Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Brain ; 144(10): 3226-3238, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33964142

RESUMEN

Axonal degeneration is an early and ongoing event that causes disability and disease progression in many neurodegenerative disorders of the peripheral and central nervous systems. Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of morbidity and the main cause of dose reductions and discontinuations in cancer treatment. Preclinical evidence indicates that activation of the Wallerian-like degeneration pathway driven by sterile alpha and TIR motif containing 1 (SARM1) is responsible for axonopathy in CIPN. SARM1 is the central driver of an evolutionarily conserved programme of axonal degeneration downstream of chemical, inflammatory, mechanical or metabolic insults to the axon. SARM1 contains an intrinsic NADase enzymatic activity essential for its pro-degenerative functions, making it a compelling therapeutic target to treat neurodegeneration characterized by axonopathies of the peripheral and central nervous systems. Small molecule SARM1 inhibitors have the potential to prevent axonal degeneration in peripheral and central axonopathies and to provide a transformational disease-modifying treatment for these disorders. Using a biochemical assay for SARM1 NADase we identified a novel series of potent and selective irreversible isothiazole inhibitors of SARM1 enzymatic activity that protected rodent and human axons in vitro. In sciatic nerve axotomy, we observed that these irreversible SARM1 inhibitors decreased a rise in nerve cADPR and plasma neurofilament light chain released from injured sciatic nerves in vivo. In a mouse paclitaxel model of CIPN we determined that Sarm1 knockout mice prevented loss of axonal function, assessed by sensory nerve action potential amplitudes of the tail nerve, in a gene-dosage-dependent manner. In that CIPN model, the irreversible SARM1 inhibitors prevented loss of intraepidermal nerve fibres induced by paclitaxel and provided partial protection of axonal function assessed by sensory nerve action potential amplitude and mechanical allodynia.


Asunto(s)
Proteínas del Dominio Armadillo/antagonistas & inhibidores , Axones/efectos de los fármacos , Proteínas del Citoesqueleto/antagonistas & inhibidores , Paclitaxel/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Tiazoles/uso terapéutico , Animales , Antineoplásicos Fitogénicos/toxicidad , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Axones/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Tiazoles/farmacología
2.
Neurobiol Dis ; 155: 105368, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33892050

RESUMEN

Parkinson's disease (PD) is the most common form of neurodegenerative movement disorder, associated with profound loss of dopaminergic neurons from the basal ganglia. Though loss of dopaminergic neuron cell bodies from the substantia nigra pars compacta is a well-studied feature, atrophy and loss of their axons within the nigrostriatal tract is also emerging as an early event in disease progression. Genes that drive the Wallerian degeneration, like Sterile alpha and toll/interleukin-1 receptor motif containing (Sarm1), are excellent candidates for driving this axon degeneration, given similarities in the morphology of axon degeneration after axotomy and in PD. In the present study we assessed whether Sarm1 contributes to loss of dopaminergic projections in mouse models of PD. In Sarm1 deficient mice, we observed a significant delay in the degeneration of severed dopaminergic axons distal to a 6-OHDA lesion of the medial forebrain bundle (MFB) in the nigrostriatal tract, and an accompanying rescue of morphological, biochemical and behavioural phenotypes. However, we observed no difference compared to controls when striatal terminals were lesioned with 6-OHDA to induce a dying back form of neurodegeneration. Likewise, when PD phenotypes were induced using AAV-induced alpha-synuclein overexpression, we observed similar modest loss of dopaminergic terminals in Sarm1 knockouts and controls. Our data argues that axon degeneration after MFB lesion is Sarm1-dependent, but that other models for PD do not require Sarm1, or that Sarm1 acts with other redundant genetic pathways. This work adds to a growing body of evidence indicating Sarm1 contributes to some, but not all types of neurodegeneration, and supports the notion that while axon degeneration in many context appears morphologically similar, a diversity of axon degeneration programs exist.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/patología , Proteínas del Citoesqueleto/genética , Variación Genética/fisiología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/patología , Animales , Proteínas del Dominio Armadillo/deficiencia , Axones/metabolismo , Proteínas del Citoesqueleto/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente
3.
J Peripher Nerv Syst ; 22(3): 162-171, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28485482

RESUMEN

Distal axon degeneration seen in many peripheral neuropathies is likely to share common molecular mechanisms with Wallerian degeneration. Although several studies in mouse models of peripheral neuropathy showed prevention of axon degeneration in the slow Wallerian degeneration (Wlds) mouse, the role of a recently identified player in Wallerian degeneration, Sarm1, has not been explored extensively. In this study, we show that mice lacking the Sarm1 gene are resistant to distal axonal degeneration in a model of chemotherapy induced peripheral neuropathy caused by paclitaxel and a model of high fat diet induced putative metabolic neuropathy. This study extends the role of Sarm1 to axon degeneration seen in peripheral neuropathies and identifies it as a likely target for therapeutic development.


Asunto(s)
Proteínas del Dominio Armadillo/deficiencia , Proteínas del Citoesqueleto/deficiencia , Dieta Alta en Grasa/efectos adversos , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/prevención & control , Potenciales de Acción/genética , Análisis de Varianza , Animales , Antineoplásicos Fitogénicos/toxicidad , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Conducción Nerviosa/genética , Paclitaxel/toxicidad , Umbral del Dolor/fisiología , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Tiempo de Reacción/genética , Nervio Sural/patología
4.
Brain ; 139(Pt 4): 1094-105, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26912636

RESUMEN

Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer ß-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury.


Asunto(s)
Proteínas del Dominio Armadillo/deficiencia , Axones/metabolismo , Axones/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Proteínas del Citoesqueleto/deficiencia , Recuperación de la Función/fisiología , Péptidos beta-Amiloides/metabolismo , Animales , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología
5.
Development ; 138(10): 2099-109, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21521738

RESUMEN

Defects in the development or maintenance of tubule diameter correlate with polycystic kidney disease. Here, we report that absence of the cadherin regulator p120 catenin (p120ctn) from the renal mesenchyme prior to tubule formation leads to decreased cadherin levels with abnormal morphologies of early tubule structures and developing glomeruli. In addition, mutant mice develop cystic kidney disease, with markedly increased tubule diameter and cellular proliferation, and detached luminal cells only in proximal tubules. The p120ctn homolog Arvcf is specifically absent from embryonic proximal tubules, consistent with the specificity of the proximal tubular phenotype. p120ctn knockdown in renal epithelial cells in 3D culture results in a similar cystic phenotype with reduced levels of E-cadherin and active RhoA. We find that E-cadherin knockdown, but not RhoA inhibition, phenocopies p120ctn knockdown. Taken together, our data show that p120ctn is required for early tubule and glomerular morphogenesis, as well as control of luminal diameter, probably through regulation of cadherins.


Asunto(s)
Cateninas/metabolismo , Glomérulos Renales/embriología , Glomérulos Renales/metabolismo , Túbulos Renales/embriología , Túbulos Renales/metabolismo , Animales , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Secuencia de Bases , Cadherinas/deficiencia , Cadherinas/genética , Cadherinas/metabolismo , Cateninas/deficiencia , Cateninas/genética , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Polaridad Celular , Proliferación Celular , Citoesqueleto/metabolismo , Perros , Femenino , Técnicas de Silenciamiento del Gen , Enfermedades Renales Quísticas/embriología , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Morfogénesis , Nefronas/embriología , Nefronas/metabolismo , Fenotipo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Embarazo , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA , Catenina delta
6.
Exp Neurol ; 339: 113636, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548217

RESUMEN

Axonal degeneration contributes to the pathogenesis of many neurodegenerative disorders, motivating efforts to dissect the mechanism of pathological axon loss in order to develop therapies for axonal preservation. SARM1 is a particularly attractive therapeutic target, as it is an inducible NAD+ cleaving enzyme that is required for axon loss in multiple mouse models of traumatic and degenerative neurological disease. However, it is essential to establish whether SARM1 triggers axon degeneration in human neurons before proceeding with the development of SARM1-directed therapeutics. Here we combine genome engineering with the production of human stem cell-derived neurons to test the role of human SARM1 in traumatic and neurotoxic axon degeneration. We have generated two independent SARM1 knockout human iPSC lines that do not express SARM1 protein upon differentiation into neurons. We have developed a modified sensory neuron differentiation protocol that generates human sensory neurons with high yield and purity. We find that SARM1 is required for axon degeneration in response to both physical trauma and in a cellular model of chemotherapy-induced peripheral neuropathy. Finally, we identify cADPR as a biomarker of SARM1 enzyme activity in both healthy and injured human sensory neurons. These findings are consistent with prior molecular and cellular studies in mouse neurons, and highlight the therapeutic potential of SARM1 inhibition for the prevention and treatment of human neurological disease.


Asunto(s)
Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Axones/metabolismo , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Células Receptoras Sensoriales/metabolismo , Secuencia de Bases , Línea Celular , Técnicas de Inactivación de Genes/métodos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
7.
Acta Neuropathol Commun ; 9(1): 89, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001261

RESUMEN

Traumatic brain injury (TBI) causes chronic symptoms and increased risk of neurodegeneration. Axons in white matter tracts, such as the corpus callosum (CC), are critical components of neural circuits and particularly vulnerable to TBI. Treatments are needed to protect axons from traumatic injury and mitigate post-traumatic neurodegeneration. SARM1 protein is a central driver of axon degeneration through a conserved molecular pathway. Sarm1-/- mice with knockout (KO) of the Sarm1 gene enable genetic proof-of-concept testing of the SARM1 pathway as a therapeutic target. We evaluated Sarm1 deletion effects after TBI using a concussive model that causes traumatic axonal injury and progresses to CC atrophy at 10 weeks, indicating post-traumatic neurodegeneration. Sarm1 wild-type (WT) mice developed significant CC atrophy that was reduced in Sarm1 KO mice. Ultrastructural classification of pathology of individual axons, using electron microscopy, demonstrated that Sarm1 KO preserved more intact axons and reduced damaged or demyelinated axons. Longitudinal MRI studies in live mice identified significantly reduced CC volume after TBI in Sarm1 WT mice that was attenuated in Sarm1 KO mice. MR diffusion tensor imaging detected reduced fractional anisotropy in both genotypes while axial diffusivity remained higher in Sarm1 KO mice. Immunohistochemistry revealed significant attenuation of CC atrophy, myelin loss, and neuroinflammation in Sarm1 KO mice after TBI. Functionally, Sarm1 KO mice exhibited beneficial effects in motor learning and sleep behavior. Based on these findings, Sarm1 inactivation can protect axons and white matter tracts to improve translational outcomes associated with CC atrophy and post-traumatic neurodegeneration.


Asunto(s)
Proteínas del Dominio Armadillo/deficiencia , Axones/metabolismo , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/metabolismo , Proteínas del Citoesqueleto/deficiencia , Imagen de Difusión Tensora/métodos , Silenciador del Gen/fisiología , Animales , Proteínas del Dominio Armadillo/genética , Axones/patología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Proteínas del Citoesqueleto/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/diagnóstico por imagen , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Resultado del Tratamiento
8.
Protein Cell ; 12(8): 621-638, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33871822

RESUMEN

Axonal degeneration is one of the key features of neurodegenerative disorders. In the canonical view, axonal degeneration destructs neural connections and promotes detrimental disease defects. Here, we assessed the enteric nervous system (ENS) of the mouse, non-human primate, and human by advanced 3D imaging. We observed the profound neurodegeneration of catecholaminergic axons in human colons with ulcerative colitis, and similarly, in mouse colons during acute dextran sulfate sodium-induced colitis. However, we unexpectedly revealed that blockage of such axonal degeneration by the Sarm1 deletion in mice exacerbated the colitis condition. In contrast, pharmacologic ablation or chemogenetic inhibition of catecholaminergic axons suppressed the colon inflammation. We further showed that the catecholaminergic neurotransmitter norepinephrine exerted a pro-inflammatory function by enhancing the expression of IL-17 cytokines. Together, this study demonstrated that Sarm1-mediated neurodegeneration within the ENS mitigated local inflammation of the colon, uncovering a previously-unrecognized beneficial role of axonal degeneration in this disease context.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Colitis Ulcerosa/genética , Proteínas del Citoesqueleto/genética , Sistema Nervioso Entérico/metabolismo , Enfermedades Neurodegenerativas/genética , Animales , Proteínas del Dominio Armadillo/deficiencia , Catecolaminas/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/diagnóstico por imagen , Colitis Ulcerosa/metabolismo , Colon/diagnóstico por imagen , Colon/metabolismo , Colon/patología , Proteínas del Citoesqueleto/deficiencia , Sulfato de Dextran/administración & dosificación , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/diagnóstico por imagen , Sistema Nervioso Entérico/patología , Regulación de la Expresión Génica , Humanos , Imagenología Tridimensional , Interleucina-17/genética , Interleucina-17/metabolismo , Macaca mulatta , Masculino , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Norepinefrina/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
J Virol ; 83(18): 9329-38, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19587044

RESUMEN

Sterile alpha and HEAT/Armadillo motif (SARM) is a highly conserved Toll/interleukin-1 receptor (TIR)-containing adaptor protein that is believed to negatively regulate signaling of the pathogen recognition receptors Toll-like receptor 3 (TLR3) and TLR4. To test its physiological function in the context of a microbial infection, we generated SARM(-/-) mice and evaluated the impact of this deficiency on the pathogenesis of West Nile virus (WNV), a neurotropic flavivirus that requires TLR signaling to restrict infection. Although SARM was preferentially expressed in cells of the central nervous system (CNS), studies with primary macrophages, neurons, or astrocytes showed no difference in viral growth kinetics. In contrast, viral replication was increased specifically in the brainstem of SARM(-/-) mice, and this was associated with enhanced mortality after inoculation with a virulent WNV strain. A deficiency of SARM was also linked to reduced levels of tumor necrosis factor alpha (TNF-alpha), decreased microglia activation, and increased neuronal death in the brainstem after WNV infection. Thus, SARM appears to be unique among the TIR adaptor molecules, since it functions to restrict viral infection and neuronal injury in a brain region-specific manner, possibly by modulating the activation of resident CNS inflammatory cells.


Asunto(s)
Proteínas del Dominio Armadillo/fisiología , Tronco Encefálico/patología , Proteínas del Citoesqueleto/fisiología , Microglía/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis , Virus del Nilo Occidental/patogenicidad , Animales , Proteínas del Dominio Armadillo/análisis , Proteínas del Dominio Armadillo/deficiencia , Tronco Encefálico/virología , Muerte Celular , Proteínas del Citoesqueleto/análisis , Proteínas del Citoesqueleto/deficiencia , Ratones , Ratones Noqueados , Neuronas/patología , Neuronas/virología , Distribución Tisular , Receptores Toll-Like
10.
Methods Mol Biol ; 2143: 145-157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524478

RESUMEN

We describe here an organotypic culture system we have used to investigate mechanisms that maintain structure and function of axon terminals at the neuromuscular junction (NMJ). We developed this by taking advantage of the slow Wallerian degeneration phenotype in mutant Wlds mice, using these to compare preservation of NMJs with degeneration in nerve-muscle preparations from wild-type mice. We take hind limb tibial nerve/flexor digitorum brevis and lumbrical muscles and incubate them in mammalian physiological saline at 32 °C for 24-48 h. Integrity of NMJs can then be compared using a combination of electrophysiological and morphological techniques. We illustrate our method with data showing synaptic preservation ex vivo in nerve-muscle explants from Sarm-1 null-mutant mice. The ex vivo assays of NMJ integrity we describe here may therefore be useful for detailed investigation of synaptic maintenance and degeneration.


Asunto(s)
Unión Neuromuscular/fisiología , Técnicas de Cultivo de Órganos/métodos , Degeneración Walleriana/fisiopatología , Animales , Proteínas del Dominio Armadillo/deficiencia , Axones/fisiología , Proteínas del Citoesqueleto/deficiencia , Disección/métodos , Electrofisiología/métodos , Femenino , Inmunohistoquímica/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Músculo Esquelético , Unión Neuromuscular/ultraestructura , Técnicas de Cultivo de Órganos/instrumentación , Sinapsis/ultraestructura , Nervio Tibial
11.
Commun Biol ; 3(1): 49, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001778

RESUMEN

Protecting the nervous system from chronic effects of physical and chemical stress is a pressing clinical challenge. The obligate pro-degenerative protein Sarm1 is essential for Wallerian axon degeneration. Thus, blocking Sarm1 function is emerging as a promising neuroprotective strategy with therapeutic relevance. Yet, the conditions that will most benefit from inhibiting Sarm1 remain undefined. Here we combine genome engineering, pharmacology and high-resolution intravital videmicroscopy in zebrafish to show that genetic elimination of Sarm1 increases Schwann-cell resistance to toxicity by diverse chemotherapeutic agents after axonal injury. Synthetic degradation of Sarm1-deficient axons reversed this effect, suggesting that glioprotection is a non-autonomous effect of delayed axon degeneration. Moreover, loss of Sarm1 does not affect macrophage recruitment to nerve-wound microenvironment, injury resolution, or neural-circuit repair. These findings anticipate that interventions aimed at inhibiting Sarm1 can counter heightened glial vulnerability to chemical stressors and may be an effective strategy to reduce chronic consequences of neurotrauma.


Asunto(s)
Antineoplásicos/efectos adversos , Proteínas del Dominio Armadillo/deficiencia , Axones/metabolismo , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Degeneración Walleriana/genética , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/genética , Axones/patología , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Mutagénesis , Fenotipo , Pez Cebra
12.
Exp Neurol ; 321: 113040, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31445042

RESUMEN

Traumatic brain injury (TBI) often damages axons in white matter tracts and causes corpus callosum (CC) atrophy in chronic TBI patients. Injured axons encounter irreversible damage if transected, or alternatively may maintain continuity and subsequently either recover or degenerate. Secondary mechanisms can cause further axon damage, myelin pathology, and neuroinflammation. Molecular mechanisms regulating the progression of white matter pathology indicate potential therapeutic targets. SARM1 is essential for execution of the conserved axon death pathway. We examined white matter pathology following mild TBI with CC traumatic axonal injury in mice with Sarm1 gene deletion (Sarm1-/-). High resolution ultrastructural analysis at 3 days post-TBI revealed dramatically reduced axon damage in Sarm1-/- mice, as compared to Sarm1+/+ wild-type controls. Sarm1 deletion produced larger axons with thinner myelin, and attenuated TBI induced demyelination, i.e. myelin loss along apparently intact axons. At 6 weeks post-TBI, Sarm1-/- mice had less demyelination and thinner myelin than Sarm1+/+ mice, but axonal protection was no longer observed. We next used Thy1-YFP crosses to assess Sarm1 involvement in white matter neurodegeneration and neuroinflammation at 8 weeks post-TBI, when significant CC atrophy indicates chronic pathology. Thy1-YFP expression demonstrated continued CC axon damage yet absence of overt cortical pathology. Importantly, significant CC atrophy in Thy1-YFP/Sarm1+/+ mice was associated with reduced neurofilament immunolabeling of axons. Both effects were attenuated in Thy1-YFP/Sarm1-/- mice. Surprisingly, Thy1-YFP/Sarm1-/- mice had increased CC astrogliosis. This study demonstrates that Sarm1 inactivation reduces demyelination, and white matter atrophy after TBI, while the post-injury stage impacts when axon protection is effective.


Asunto(s)
Proteínas del Dominio Armadillo/deficiencia , Lesiones Traumáticas del Encéfalo/patología , Proteínas del Citoesqueleto/deficiencia , Enfermedades Desmielinizantes/patología , Sustancia Blanca/patología , Animales , Atrofia/metabolismo , Atrofia/patología , Axones/metabolismo , Axones/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Enfermedades Desmielinizantes/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sustancia Blanca/metabolismo
13.
J Exp Med ; 216(4): 743-756, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30842236

RESUMEN

SARM1 (sterile α and HEAT/armadillo motif-containing protein) is a member of the MyD88 (myeloid differentiation primary response gene 88) family, which mediates innate immune responses. Because inactivation of SARM1 prevents various forms of axonal degeneration, we tested whether it might protect against prion-induced neurotoxicity. Instead, we found that SARM1 deficiency exacerbates the progression of prion pathogenesis. This deleterious effect was not due to SARM1-dependent modulation of prion-induced neuroinflammation, since microglial activation, astrogliosis, and brain cytokine profiles were not altered by SARM1 deficiency. Whole-transcriptome analyses indicated that SARM1 deficiency led to strong, selective overexpression of the pro-apoptotic gene XAF1 (X-linked inhibitor of apoptosis-associated factor 1). Consequently, the activity of pro-apoptotic caspases and neuronal death were enhanced in prion-infected SARM1 -/- mice. These results point to an unexpected function of SARM1 as a regulator of prion-induced neurodegeneration and suggest that XAF1 might constitute a therapeutic target in prion disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/metabolismo , Scrapie/metabolismo , Regulación hacia Arriba/genética , Animales , Proteínas del Dominio Armadillo/genética , Encéfalo/metabolismo , Proteínas del Citoesqueleto/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa , Isoformas de Proteínas/metabolismo , Scrapie/patología
14.
Cell Rep ; 23(3): 716-724, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29669278

RESUMEN

Traumatic injuries can trigger inflammatory reactions, leading to profound neuropathological consequences. However, the immune capacity of neurons, distinct from that of immune cells or glial cells, in response to traumatic insults remains to be fully characterized. In this study, we demonstrate that neurons can detect, cell autonomously, distant axonal damage, resulting in rapid production of a specific collection of cytokines and chemokines. This neuronal immune response appears spatially and temporally separated from injury-induced axon degeneration. We then identify through the genetic screen that this immune response is regulated by TIR-domain adaptor Sarm1/Myd88-5. We further show that Sarm1 functions through the downstream Jnk-c-Jun signal, and blockage of this Sarm1-Jnk-c-Jun pathway effectively abolishes the recruitment of immune cells to injury-afflicted neural tissues. We therefore uncover the key function of the Sarm1 signaling pathway, independent of its known role in axon degeneration, in the neuronal intrinsic immune response to traumatic axonal injuries.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/metabolismo , Proteínas del Citoesqueleto/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Nervio Ciático/lesiones , Animales , Proteínas del Dominio Armadillo/deficiencia , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/genética , Citocinas/metabolismo , Proteínas del Citoesqueleto/deficiencia , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/antagonistas & inhibidores , Factor 88 de Diferenciación Mieloide/genética , Neuronas/citología , Neuronas/inmunología , Neuronas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal
15.
Cell Death Dis ; 9(11): 1116, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389906

RESUMEN

Apoptotic cells expose Phosphatidylserine (PS), that serves as an "eat me" signal for engulfing cells. Previous studies have shown that PS also marks degenerating axonsduring developmental pruning or in response to insults (Wallerian degeneration), but the pathways that control PS exposure on degenerating axons are largely unknown. Here, we used a series of in vitro assays to systematically explore the regulation of PS exposure during axonal degeneration. Our results show that PS exposure is regulated by the upstream activators of axonal pruning and Wallerian degeneration. However, our investigation of signaling further downstream revealed divergence between axon degeneration and PS exposure. Importantly, elevation of the axonal energetic status hindered PS exposure, while inhibition of mitochondrial activity caused PS exposure, without degeneration. Overall, our results suggest that the levels of PS on the outer axonal membrane can be dissociated from the degeneration process and that the axonal energetic status plays a key role in the regulation of PS exposure.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fosfatidilserinas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Degeneración Walleriana/metabolismo , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Axotomía , Biomarcadores/metabolismo , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Embrión de Mamíferos , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Expresión Génica , Ratones , Ratones Noqueados , Técnicas Analíticas Microfluídicas , Factor de Crecimiento Nervioso/farmacología , Plasticidad Neuronal/genética , Fosfatidilserinas/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Técnicas de Cultivo de Tejidos , Vincristina/farmacología , Degeneración Walleriana/genética , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética
16.
Cell Rep ; 21(1): 10-16, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28978465

RESUMEN

Studies with the WldS mutant mouse have shown that axon and synapse pathology in several models of neurodegenerative diseases are mechanistically related to injury-induced axon degeneration (Wallerian degeneration). Crucially, an absence of SARM1 delays Wallerian degeneration as robustly as WldS, but their relative capacities to confer long-term protection against related, non-injury axonopathy and/or synaptopathy have not been directly compared. While Sarm1 deletion or WldS can rescue perinatal lethality and widespread Wallerian-like axonopathy in young NMNAT2-deficient mice, we report that an absence of SARM1 enables these mice to survive into old age with no overt phenotype, whereas those rescued by WldS invariantly develop a progressive neuromuscular defect in their hindlimbs from around 3 months of age. We therefore propose Sarm1 deletion as a more reliable tool than WldS for investigating Wallerian-like mechanisms in disease models and suggest that SARM1 blockade may have greater therapeutic potential than WLDS-related strategies.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/genética , Genes Letales , Atrofia Muscular/genética , Proteínas del Tejido Nervioso/genética , Nicotinamida-Nucleótido Adenililtransferasa/genética , Degeneración Walleriana/genética , Animales , Proteínas del Dominio Armadillo/antagonistas & inhibidores , Proteínas del Dominio Armadillo/deficiencia , Axones/metabolismo , Axones/patología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/deficiencia , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Miembro Posterior/inervación , Miembro Posterior/metabolismo , Miembro Posterior/patología , Humanos , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/prevención & control , Proteínas del Tejido Nervioso/deficiencia , Nicotinamida-Nucleótido Adenililtransferasa/deficiencia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Tiempo , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología , Degeneración Walleriana/prevención & control
17.
Cell Rep ; 13(11): 2539-2552, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26686637

RESUMEN

Axon injury leads to rapid depletion of NAD-biosynthetic enzyme NMNAT2 and high levels of its substrate, NMN. We proposed a key role for NMN in Wallerian degeneration but downstream events and their relationship to other mediators remain unclear. Here, we show, in vitro and in vivo, that axotomy leads to a late increase in intra-axonal Ca(2+), abolished by pharmacological or genetic reduction of NMN levels. NMN requires the pro-degenerative protein SARM1 to stimulate Ca(2+) influx and axon degeneration. While inhibition of NMN synthesis and SARM1 deletion block Ca(2+) rise and preserve axonal integrity, they fail to prevent early mitochondrial dynamic changes. Furthermore, depolarizing mitochondria does not alter the rate of Wallerian degeneration. These data reveal that NMN and SARM1 act in a common pathway culminating in intra-axonal Ca(2+) increase and fragmentation and dissociate mitochondrial dysfunctions from this pathway, elucidating which steps may be most effective as targets for therapy.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Calcio/metabolismo , Proteínas del Citoesqueleto/genética , Mitocondrias/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Acrilamidas/farmacología , Amidohidrolasas/metabolismo , Animales , Proteínas del Dominio Armadillo/deficiencia , Axones/efectos de los fármacos , Axones/metabolismo , Proteínas del Citoesqueleto/deficiencia , Iones/química , Iones/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mononucleótido de Nicotinamida/farmacología , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Piperidinas/farmacología , Degeneración Walleriana/patología
19.
J Cell Biol ; 193(4): 769-84, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21555464

RESUMEN

Dendritic arborization is a critical neuronal differentiation process. Here, we demonstrate that syndecan-2 (Sdc2), a synaptic heparan sulfate proteoglycan that triggers dendritic filopodia and spine formation, regulates dendritic arborization in cultured hippocampal neurons. This process is controlled by sterile α and TIR motif-containing 1 protein (Sarm1), a negative regulator of Toll-like receptor 3 (TLR3) in innate immunity signaling. We show that Sarm1 interacts with and receives signal from Sdc2 and controls dendritic arborization through the MKK4-JNK pathway. In Sarm1 knockdown mice, dendritic arbors of neurons were less complex than those of wild-type littermates. In addition to acting downstream of Sdc2, Sarm1 is expressed earlier than Sdc2, which suggests that it has multiple roles in neuronal morphogenesis. Specifically, it is required for proper initiation and elongation of dendrites, axonal outgrowth, and neuronal polarization. These functions likely involve Sarm1-mediated regulation of microtubule stability, as Sarm1 influenced tubulin acetylation. This study thus reveals the molecular mechanism underlying the action of Sarm1 in neuronal morphogenesis.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Forma de la Célula , Proteínas del Citoesqueleto/metabolismo , Hipocampo/metabolismo , Inmunidad Innata , Neuronas/metabolismo , Sindecano-2/metabolismo , Animales , Proteínas del Dominio Armadillo/deficiencia , Proteínas del Dominio Armadillo/genética , Células COS , Chlorocebus aethiops , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Dendritas/metabolismo , Técnica del Anticuerpo Fluorescente , Células HEK293 , Hipocampo/embriología , Hipocampo/inmunología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Microscopía por Video , Microtúbulos/metabolismo , Morfogénesis , Neuronas/inmunología , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Sindecano-2/genética , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda