Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nat Methods ; 16(6): 553-560, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31086339

RESUMEN

Animal behavior originates from neuronal activity distributed across brain-wide networks. However, techniques available to assess large-scale neural dynamics in behaving animals remain limited. Here we present compact, chronically implantable, high-density arrays of optical fibers that enable multi-fiber photometry and optogenetic perturbations across many regions in the mammalian brain. In mice engaged in a texture discrimination task, we achieved simultaneous photometric calcium recordings from networks of 12-48 brain regions, including striatal, thalamic, hippocampal and cortical areas. Furthermore, we optically perturbed subsets of regions in VGAT-ChR2 mice by targeting specific fiber channels with a spatial light modulator. Perturbation of ventral thalamic nuclei caused distributed network modulation and behavioral deficits. Finally, we demonstrate multi-fiber photometry in freely moving animals, including simultaneous recordings from two mice during social interaction. High-density multi-fiber arrays are versatile tools for the investigation of large-scale brain dynamics during behavior.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Tecnología de Fibra Óptica/métodos , Neuronas/fisiología , Optogenética , Fotometría/métodos , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Animales , Conducta Animal , Encéfalo/citología , Señalización del Calcio , Tecnología de Fibra Óptica/instrumentación , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología
2.
Brain ; 144(2): 665-681, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33367648

RESUMEN

Opioids such as morphine are mainstay treatments for clinical pain conditions. Itch is a common side effect of opioids, particularly as a result of epidural or intrathecal administration. Recent progress has advanced our understanding of itch circuits in the spinal cord. However, the mechanisms underlying opioid-induced itch are not fully understood, although an interaction between µ-opioid receptor (MOR) and gastrin-releasing peptide receptor (GRPR) in spinal GRPR-expressing neurons has been implicated. In this study we investigated the cellular mechanisms of intrathecal opioid-induced itch by conditional deletion of MOR-encoding Oprm1 in distinct populations of interneurons and sensory neurons. We found that intrathecal injection of the MOR agonists morphine or DAMGO elicited dose-dependent scratching as well as licking and biting, but this pruritus was totally abolished in mice with a specific Oprm1 deletion in Vgat+ neurons [Oprm1-Vgat (Slc32a1)]. Loss of MOR in somatostatin+ interneurons and TRPV1+ sensory neurons did not affect morphine-induced itch but impaired morphine-induced antinociception. In situ hybridization revealed Oprm1 expression in 30% of inhibitory and 20% of excitatory interneurons in the spinal dorsal horn. Whole-cell recordings from spinal cord slices showed that DAMGO induced outward currents in 9 of 19 Vgat+ interneurons examined. Morphine also inhibited action potentials in Vgat+ interneurons. Furthermore, morphine suppressed evoked inhibitory postsynaptic currents in postsynaptic Vgat- excitatory neurons, suggesting a mechanism of disinhibition by MOR agonists. Notably, morphine-elicited itch was suppressed by intrathecal administration of NPY and abolished by spinal ablation of GRPR+ neurons with intrathecal injection of bombesin-saporin, whereas intrathecal GRP-induced itch response remained intact in mice lacking Oprm1-Vgat. Intrathecal bombesin-saporin treatment reduced the number of GRPR+ neurons by 97% in the lumber spinal cord and 91% in the cervical spinal cord, without changing the number of Oprm1+ neurons. Additionally, chronic itch from DNFB-induced allergic contact dermatitis was decreased by Oprm1-Vgat deletion. Finally, naloxone, but not peripherally restricted naloxone methiodide, inhibited chronic itch in the DNFB model and the CTCL model, indicating a contribution of central MOR signalling to chronic itch. Our findings demonstrate that intrathecal morphine elicits itch via acting on MOR on spinal inhibitory interneurons, leading to disinhibition of the spinal itch circuit. Our data also provide mechanistic insights into the current treatment of chronic itch with opioid receptor antagonist such as naloxone.


Asunto(s)
Analgésicos/administración & dosificación , Morfina/administración & dosificación , Prurito/inducido químicamente , Prurito/fisiopatología , Receptores Opioides mu/fisiología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiopatología , Animales , Dermatitis/fisiopatología , Femenino , Inyecciones Espinales , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Receptores de Bombesina/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
3.
J Neurosci ; 40(31): 5970-5989, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32576622

RESUMEN

The cholinergic neurons in the pontomesencephalic tegmentum have been shown to discharge in association with and promote cortical activation during active or attentive waking and paradoxical or rapid eye movement sleep. However, GABA neurons lie intermingled with the cholinergic neurons and may contribute to or oppose this activity and role. Here we investigated in vitro and in vivo the properties, activities, and role of GABA neurons within the laterodorsal tegmental and sublaterodorsal tegmental nuclei (LDT/SubLDT) using male and female transgenic mice expressing channelrhodopsin-(ChR2)-EYFP in vesicular GABA transporter (VGAT)-expressing neurons. Presumed GABA (pGABA) neurons were identified by response to photostimulation and verified by immunohistochemical staining following juxtacellular labeling in vivo pGABA neurons were found to be fast-firing neurons with the capacity to burst when depolarized from a hyperpolarized membrane potential. When stimulated in vivo in urethane-anesthetized or unanesthetized mice, the pGABA neurons fired repetitively at relatively fast rates (∼40 Hz) during a continuous light pulse or phasically in bursts (>100 Hz) when driven by rhythmic light pulses at theta (4 or 8 Hz) frequencies. pNon-GABA, which likely included cholinergic, neurons were inhibited during each light pulse to discharge rhythmically in antiphase to the pGABA neurons. The reciprocal rhythmic bursting by the pGABA and pNon-GABA neurons drove rhythmic theta activity in the EEG. Such phasic bursting by GABA neurons also occurred in WT mice in association with theta activity during attentive waking and paradoxical sleep.SIGNIFICANCE STATEMENT Neurons in the pontomesencephalic tegmentum, particularly cholinergic neurons, play an important role in cortical activation, which occurs during active or attentive waking and paradoxical or rapid eye movement sleep. Yet the cholinergic neurons lie intermingled with GABA neurons, which could play a similar or opposing role. Optogenetic stimulation and recording of these GABA neurons in mice revealed that they can discharge in rhythmic bursts at theta frequencies and drive theta activity in limbic cortex. Such phasic burst firing also occurs during natural attentive waking and paradoxical sleep in association with theta activity and could serve to enhance sensory-motor processing and memory consolidation during these states.


Asunto(s)
Corteza Cerebral/fisiología , Mesencéfalo/fisiología , Puente/fisiología , Sueño/fisiología , Vigilia/fisiología , Ácido gamma-Aminobutírico/fisiología , Anestesia , Animales , Electroencefalografía , Fenómenos Electrofisiológicos , Femenino , Masculino , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Estimulación Luminosa , Puente/citología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
4.
J Neurosci ; 38(22): 5168-5181, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29735555

RESUMEN

Recent studies have identified an especially important role for basal forebrain GABAergic (BFVGAT) neurons in the regulation of behavioral waking and fast cortical rhythms associated with cognition. However, BFVGAT neurons comprise several neurochemically and anatomically distinct subpopulations, including parvalbumin-containing BFVGAT neurons and somatostatin-containing BFVGAT neurons (BFSOM neurons), and it was recently reported that optogenetic activation of BFSOM neurons increases the probability of a wakefulness to non-rapid-eye movement (NREM) sleep transition when stimulated during the rest period of the animal. This finding was unexpected given that most BFSOM neurons are not NREM sleep active and that central administration of the synthetic somatostatin analog, octreotide, suppresses NREM sleep or increases REM sleep. Here we used a combination of genetically driven chemogenetic and optogenetic activation, chemogenetic inhibition, and ablation approaches to further explore the in vivo role of BFSOM neurons in arousal control. Our findings indicate that acute activation or inhibition of BFSOM neurons is neither wakefulness nor NREM sleep promoting and is without significant effect on the EEG, and that chronic loss of these neurons is without effect on total 24 h sleep amounts, although a small but significant increase in waking was observed in the lesioned mice during the early active period. Our in vitro cell recordings further reveal electrophysiological heterogeneity in BFSOM neurons, specifically suggesting at least two distinct subpopulations. Together, our data support the more nuanced view that BFSOM neurons are electrically heterogeneous and are not NREM sleep or wake promoting per se, but may exert, in particular during the early active period, a modest inhibitory influence on arousal circuitry.SIGNIFICANCE STATEMENT The cellular basal forebrain (BF) is a highly complex area of the brain that is implicated in a wide range of higher-level neurobiological processes, including regulating and maintaining normal levels of electrocortical and behavioral arousal. The respective in vivo roles of BF cell populations and their neurotransmitter systems in the regulation of electrocortical and behavioral arousal remains incompletely understood. Here we seek to define the neurobiological contribution of GABAergic somatostatin-containing BF neurons to arousal control. Understanding the respective contribution of BF cell populations to arousal control may provide critical insight into the pathogenesis of a host of neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, schizophrenia, and the cognitive impairments of normal aging.


Asunto(s)
Prosencéfalo Basal/fisiología , Conducta Animal/fisiología , Neuronas/fisiología , Somatostatina/fisiología , Animales , Prosencéfalo Basal/citología , Electroencefalografía , Fenómenos Electrofisiológicos/fisiología , Femenino , Eliminación de Gen , Genotipo , Masculino , Ratones , Optogenética , Sueño de Onda Lenta/fisiología , Somatostatina/metabolismo , Activación Transcripcional , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Vigilia/fisiología
5.
J Neurosci ; 38(6): 1588-1599, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29311142

RESUMEN

Orexin (also known as hypocretin) neurons are considered a key component of the ascending arousal system. They are active during wakefulness, at which time they drive and maintain arousal, and are silent during sleep. Their activity is controlled by long-range inputs from many sources, as well as by more short-range inputs, including from presumptive GABAergic neurons in the lateral hypothalamus/perifornical region (LH/PF). To characterize local GABAergic input to orexin neurons, we used channelrhodopsin-2-assisted circuit mapping in brain slices. We expressed channelrhodopsin-2 in GABAergic neurons (Vgat+) in the LH/PF and recorded from genetically identified surrounding orexin neurons (LH/PFVgat → Orx). We performed all experiments in mice of either sex. Photostimulation of LH/PF GABAergic neurons inhibited the firing of orexin neurons through the release of GABA, evoking GABAA-mediated IPSCs in orexin neurons. These photo-evoked IPSCs were maintained in the presence of TTX, indicating direct connectivity. Carbachol inhibited LH/PFVgat → Orx input through muscarinic receptors. By contrast, application of orexin was without effect on LH/PFVgat → Orx input, whereas dynorphin, another peptide produced by orexin neurons, inhibited LH/PFVgat → Orx input through κ-opioid receptors. Our results demonstrate that orexin neurons are under inhibitory control by local GABAergic neurons and that this input is depressed by cholinergic signaling, unaffected by orexin and inhibited by dynorphin. We propose that local release of dynorphin may, via collaterals, provides a positive feedback to orexin neurons and that, during wakefulness, orexin neurons may be disinhibited by acetylcholine and by their own release of dynorphin.SIGNIFICANCE STATEMENT The lateral hypothalamus contains important wake-promoting cell populations, including orexin-producing neurons. Intermingled with the orexin neurons, there are other cell populations that selectively discharge during nonrapid eye movement or rapid eye movement sleep. Some of these sleep-active neurons release GABA and are thought to inhibit wake-active neurons during rapid eye movement and nonrapid eye movement sleep. However, this hypothesis had not been tested. Here we show that orexin neurons are inhibited by a local GABAergic input. We propose that this local GABAergic input inhibits orexin neurons during sleep but that, during wakefulness, this input is depressed, possibly through cholinergically mediated disinhibition and/or by release of dynorphin from orexin neurons themselves.


Asunto(s)
Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/fisiología , Orexinas/fisiología , Animales , Mapeo Encefálico , Carbacol/farmacología , Channelrhodopsins/fisiología , Dinorfinas/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Neuronas GABAérgicas/efectos de los fármacos , Área Hipotalámica Lateral/efectos de los fármacos , Masculino , Ratones , Agonistas Muscarínicos/farmacología , Orexinas/farmacología , Sistema Nervioso Parasimpático/fisiología , Estimulación Luminosa , Corteza Prefrontal/metabolismo , Receptores de GABA-A/metabolismo , Tetrodotoxina/farmacología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
6.
J Neurosci ; 34(30): 10122-33, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25057213

RESUMEN

Visual responsiveness of cortical neurons changes depending on the brain state. Neural circuit mechanism underlying this change is unclear. By applying the method of in vivo two-photon functional calcium imaging to transgenic rats in which GABAergic neurons express fluorescent protein, we analyzed changes in visual response properties of cortical neurons when animals became awakened from anesthesia. In the awake state, the magnitude and reliability of visual responses of GABAergic neurons increased whereas the decay of responses of excitatory neurons became faster. To test whether the basal forebrain (BF) cholinergic projection is involved in these changes, we analyzed effects of electrical and optogenetic activation of BF on visual responses of mouse cortical neurons with in vivo imaging and whole-cell recordings. Electrical BF stimulation in anesthetized animals induced the same direction of changes in visual responses of both groups of neurons as awakening. Optogenetic activation increased the frequency of visually evoked action potentials in GABAergic neurons but induced the delayed hyperpolarization that ceased the late generation of action potentials in excitatory neurons. Pharmacological analysis in slice preparations revealed that photoactivation-induced depolarization of layer 1 GABAergic neurons was blocked by a nicotinic receptor antagonist, whereas non-fast-spiking layer 2/3 GABAergic neurons was blocked only by the application of both nicotinic and muscarinic receptor antagonists. These results suggest that the effect of awakening is mediated mainly through nicotinic activation of layer 1 GABAergic neurons and mixed nicotinic/muscarinic activation of layer 2/3 non-fast-spiking GABAergic neurons, which together curtails the visual responses of excitatory neurons.


Asunto(s)
Corteza Cerebral/fisiología , Potenciales Evocados Visuales/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Vigilia/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Prosencéfalo/metabolismo , Prosencéfalo/fisiología , Ratas , Ratas Transgénicas , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
7.
Physiology (Bethesda) ; 28(1): 39-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23280356

RESUMEN

Vesicular storage and subsequent release of neurotransmitters are the key processes of chemical signal transmission. In this process, vesicular neurotransmitter transporters are responsible for loading the signaling molecules. The use of a "clean biochemical" approach with purified, recombinant transporters has helped in the identification of novel vesicular neurotransmitter transporters and in the analysis of the control of signal transmission.


Asunto(s)
Proteínas de Transporte de Neurotransmisores/fisiología , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Animales , Proteínas de Transporte de Anión/fisiología , Humanos , Proteínas de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Proteínas de Transporte Vesicular de Monoaminas/fisiología
8.
Mol Cell Neurosci ; 49(2): 184-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22146684

RESUMEN

Axonal varicosities and dendritic spines at excitatory synapses are dynamic structures essential for synaptic plasticity, whereas the behavior of inhibitory synapses during development and plasticity remains largely unknown. To investigate the morphology and dynamics of inhibitory synapses, we used two distinct pre- and postsynaptic fluorescent probes: one is a yellow fluorescent protein, Venus, incorporated into vesicular GABA transporter (VGAT) gene as a specific marker of presynaptic inhibitory neurons and the other red fluorescent protein (mCherry)-tagged gephyrin, a postsynaptic scaffolding protein, as a postsynaptic marker. Using primary culture of mouse hippocampal neurons and confocal laser-scanning microscopy, we established a system by which close contacts of Venus-positive axonal varicosities with mCherry-labeled gephyrin clusters in the dendritic shafts of dissociated hippocampal pyramidal neurons could be clearly visualized. Time-lapse imaging revealed that: (1) the presynaptic varicosities actively moved with marked changes in their shapes, and the postsynaptic scaffolding protein gephyrin clusters underwent coordinated movements in a tight association with the presynaptic varicosities, (2) the extents of morphological changes and movements depended on the developmental stages, reaching a stable level as the inhibitory synaptic connections matured, and (3) the motility indexes of the varicosity and its counterpart gephyrin cluster were well correlated. Furthermore, action potential blockade with tetrodotoxin treatment reduced the varicosity size, gephyrin cluster mobility as well as the amplitude of GABAergic synaptic currents in pyramidal neurons. Such a neural activity-dependent dynamic change in GABAergic synaptic morphology is likely to play a critical role in the regulatory mechanism underlying the formation and plasticity of inhibitory synapses.


Asunto(s)
Hipocampo/citología , Sinapsis/ultraestructura , Animales , Axones/metabolismo , Axones/ultraestructura , Proteínas Portadoras/metabolismo , Células Cultivadas , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Ratas , Sinapsis/metabolismo , Sinapsis/fisiología , Imagen de Lapso de Tiempo/métodos , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
9.
Mol Pharmacol ; 81(4): 610-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22275517

RESUMEN

Loading of GABA and glycine into synaptic vesicles via the vesicular GABA transporter (VGAT) is an essential step in inhibitory neurotransmission. As a result of the evidence linking alterations in GABAergic and/or glycinergic neurotransmission to various pain disorders, we investigated the possible influence of down-regulation of VGAT on pain threshold and behavioral responses in mice. The phenotypes of heterozygous VGAT knockout [VGAT(+/-)] mice were compared with wild-type (WT) mice using behavioral assays. In addition, GABAergic and glycinergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded in dorsal horn neurons. Western blot analysis confirmed significant reduction of VGAT protein levels in VGAT(+/-) mice. However, high-performance liquid chromatography revealed that glutamate, GABA, and glycine contents in the whole brain and spinal cord were normal in VGAT(+/-) mice. Behavioral analysis of VGAT(+/-) mice showed unchanged motor coordination, anxiety, memory performance, and anesthetic sensitivity to propofol and ketamine, although thermal nociception and inflammatory pain were enhanced. Patch-clamp recordings revealed that the frequency and amplitude of glycinergic mIPSCs in lamina II neurons were reduced in VGAT(+/-) mice. Genotype differences in glycinergic mIPSCs were more evident during sustained stimulation by solutions with high potassium levels, suggesting that the estimated size of the readily releasable pool of glycine-containing vesicles was reduced in VGAT(+/-) mice. These results provide genetic, behavioral, and electrophysiological evidence that VGAT-mediated inhibitory drive alters very specific forms of sensory processing: those related to pain processing. More close examination will be needed to verify the possibility of VGAT as a new therapeutic target for the treatment of inflammatory pain.


Asunto(s)
Glicina/fisiología , Inflamación/fisiopatología , Dolor/fisiopatología , Transmisión Sináptica/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Animales , Conducta Animal , Western Blotting , Regulación hacia Abajo , Ratones , Ratones Noqueados , Médula Espinal/fisiopatología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética
10.
Am J Physiol Endocrinol Metab ; 299(1): E23-32, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20442321

RESUMEN

Pancreatic islet beta-cells contain synaptic-like microvesicles (SLMVs). The origin, trafficking, and role of these SLMVs are poorly understood. In neurons, synaptic vesicle (SV) biogenesis is mediated by two different cytosolic adaptor protein complexes, a ubiquitous AP-2 complex and the neuron-specific AP-3B complex. Mice lacking AP-3B subunits exhibit impaired GABAergic (inhibitory) neurotransmission and reduced neuronal vesicular GABA transporter (VGAT) content. Since beta-cell maturation and exocytotic function seem to parallel that of the inhibitory synapse, we predicted that AP-3B-associated vesicles would be present in beta-cells. Here, we test the hypothesis that AP-3B is expressed in islets and mediates beta-cell SLMV biogenesis. A secondary aim was to test whether the sedimentation properties of INS-1 beta-cell microvesicles are identical to those of bona fide SLMVs isolated from PC12 cells. Our results show that the two neuron-specific AP-3 subunits beta3B and mu3B are expressed in beta-cells, the first time these proteins have been found to be expressed outside the nervous system. We found that beta-cell SLMVs share the same sedimentation properties as PC12 SLMVs and contain SV proteins that sort specifically to AP-3B-associated vesicles in the brain. Brefeldin A, a drug that interferes with AP-3-mediated SV biogenesis, inhibits the delivery of AP-3 cargoes to beta-cell SLMVs. Consistent with a role for AP-3 in the biogenesis of GABAergic SLMV in beta-cells, INS-1 cell VGAT content decreases upon inhibition of AP-3 delta-subunit expression. Our findings suggest that beta-cells and neurons share molecules and mechanisms important for mediating the neuron-specific membrane trafficking pathways that underlie synaptic vesicle formation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Células Secretoras de Insulina/fisiología , Vesículas Sinápticas/fisiología , Factores de Transcripción/fisiología , Animales , Western Blotting , Brefeldino A/farmacología , Proteínas de Unión al ADN/genética , Inmunohistoquímica , Insulina/fisiología , Microscopía Confocal , Células PC12 , Inhibidores de la Síntesis de la Proteína/farmacología , ARN/química , ARN/genética , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Factores de Transcripción/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
11.
J Neurophysiol ; 104(4): 1933-45, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20685921

RESUMEN

The cerebral cortex consists of multiple neuron subtypes whose electrophysiological properties exhibit diverse modulation patterns in response to neurotransmitters, including noradrenaline and acetylcholine (ACh). We performed multiple whole cell patch-clamp recording from layer V GABAergic interneurons and pyramidal cells of rat insular cortex (IC) to examine whether cholinergic effects on unitary inhibitory postsynaptic currents (uIPSCs) are differentially regulated by ACh receptors, depending on their presynaptic and postsynaptic cell subtypes. In fast-spiking (FS) to pyramidal cell synapses, carbachol (10 µM) invariably decreased uIPSC amplitude by 51.0%, accompanied by increases in paired-pulse ratio (PPR) of the second to first uIPSC amplitude, coefficient of variation (CV) of the first uIPSC amplitude, and failure rate. Carbachol-induced uIPSC suppression was dose dependent and blocked by atropine, a muscarinic ACh receptor antagonist. Similar cholinergic suppression was observed in non-FS to pyramidal cell synapses. In contrast, FS to FS/non-FS cell synapses showed heterogeneous effects on uIPSC amplitude by carbachol. In roughly 40% of pairs, carbachol suppressed uIPSCs by 35.8%, whereas in a similar percentage of pairs uIPSCs were increased by 34.8%. Non-FS to FS/non-FS cell synapses also showed carbachol-induced uIPSC facilitation by 29.2% in about half of the pairs, whereas nearly 40% of pairs showed carbachol-induced suppression of uIPSCs by 40.3%. Carbachol tended to increase uIPSC amplitude in interneuron-to-interneuron synapses with higher PPR, suggesting that carbachol facilitates GABA release in interneuron synapses with lower release probability. These results suggest that carbachol-induced effects on uIPSCs are not homogeneous but preiotropic: i.e., cholinergic modulation of GABAergic synaptic transmission is differentially regulated depending on postsynaptic neuron subtypes.


Asunto(s)
Corteza Cerebral/fisiología , Agonistas Colinérgicos/farmacología , Potenciales Postsinápticos Inhibidores/fisiología , Densidad Postsináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Animales Recién Nacidos , Carbacol/farmacología , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Fibras Colinérgicas/efectos de los fármacos , Fibras Colinérgicas/fisiología , Femenino , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratas , Ratas Transgénicas , Transmisión Sináptica/efectos de los fármacos
12.
Commun Biol ; 2: 232, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263776

RESUMEN

In mammals, the circadian rhythms are regulated by the central clock located in the hypothalamic suprachiasmatic nucleus (SCN), which is composed of heterogeneous neurons with various neurotransmitters. Among them an inhibitory neurotransmitter, γ-Amino-Butyric-Acid (GABA), is expressed in almost all SCN neurons, however, its role in the circadian physiology is still unclear. Here, we show that the SCN of fetal mice lacking vesicular GABA transporter (VGAT-/-) or GABA synthesizing enzyme, glutamate decarboxylase (GAD65-/-/67-/-), shows burst firings associated with large Ca2+ spikes throughout 24 hours, which spread over the entire SCN slice in synchrony. By contrast, circadian PER2 rhythms in VGAT-/- and GAD65-/-/67-/- SCN remain intact. SCN-specific VGAT deletion in adult mice dampens circadian behavior rhythm. These findings indicate that GABA in the fetal SCN is necessary for refinement of the circadian firing rhythm and, possibly, for stabilizing the output signals, but not for circadian integration of multiple cellular oscillations.


Asunto(s)
Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Calcio/metabolismo , Glutamato Descarboxilasa/fisiología , Ratones , Proteínas Circadianas Period/fisiología , Transducción de Señal/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
13.
Neuron ; 103(1): 92-101.e6, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31097361

RESUMEN

The dorsomedial striatum (DMS) is critically involved in motor control and reward processing, but the specific neural circuit mediators are poorly understood. Recent evidence highlights the extensive connectivity of low-threshold spiking interneurons (LTSIs) within local striatal circuitry; however, the in vivo function of LTSIs remains largely unexplored. We employed fiber photometry to assess LTSI calcium activity in a range of DMS-mediated behaviors, uncovering specific reward-related activity that is down-modulated during goal-directed learning. Using two mechanistically distinct manipulations, we demonstrated that this down-modulation of LTSI activity is critical for acquisition of novel contingencies, but not for their modification. In contrast, continued LTSI activation slowed instrumental learning. Similar manipulations of fast-spiking interneurons did not reproduce these effects, implying a specific function of LTSIs. Finally, we revealed a role for the γ-aminobutyric acid (GABA)ergic functions of LTSIs in learning. Together, our data provide new insights into this striatal interneuron subclass as important gatekeepers of goal-directed learning.


Asunto(s)
Cuerpo Estriado/fisiología , Objetivos , Interneuronas/fisiología , Aprendizaje/fisiología , Animales , Apetito , Señalización del Calcio/fisiología , Condicionamiento Operante/fisiología , Fenómenos Electrofisiológicos/fisiología , Ratones , Ratones Noqueados , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/fisiología , Recompensa , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Ácido gamma-Aminobutírico/fisiología
14.
Neuropharmacology ; 161: 107737, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31398382

RESUMEN

Cultured rat cortical neurons co-expressing VGLUT1 and VGAT (mixed synapses) co-release Glu and GABA. Here, mixed synapses were studied in cultured mouse cortical neurons to verify whether in mice mixed synapses co-release Glu and GABA, and to gain insight into how they may influence excitation/inhibition balance. Results showed the existence of synapses and autapses that co-release Glu and GABA in cultured mouse cortical neurons, and the ability of both neurotransmitters to evoke postsynaptic responses mediated by ionotropic receptors. We studied the short-term plasticity of glutamatergic, GABAergic, and mixed responses and we found that the kinetics of mixPSC amplitude depression was similar to that observed in EPSCs, but it was different from that of IPSCs. We found similar presynaptic release characteristics in glutamatergic and mixed synapses. Analysis of postsynaptic features, obtained by measuring AMPAR- and NMDAR-mediated currents, showed that AMPAR-mediated currents were significantly higher in pure glutamatergic than in mixed synapses, whereas NMDAR-mediated currents were not significantly different from those measured in mixed synapses. Overall, our findings demonstrate that glutamatergic and mixed synapses share similar electrophysiological properties. However, co-release of GABA and Glu influences postsynaptic ionotropic glutamatergic receptor subtypes, thus selectively influencing AMPAR-mediated currents. These findings strengthen the view that mixed neurons can play a key role in CNS development and in maintaining the excitation-inhibition balance.


Asunto(s)
Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/fisiología , Fenómenos Electrofisiológicos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Cinética , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Terminales Presinápticos , Receptores AMPA/metabolismo , Receptores de Glutamato/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
15.
Nat Cell Biol ; 21(4): 420-429, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30936473

RESUMEN

During mouse postnatal eye development, the embryonic hyaloid vascular network regresses from the vitreous as an adaption for high-acuity vision. This process occurs with precisely controlled timing. Here, we show that opsin 5 (OPN5; also known as neuropsin)-dependent retinal light responses regulate vascular development in the postnatal eye. In Opn5-null mice, hyaloid vessels regress precociously. We demonstrate that 380-nm light stimulation via OPN5 and VGAT (the vesicular GABA/glycine transporter) in retinal ganglion cells enhances the activity of inner retinal DAT (also known as SLC6A3; a dopamine reuptake transporter) and thus suppresses vitreal dopamine. In turn, dopamine acts directly on hyaloid vascular endothelial cells to suppress the activity of vascular endothelial growth factor receptor 2 (VEGFR2) and promote hyaloid vessel regression. With OPN5 loss of function, the vitreous dopamine level is elevated and results in premature hyaloid regression. These investigations identify violet light as a developmental timing cue that, via an OPN5-dopamine pathway, regulates optic axis clearance in preparation for visual function.


Asunto(s)
Dopamina/metabolismo , Ojo/irrigación sanguínea , Luz , Proteínas de la Membrana/metabolismo , Opsinas/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/química , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Endotelio Vascular/metabolismo , Ojo/enzimología , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Opsinas/genética , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Treonina/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Cuerpo Vítreo/metabolismo
16.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423437

RESUMEN

Electrical signals generated by molecularly-distinct classes of lateral hypothalamus (LH) neurons have distinct physiological consequences. For example, LH orexin neurons promote net body energy expenditure, while LH non-orexin neurons [VGAT, melanin-concentrating hormone (MCH)] drive net energy conservation. Appropriate switching between such physiologically-opposing LH outputs is traditionally thought to require cell-type-specific chemical modulation of LH firing. However, it was recently found that, in vivo, the LH neurons are also physiologically exposed to electrical oscillations of different frequency bands. The role of the different physiological oscillation frequencies in firing of orexin vs non-orexin LH neurons remains unknown. Here, we used brain-slice whole-cell patch-clamp technology to target precisely-defined oscillation waveforms to individual molecularly-defined classes LH cells (orexin, VGAT, MCH, GAD65), while measuring the action potential output of the cells. By modulating the frequency of sinusoidal oscillatory input, we found that high-frequency oscillations (γ, ≈30-200 Hz) preferentially silenced the action potential output orexinLH cells. In contrast, low frequencies (δ-θ, ≈0.5-7 Hz) similarly permitted outputs from different LH cell types. This differential control of orexin and non-orexin cells by oscillation frequency was mediated by cell-specific, impedance-unrelated resonance mechanisms. These results substantiate electrical oscillations as a novel input modality for cell-type-specific control of LH firing, which offers an unforeseen way to control specific cell ensembles within this highly heterogeneous neuronal cluster.


Asunto(s)
Área Hipotalámica Lateral/fisiología , Neuronas/fisiología , Potenciales de Acción , Animales , Estimulación Eléctrica , Femenino , Glutamato Descarboxilasa/fisiología , Hormonas Hipotalámicas/fisiología , Masculino , Melaninas/fisiología , Ratones Transgénicos , Orexinas/fisiología , Hormonas Hipofisarias/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
17.
Neuroscience ; 146(3): 1044-52, 2007 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-17418495

RESUMEN

The respiratory neural network in the mammalian medulla oblongata shows rhythmic activity before birth. GABA and glycine are considered to be involved in control of respiratory rhythm. Recently we have demonstrated respiratory failure in glutamic acid decarboxylase (GAD) 67-deficient mice [Tsunekawa N, Arata A, Obata K (2005) Development of spontaneous mouth/tongue movement and related neural activity, and their repression in mouse fetus lacking glutamate decarboxylase 67. Eur J Neurosci 21:173-178]. To further evaluate the involvement of GABA and glycine in fetal respiratory function, we studied neural activities in brainstem-spinal cord blocks prepared from GAD65-/-:67-/- and vesicular GABA transporter (VGAT)-/-mice on embryonic day 14 (E14)-E15 and E18. In these knockout mice, the synthesis of GABA and the vesicular release of GABA and glycine are completely absent, respectively. Spontaneous respiratory discharges were observed in the ventral roots at the cervical cord (C) 4 level from wild-type mice but not from the knockout mice on E18. Administration of substance P induced C4 discharges in GAD65-/-:67-/- preparations but not in VGAT-/- preparations. C4 discharges were observed in the knockout mice on E14-E15, although the frequency was lower than that in the wild-type. Neuronal activities in the respiratory network of the E18 brainstem were recorded using a "blind" patch-clamp technique. Expiratory and inspiratory neurons with their characteristic firing patterns were observed in the wild-type fetuses. Strychnine reversed inspiratory-phase hyperpolarization to large depolarization in expiratory neurons. On the other hand, neurons in the same area of the knockout mice fired spontaneously without any rhythm. Substance P induced hyperpolarizing potentials in medullary neurons of GAD65-/-:67-/- mice. Further administration of strychnine induced large depolarizing potentials. Rhythmic activities were not observed in VGAT-/- mice even in the presence of substance P and strychnine. These results indicate that the lack of GABA and glycine impairs the function of the respiratory network in mouse fetuses and the impairment progresses with fetal age.


Asunto(s)
Tronco Encefálico/metabolismo , Feto/metabolismo , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/fisiología , Isoenzimas/genética , Isoenzimas/fisiología , Consumo de Oxígeno/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Animales , Tronco Encefálico/fisiología , Electrofisiología , Femenino , Antagonistas del GABA/farmacología , Glicina/metabolismo , Glicinérgicos/farmacología , Bulbo Raquídeo/metabolismo , Ratones , Ratones Noqueados , Picrotoxina/farmacología , Embarazo , Médula Espinal/metabolismo , Raíces Nerviosas Espinales/fisiología , Estricnina/farmacología , Sustancia P/farmacología , Ácido gamma-Aminobutírico/metabolismo
18.
Nat Commun ; 8(1): 1405, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29123082

RESUMEN

Basic and clinical observations suggest that the caudal hypothalamus comprises a key node of the ascending arousal system, but the cell types underlying this are not fully understood. Here we report that glutamate-releasing neurons of the supramammillary region (SuMvglut2) produce sustained behavioral and EEG arousal when chemogenetically activated. This effect is nearly abolished following selective genetic disruption of glutamate release from SuMvglut2 neurons. Inhibition of SuMvglut2 neurons decreases and fragments wake, also suppressing theta and gamma frequency EEG activity. SuMvglut2 neurons include a subpopulation containing both glutamate and GABA (SuMvgat/vglut2) and another also expressing nitric oxide synthase (SuMNos1/Vglut2). Activation of SuMvgat/vglut2 neurons produces minimal wake and optogenetic stimulation of SuMvgat/vglut2 terminals elicits monosynaptic release of both glutamate and GABA onto dentate granule cells. Activation of SuMNos1/Vglut2 neurons potently drives wakefulness, whereas inhibition reduces REM sleep theta activity. These results identify SuMvglut2 neurons as a key node of the wake-sleep regulatory system.


Asunto(s)
Nivel de Alerta/fisiología , Ácido Glutámico/fisiología , Hipotálamo Posterior/fisiología , Neuronas/fisiología , Animales , Hipotálamo Posterior/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Óxido Nítrico Sintasa de Tipo I/fisiología , Sueño REM/fisiología , Ritmo Teta/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/deficiencia , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología , Vigilia/fisiología
19.
Neurochem Int ; 48(6-7): 643-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16546297

RESUMEN

The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.


Asunto(s)
Corteza Cerebral/fisiología , Proteína 1 de Transporte Vesicular de Glutamato/biosíntesis , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/biosíntesis , Animales , Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Homeostasis , Humanos , Red Nerviosa/fisiología , Plasticidad Neuronal , Neuronas/metabolismo , Sinapsis/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
20.
Neuron ; 92(1): 187-201, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27693254

RESUMEN

Behavioral choice is ubiquitous in the animal kingdom and is central to goal-oriented behavior. Hypothalamic Agouti-related peptide (AgRP) neurons are critical regulators of appetite. Hungry animals, bombarded by multiple sensory stimuli, are known to modify their behavior during times of caloric need, rapidly adapting to a consistently changing environment. Utilizing ARCAgRP neurons as an entry point, we analyzed the hierarchical position of hunger related to rival drive states. Employing a battery of behavioral assays, we found that hunger significantly increases its capacity to suppress competing motivational systems, such as thirst, anxiety-related behavior, innate fear, and social interactions, often only when food is accessible. Furthermore, real-time monitoring of ARCAgRP activity revealed time-locked responses to conspecific investigation in addition to food presentation, further establishing that, even at the level of ARCAgRP neurons, choices are remarkably flexible computations, integrating internal state, external factors, and anticipated yield. VIDEO ABSTRACT.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Hambre/fisiología , Motivación/fisiología , Neuronas/fisiología , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/fisiología , Animales , Conducta Animal/fisiología , Señales (Psicología) , Ingestión de Alimentos/fisiología , Ratones , Ratones Transgénicos , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda