Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cell ; 160(3): 542-53, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635461

RESUMEN

Excitatory amino acid transporters (EAATs) are essential for terminating glutamatergic synaptic transmission. They are not only coupled glutamate/Na(+)/H(+)/K(+) transporters but also function as anion-selective channels. EAAT anion channels regulate neuronal excitability, and gain-of-function mutations in these proteins result in ataxia and epilepsy. We have combined molecular dynamics simulations with fluorescence spectroscopy of the prokaryotic homolog GltPh and patch-clamp recordings of mammalian EAATs to determine how these transporters conduct anions. Whereas outward- and inward-facing GltPh conformations are nonconductive, lateral movement of the glutamate transport domain from intermediate transporter conformations results in formation of an anion-selective conduction pathway. Fluorescence quenching of inserted tryptophan residues indicated the entry of anions into this pathway, and mutations of homologous pore-forming residues had analogous effects on GltPh simulations and EAAT2/EAAT4 measurements of single-channel currents and anion/cation selectivities. These findings provide a mechanistic framework of how neurotransmitter transporters can operate as anion-selective and ligand-gated ion channels.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Aniones/metabolismo , Proteínas Arqueales/química , Proteínas de Transporte de Glutamato en la Membrana Plasmática/química , Simulación de Dinámica Molecular , Pyrococcus horikoshii/química , Secuencia de Aminoácidos , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Proteínas Arqueales/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Ratas , Alineación de Secuencia
2.
Proc Natl Acad Sci U S A ; 117(51): 32386-32394, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33288716

RESUMEN

In translation elongation, two translational guanosine triphosphatase (trGTPase) factors EF1A and EF2 alternately bind to the ribosome and promote polypeptide elongation. The ribosomal stalk is a multimeric ribosomal protein complex which plays an essential role in the recruitment of EF1A and EF2 to the ribosome and their GTP hydrolysis for efficient and accurate translation elongation. However, due to the flexible nature of the ribosomal stalk, its structural dynamics and mechanism of action remain unclear. Here, we applied high-speed atomic force microscopy (HS-AFM) to directly visualize the action of the archaeal ribosomal heptameric stalk complex, aP0•(aP1•aP1)3 (P-stalk). HS-AFM movies clearly demonstrated the wobbling motion of the P-stalk on the large ribosomal subunit where the stalk base adopted two conformational states, a predicted canonical state, and a newly identified flipped state. Moreover, we showed that up to seven molecules of archaeal EF1A (aEF1A) and archaeal EF2 (aEF2) assembled around the ribosomal P-stalk, corresponding to the copy number of the common C-terminal factor-binding site of the P-stalk. These results provide visual evidence for the factor-pooling mechanism by the P-stalk within the ribosome and reveal that the ribosomal P-stalk promotes translation elongation by increasing the local concentration of translational GTPase factors.


Asunto(s)
Proteínas Arqueales/química , Factores de Elongación Enlazados a GTP Fosfohidrolasas/metabolismo , Microscopía de Fuerza Atómica/métodos , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes/química , Proteínas Arqueales/metabolismo , Escherichia coli/genética , Factores de Elongación Enlazados a GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Extensión de la Cadena Peptídica de Translación , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo
3.
Nat Chem Biol ; 16(9): 1006-1012, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32514183

RESUMEN

In proteins where conformational changes are functionally important, the number of accessible states and their dynamics are often difficult to establish. Here we describe a novel 19F-NMR spectroscopy approach to probe dynamics of large membrane proteins. We labeled a glutamate transporter homolog with a 19F probe via cysteine chemistry and with a Ni2+ ion via chelation by a di-histidine motif. We used distance-dependent enhancement of the longitudinal relaxation of 19F nuclei by the paramagnetic metal to assign the observed resonances. We identified one inward- and two outward-facing states of the transporter, in which the substrate-binding site is near the extracellular and intracellular solutions, respectively. We then resolved the structure of the unanticipated second outward-facing state by cryo-EM. Finally, we showed that the rates of the conformational exchange are accessible from measurements of the metal-enhanced longitudinal relaxation of 19F nuclei.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Espectroscopía de Resonancia Magnética , Sistema de Transporte de Aminoácidos X-AG/genética , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Microscopía por Crioelectrón , Cisteína/química , Flúor , Histidina/química , Modelos Moleculares , Mutación , Níquel/química , Conformación Proteica , Dominios Proteicos , Pyrococcus horikoshii/química
4.
Nature ; 518(7537): 68-73, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25652997

RESUMEN

Glutamate transporters terminate neurotransmission by clearing synaptically released glutamate from the extracellular space, allowing repeated rounds of signalling and preventing glutamate-mediated excitotoxicity. Crystallographic studies of a glutamate transporter homologue from the archaeon Pyrococcus horikoshii, GltPh, showed that distinct transport domains translocate substrates into the cytoplasm by moving across the membrane within a central trimerization scaffold. Here we report direct observations of these 'elevator-like' transport domain motions in the context of reconstituted proteoliposomes and physiological ion gradients using single-molecule fluorescence resonance energy transfer (smFRET) imaging. We show that GltPh bearing two mutations introduced to impart characteristics of the human transporter exhibits markedly increased transport domain dynamics, which parallels an increased rate of substrate transport, thereby establishing a direct temporal relationship between transport domain motion and substrate uptake. Crystallographic and computational investigations corroborated these findings by revealing that the 'humanizing' mutations favour structurally 'unlocked' intermediate states in the transport cycle exhibiting increased solvent occupancy at the interface between the transport domain and the trimeric scaffold.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/química , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Ácido Aspártico/metabolismo , Pyrococcus horikoshii/química , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Acídicos/genética , Transporte Biológico , Cristalografía por Rayos X , Detergentes , Transferencia Resonante de Energía de Fluorescencia , Humanos , Cinética , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Movimiento , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación/genética , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteolípidos/metabolismo , Sodio/metabolismo , Solventes , Termodinámica
5.
Chembiochem ; 21(3): 346-352, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31265209

RESUMEN

Protein C-terminal hydrazides are useful for bioconjugation and construction of proteins from multiple fragments through native chemical ligation. To generate C-terminal hydrazides in proteins, an efficient intein-based preparation method has been developed by using thiols and hydrazine to accelerate the formation of the transient thioester intermediate and subsequent hydrazinolysis. This approach not only increases the yield, but also improves biocompatibility. The scope of the method has been expanded by employing Pyrococcus horikoshii RadA split intein, which can accommodate a broad range of extein residues before the site of cleavage. The use of split RadA minimizes premature intein N cleavage in vivo and offers control over the initiation of the intein N cleavage reaction. It is expected that this versatile preparation method will expand the utilization of protein C-terminal hydrazides in protein preparation and modification.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Hidrazinas/metabolismo , Proteínas Bacterianas/química , Proteínas de Unión al ADN/química , Hidrazinas/química , Inteínas , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo
6.
Nature ; 502(7469): 119-23, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24091978

RESUMEN

Excitatory amino acid transporters (EAATs) are secondary transport proteins that mediate the uptake of glutamate and other amino acids. EAATs fulfil an important role in neuronal signal transmission by clearing the excitatory neurotransmitters from the synaptic cleft after depolarization of the postsynaptic neuron. An intensively studied model system for understanding the transport mechanism of EAATs is the archaeal aspartate transporter GltPh. Each subunit in the homotrimeric GltPh supports the coupled translocation of one aspartate molecule and three Na(+) ions as well as an uncoupled flux of Cl(-) ions. Recent crystal structures of GltPh revealed three possible conformations for the subunits, but it is unclear whether the motions of individual subunits are coordinated to support transport. Here, we report the direct observation of conformational dynamics in individual GltPh trimers embedded in the membrane by applying single-molecule fluorescence resonance energy transfer (FRET). By analysing the transporters in a lipid bilayer instead of commonly used detergent micelles, we achieve conditions that approximate the physiologically relevant ones. From the kinetics of FRET level transitions we conclude that the three GltPh subunits undergo conformational changes stochastically and independently of each other.


Asunto(s)
Ácido Aspártico/química , Ácido Aspártico/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/química , Modelos Moleculares , Sodio/química , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Membrana Dobles de Lípidos/metabolismo , Estructura Terciaria de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo
7.
Nature ; 502(7469): 114-8, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23792560

RESUMEN

Glutamate transporters are integral membrane proteins that catalyse neurotransmitter uptake from the synaptic cleft into the cytoplasm of glial cells and neurons. Their mechanism of action involves transitions between extracellular (outward)-facing and intracellular (inward)-facing conformations, whereby substrate binding sites become accessible to either side of the membrane. This process has been proposed to entail transmembrane movements of three discrete transport domains within a trimeric scaffold. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging, we have directly observed large-scale transport domain movements in a bacterial homologue of glutamate transporters. We find that individual transport domains alternate between periods of quiescence and periods of rapid transitions, reminiscent of bursting patterns first recorded in single ion channels using patch-clamp methods. We propose that the switch to the dynamic mode in glutamate transporters is due to separation of the transport domain from the trimeric scaffold, which precedes domain movements across the bilayer. This spontaneous dislodging of the substrate-loaded transport domain is approximately 100-fold slower than subsequent transmembrane movements and may be rate determining in the transport cycle.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Modelos Moleculares , Pyrococcus horikoshii/metabolismo , Sistema de Transporte de Aminoácidos X-AG/genética , Ácido Aspártico/química , Transporte Biológico , Transferencia Resonante de Energía de Fluorescencia , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Sodio/química
8.
J Biol Chem ; 292(12): 4996-5006, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28130448

RESUMEN

The archaeal exo-ß-d-glucosaminidase (GlmA) is a dimeric enzyme that hydrolyzes chitosan oligosaccharides into monomer glucosamines. GlmA is a member of the glycosidase hydrolase (GH)-A superfamily-subfamily 35 and is a novel enzyme in terms of its primary structure. Here, we present the crystal structure of GlmA in complex with glucosamine at 1.27 Å resolution. The structure reveals that a monomeric form of GlmA shares structural homology with GH42 ß-galactosidases, whereas most of the spatial positions of the active site residues are identical to those of GH35 ß-galactosidases. We found that upon dimerization, the active site of GlmA changes shape, enhancing its ability to hydrolyze the smaller substrate in a manner similar to that of homotrimeric GH42 ß-galactosidase. However, GlmA can differentiate glucosamine from galactose based on one charged residue while using the "evolutionary heritage residue" it shares with GH35 ß-galactosidase. Our study suggests that GH35 and GH42 ß-galactosidases evolved by exploiting the structural features of GlmA.


Asunto(s)
Glicósido Hidrolasas/química , Hexosaminidasas/química , Pyrococcus horikoshii/enzimología , Thermococcus/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Evolución Molecular , Glucosamina/metabolismo , Glicósido Hidrolasas/metabolismo , Hexosaminidasas/metabolismo , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo , Especificidad por Sustrato , Thermococcus/química , Thermococcus/metabolismo
9.
J Struct Biol ; 197(3): 372-378, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28167161

RESUMEN

In the recent decades, essential steps of protein structure determination such as phasing by multiple isomorphous replacement and multi wave length anomalous dispersion, molecular replacement, refinement of the structure determined and its validation have been fully automated. Several computer program suites that execute all these steps as a pipeline operation have been made available. In spite of these great advances, determination of a protein structure may turn out to be a challenging task for a variety of reasons. It might be difficult to obtain multiple isomorphous replacement or multi wave length anomalous dispersion data or the crystal may have defects such as twinning or pseudo translation. Apart from these usual difficulties, more frequent difficulties have been encountered in recent years because of the large number of projects handled by structural biologists. These new difficulties usually result from contamination of the protein of interest by other proteins or presence of proteins from pathogenic organisms that could withstand the antibiotics used to prevent bacterial contamination. It could also be a result of poor book keeping. Recently, we have developed a procedure called MarathonMR that has the power to resolve some of these problems automatically. In this communication, we describe how the MarathonMR was used to determine four different protein structures that had remained elusive for several years. We describe the plausible reasons for the difficulties encountered in determining these structures and point out that the method presented here could be a validation tool for protein structures deposited in the protein data bank.


Asunto(s)
Proteínas/química , Proteínas Arqueales/química , Liasas de Carbono-Oxígeno/química , Cristalografía por Rayos X , Conformación Proteica , Estructura Secundaria de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo
10.
Biochem Biophys Res Commun ; 493(2): 1063-1068, 2017 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-28935369

RESUMEN

Ribonuclease P (RNase P) is an endoribonuclease involved in maturation of the 5'-end of tRNA. We found previously that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of a catalytic RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. The crystal structures of the five proteins have been determined, a three-dimensional (3-D) model of PhopRNA has been constructed, and biochemical data, including protein-RNA interaction sites, have become available. Here, this information was combined to orient the crystallographic structures of the proteins relative to their RNA binding sites in the PhopRNA model. Some alterations were made to the PhopRNA model to improve the fit. In the resulting structure, a heterotetramer composed of PhoPop5 and PhoRpp30 bridges helices P3 and P16 in the PhopRNA C-domain, thereby probably stabilizing a double-stranded RNA structure (helix P4) containing catalytic Mg2+ ions, while a heterodimer of PhoRpp21 and PhoRpp29 locates on a single-stranded loop connecting helices P11 and P12 in the specificity domain (S-domain) in PhopRNA, probably forming an appropriate conformation of the precursor tRNA (pre-tRNA) binding site. The fifth protein PhoRpp38 binds each kink-turn (K-turn) motif in helices P12.1, P12.2, and P16 in PhopRNA. Comparison of the structure of the resulting 3-D model with that of bacterial RNase P suggests transition from RNA-RNA interactions in bacterial RNase P to protein-RNA interactions in archaeal RNase P. The proposed 3-D model of P. horikoshii RNase P will serve as a framework for further structural and functional studies on archaeal, as well as eukaryotic, RNase Ps.


Asunto(s)
Proteínas Arqueales/química , Pyrococcus horikoshii/química , ARN de Archaea/química , Ribonucleasa P/química , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica
11.
J Biol Chem ; 290(26): 15962-72, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25922069

RESUMEN

GltPh from Pyrococcus horikoshii is a homotrimeric Na(+)-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site. Here, we have studied the dynamics of Na(+) and aspartate binding to GltPh. Tryptophan fluorescence measurements on the fully active single tryptophan mutant F273W revealed that Na(+) binds with low affinity to the apoprotein (Kd 120 mm), with a particularly low kon value (5.1 m(-1)s(-1)). At least two sodium ions bind before aspartate. The binding of Na(+) requires a very high activation energy (Ea 106.8 kJ mol(-1)) and consequently has a large Q10 value of 4.5, indicative of substantial conformational changes before or after the initial binding event. The apparent affinity for aspartate binding depended on the Na(+) concentration present. Binding of aspartate was not observed in the absence of Na(+), whereas in the presence of high Na(+) concentrations (above the Kd for Na(+)) the dissociation constants for aspartate were in the nanomolar range, and the aspartate binding was fast (kon of 1.4 × 10(5) m(-1)s(-1)), with low Ea and Q10 values (42.6 kJ mol(-1) and 1.8, respectively). We conclude that Na(+) binding is most likely the rate-limiting step for substrate binding.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/metabolismo , Proteínas Arqueales/metabolismo , Ácido Aspártico/metabolismo , Pyrococcus horikoshii/metabolismo , Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/genética , Proteínas Arqueales/química , Proteínas Arqueales/genética , Ácido Aspártico/química , Sitios de Unión , Cinética , Conformación Proteica , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Sodio/química , Sodio/metabolismo
12.
Nature ; 462(7275): 880-5, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19924125

RESUMEN

Glutamate transporters are integral membrane proteins that catalyse a thermodynamically uphill uptake of the neurotransmitter glutamate from the synaptic cleft into the cytoplasm of glia and neuronal cells by harnessing the energy of pre-existing electrochemical gradients of ions. Crucial to the reaction is the conformational transition of the transporters between outward and inward facing states, in which the substrate binding sites are accessible from the extracellular space and the cytoplasm, respectively. Here we describe the crystal structure of a double cysteine mutant of a glutamate transporter homologue from Pyrococcus horikoshii, Glt(Ph), which is trapped in the inward facing state by cysteine crosslinking. Together with the previously determined crystal structures of Glt(Ph) in the outward facing state, the structure of the crosslinked mutant allows us to propose a molecular mechanism by which Glt(Ph) and, by analogy, mammalian glutamate transporters mediate sodium-coupled substrate uptake.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Pyrococcus horikoshii/química , Sistema de Transporte de Aminoácidos X-AG/genética , Sitios de Unión , Transporte Biológico , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Cisteína/genética , Cisteína/metabolismo , Modelos Moleculares , Movimiento , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Estructura Terciaria de Proteína , Sodio/metabolismo , Relación Estructura-Actividad
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 11): 2983-93, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25372688

RESUMEN

The specific self-association of proteins into oligomeric complexes is a common phenomenon in biological systems to optimize and regulate their function. However, de novo structure determination of these important complexes is often very challenging for atomic-resolution techniques. Furthermore, in the case of homo-oligomeric complexes, or complexes with very similar building blocks, the respective positions of subunits and their assembly pathways are difficult to determine using many structural biology techniques. Here, an elegant and powerful approach based on small-angle neutron scattering is applied, in combination with deuterium labelling and contrast variation, to elucidate the oligomeric organization of the quaternary structure and the assembly pathways of 468 kDa, hetero-oligomeric and symmetric Pyrococcus horikoshii TET2-TET3 aminopeptidase complexes. The results reveal that the topology of the PhTET2 and PhTET3 dimeric building blocks within the complexes is not casual but rather suggests that their quaternary arrangement optimizes the catalytic efficiency towards peptide substrates. This approach bears important potential for the determination of quaternary structures and assembly pathways of large oligomeric and symmetric complexes in biological systems.


Asunto(s)
Aminopeptidasas/química , Difracción de Neutrones , Pyrococcus horikoshii/enzimología , Dispersión del Ángulo Pequeño , Modelos Moleculares , Multimerización de Proteína , Pyrococcus horikoshii/química
14.
Nat Struct Mol Biol ; 31(8): 1286-1295, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38632360

RESUMEN

The Pyrococcus horikoshii amino acid transporter GltPh revealed, like other channels and transporters, activity mode switching, previously termed wanderlust kinetics. Unfortunately, to date, the basis of these activity fluctuations is not understood, probably due to a lack of experimental tools that directly access the structural features of transporters related to their instantaneous activity. Here, we take advantage of high-speed atomic force microscopy, unique in providing simultaneous structural and temporal resolution, to uncover the basis of kinetic mode switching in proteins. We developed membrane extension membrane protein reconstitution that allows the analysis of isolated molecules. Together with localization atomic force microscopy, principal component analysis and hidden Markov modeling, we could associate structural states to a functional timeline, allowing six structures to be solved from a single molecule, and an inward-facing state, IFSopen-1, to be determined as a kinetic dead-end in the conformational landscape. The approaches presented on GltPh are generally applicable and open possibilities for time-resolved dynamic single-molecule structural biology.


Asunto(s)
Proteínas Arqueales , Microscopía de Fuerza Atómica , Pyrococcus horikoshii , Imagen Individual de Molécula , Pyrococcus horikoshii/metabolismo , Pyrococcus horikoshii/química , Cinética , Microscopía de Fuerza Atómica/métodos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Arqueales/ultraestructura , Conformación Proteica , Modelos Moleculares , Cadenas de Markov
15.
Nature ; 445(7126): 387-93, 2007 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-17230192

RESUMEN

Secondary transporters are integral membrane proteins that catalyse the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt(Ph), a sodium (Na+)-coupled aspartate transporter, defining sites for aspartate, two sodium ions and d,l-threo-beta-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound alpha-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Pyrococcus horikoshii/química , Sodio/metabolismo , Sodio/farmacología , Secuencias de Aminoácidos , Sistemas de Transporte de Aminoácidos/antagonistas & inhibidores , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Ácido Aspártico/farmacología , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Mutación/genética , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Termodinámica
16.
Protein Expr Purif ; 84(2): 265-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22713621

RESUMEN

A chitinase from the hyperthermophilic archaeon Pyrococcus furiosus degrades chitin to produce diacetylchitobiose [(GlcNAc)(2)] as the end product. To further investigate the degradation mechanism of (GlcNAc)(2) in Pyrococcus spp., we cloned the gene of PH0499 from Pyrococcus horikoshii, which encodes a protein homologous to the diacetylchitobiose deacetylase of Thermococcus kodakaraensis. The deacetylase (Ph-Dac) was overexpressed as inclusion bodies in Escherichia coli Rosetta (DE3) pLys. The insoluble inclusion body was solubilized and reactivated through a refolding procedure. After several purification steps, 40 mg of soluble, thermostable (up to 80°C) Ph-Dac was obtained from 1L of culture. The apparent molecular mass of the refolded Ph-Dac was 180 kDa, indicating Ph-Dac to be a homohexamer. The refolded Ph-Dac also exhibited deacetylase activity toward (GlcNAc)(2), and the deacetylation site was revealed to be specific to the nonreducing end residue of (GlcNAc)(2). These expression and purification systems are useful for further characterization of Ph-Dac.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/genética , Disacáridos/metabolismo , Pyrococcus horikoshii/enzimología , Acetilación , Proteínas Arqueales/aislamiento & purificación , Proteínas Arqueales/metabolismo , Quitina/metabolismo , Escherichia coli/genética , Cuerpos de Inclusión/genética , Plásmidos/genética , Multimerización de Proteína , Replegamiento Proteico , Estabilidad Proteica , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Regulación hacia Arriba
17.
Archaea ; 2011: 565127, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22162664

RESUMEN

Prolidases hydrolyze Xaa-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus (OP) compounds, including the nerve agents soman and sarin. Ph1prol (PH0974) has previously been isolated and characterized from Pyrococcus horikoshii and was shown to have higher catalytic activity over a broader pH range, higher affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pfprol (PF1343). To obtain a better enzyme for OP nerve agent decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes were prepared. Four Ph1prol mutants (A195T/G306S-, Y301C/K342N-, E127G/E252D-, and E36V-Ph1prol) were isolated which had greater thermostability and improved activity over a broader range of temperatures against Xaa-Pro dipeptides and OP nerve agents compared to wild type Pyrococcus prolidases.


Asunto(s)
Sustancias para la Guerra Química/metabolismo , Dipeptidasas/metabolismo , Mutación , Organofosfatos/metabolismo , Pyrococcus horikoshii/enzimología , Biotransformación , Dipeptidasas/genética , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pyrococcus horikoshii/química , Pyrococcus horikoshii/metabolismo , Sarín/metabolismo , Soman/metabolismo , Temperatura
18.
Artículo en Inglés | MEDLINE | ID: mdl-21543876

RESUMEN

The RadA intein from the hyperthermophilic archaebacterium Pyrococcus horikoshii was cloned, expressed and purified for subsequent structure determination. The protein crystallized rapidly in several conditions. The best crystals, which diffracted to 1.75 Å resolution, were harvested from drops consisting of 0.1 M HEPES pH 7.5, 3.0 M NaCl and were cryoprotected with Paratone-N before flash-cooling. The collected data were processed in the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 58.1, b = 67.4, c = 82.9 Å. Molecular replacement with Rosetta using energy- and density-guided structure optimization provided the initial solution, which is currently under refinement.


Asunto(s)
Proteínas Arqueales/química , Proteínas de Unión al ADN/química , Pyrococcus horikoshii/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Expresión Génica , Datos de Secuencia Molecular
19.
Artículo en Inglés | MEDLINE | ID: mdl-21206047

RESUMEN

KaiC is the central protein in the circadian rhythm in cyanobacteria. The 28 kDa KaiC-like protein PH0187 from the hyperthermophilic archaeon Pyrococcus horikoshii was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method at 293 K. Crystals of PH0187 were obtained using a reservoir solution consisting of 1.0 M ammonium phosphate monobasic and 0.1 M sodium citrate tribasic pH 5.3 (the final pH value of the reservoir solution was 4.8) and diffracted X-rays to 2.75 Šresolution. The crystal of PH0187 belonged to space group P6(3)22, with unit-cell parameters a=b=239.1, c=106.5 Å. The crystal contained four PH0187 molecules in the asymmetric unit.


Asunto(s)
Proteínas Arqueales/química , Pyrococcus horikoshii/química , Proteínas Arqueales/genética , Proteínas Arqueales/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ritmo Circadiano , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Conformación Proteica
20.
Biochemistry ; 49(17): 3511-3, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20349989

RESUMEN

The Na(+) aspartate symporter Glt(Ph) from Pyrococcus horikoshii is the only member of the glutamate transporter family for which crystal structures have been determined. The cation:aspartate coupling stoichiometry is unknown, thus hampering the elucidation of the ion coupling mechanism. Here we measure transport of (22)Na(+) and [(14)C]aspartate in proteoliposomes containing purified Glt(Ph) and demonstrate that three Na(+) ions are symported with aspartate.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Ácido Aspártico/química , Sodio/química , Ácido Aspártico/metabolismo , Transporte Biológico , Conformación Proteica , Proteolípidos/química , Pyrococcus horikoshii/química , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda