protein, as well as AmpC, may assist in cellular resistance to beta-lactam antibiotics.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Proteínas de Unión a las Penicilinas/fisiología , Peptidoglicano Glicosiltransferasa/fisiología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/fisiología , Proteínas Bacterianas/fisiología , Medios de Cultivo Condicionados , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Mutación , Concentración Osmolar , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano Glicosiltransferasa/genética , Fenotipo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , Resistencia betalactámica/fisiología , beta-Lactamasas/fisiología
17.
J Med Microbiol ; 54(Pt 11): 1055-1064, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16192437

RESUMEN

In this study penicillin-binding proteins (PBPs) of Bacteroides fragilis and the resistance mechanisms of this micro-organism to 11 beta-lactam antibiotics were analysed. The study focused on the role of PBP2Bfr and metallo-beta-lactamase in the mechanism of resistance to imipenem. The mechanism of beta-lactam resistance in B. fragilis was strain dependent. The gene encoding the orthologue of Escherichia coli PBP3 gene (pbpBBfr, which encodes the protein PBP2Bfr) was sequenced in five of the eight strains studied, along with the ccrA (cfiA) gene in strain 119, and their implications for resistance were examined. Differences were found in the amino-acid sequence of PBP2Bfr in strains AK-2 and 119, and the production of beta-lactamases indicated that these differences may be involved in the mechanism of resistance to imipenem. In vitro binding competition assays with membrane extracts using imipenem indicated that the PBP that bound imipenem with the highest affinity was PBP2Bfr, and that increased affinity in strain 7160 may be responsible for the moderate susceptibility of this strain to imipenem. In the same way, the importance of the chromosomal class A beta-lactamase CepA in the resistance mechanism of the B. fragilis strains NCTC 9344, 7160, 2013E, AK-4, 0423 and R-212 was studied. In these strains this is the principal resistance mechanism to antimicrobial agents studied other than imipenem.


Asunto(s)
Bacteroides fragilis/química , Bacteroides fragilis/efectos de los fármacos , Imipenem/farmacología , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/fisiología , Resistencia betalactámica/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Bacteroides fragilis/genética , Cefalosporinasa/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Imipenem/metabolismo , Datos de Secuencia Molecular , Proteínas de Unión a las Penicilinas/metabolismo , Unión Proteica , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , beta-Lactamasas/genética
19.
PLoS One ; 9(6): e99605, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24932751

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a major multidrug resistant pathogen responsible for several difficult-to-treat infections in humans. Clinical Hetero-resistant (HeR) MRSA strains, mostly associated with persistent infections, are composed of mixed cell populations that contain organisms with low levels of resistance (hetero-resistant HeR) and those that display high levels of drug resistance (homo-resistant HoR). However, the full understanding of ß-lactam-mediated HeR/HoR selection remains to be completed. In previous studies we demonstrated that acquisition of the HoR phenotype during exposure to ß-lactam antibiotics depended on two key elements: (1) activation of the SOS response, a conserved regulatory network in bacteria that is induced in response to DNA damage, resulting in increased mutation rates, and (2) adaptive metabolic changes redirecting HeR-MRSA metabolism to the tricarboxylic acid (TCA) cycle in order to increase the energy supply for cell-wall synthesis. In the present work, we identified that both main mechanistic components are associated through TCA cycle-mediated reactive oxygen species (ROS) production, which temporally affects DNA integrity and triggers activation of the SOS response resulting in enhanced mutagenesis. The present work brings new insights into a role of ROS generation on the development of resistance to ß-lactam antibiotics in a model of natural occurrence, emphasizing the cytoprotective role in HeR-MRSA survival mechanism.


Asunto(s)
Antibacterianos/farmacología , Ciclo del Ácido Cítrico/fisiología , Farmacorresistencia Bacteriana Múltiple/fisiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Especies Reactivas de Oxígeno/metabolismo , Resistencia betalactámica/fisiología , beta-Lactamas/farmacología , 2,2'-Dipiridil/farmacología , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Daño del ADN , ADN Bacteriano/análisis , Perfilación de la Expresión Génica , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Tasa de Mutación , Oxacilina/farmacología , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Respuesta SOS en Genética , Tiourea/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda