Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Chembiochem ; 24(16): e202300388, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37253095

RESUMEN

Glycosyltransferases (GTs) are a large and diverse group of enzymes responsible for catalyzing the formation of a glycosidic bond between a donor molecule, usually a monosaccharide, and a wide range of acceptor molecules, thus, playing critical roles in various essential biological processes. Chitin and cellulose synthases are two inverting processive integral membrane GTs, belonging to the type-2 family involved in the biosynthesis of chitin and cellulose, respectively. Herein, we report that bacterial cellulose and chitin synthases share an E-D-D-ED-QRW-TK active site common motif that is spatially co-localized. This motif is conserved among distant bacterial evolutionary species despite their low amino acid sequence and structural similarities between them. This theoretical framework offers a new perspective to the current view that bacterial cellulose and chitin synthases are substrate specific and that chitin and cellulose are organism specific. It lays the ground for future in vivo and in silico experimental assessment of cellulose synthase catalytic promiscuity against uridine diphosphate N-acetylglucosamine and chitin synthase against uridine diphosphate glucose, respectively.


Asunto(s)
Celulosa , Quitina Sintasa , Quitina Sintasa/genética , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Dominio Catalítico , Secuencia de Aminoácidos , Bacterias/metabolismo , Quitina
2.
Mol Phylogenet Evol ; 139: 106558, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31288106

RESUMEN

The oomycetes are filamentous eukaryotic microorganisms, distinct from true fungi, many of which act as crop or fish pathogens that cause devastating losses in agriculture and aquaculture. Chitin is present in all true fungi, but it occurs in only small amounts in some Saprolegniomycetes and it is absent in Peronosporomycetes. However, the growth of several oomycetes is severely impacted by competitive chitin synthase (CHS) inhibitors. Here, we shed light on the diversity, evolution and function of oomycete CHS proteins. We show by phylogenetic analysis of 93 putative CHSs from 48 highly diverse oomycetes, including the early diverging Eurychasma dicksonii, that all available oomycete genomes contain at least one putative CHS gene. All gene products contain conserved CHS motifs essential for enzymatic activity and form two Peronosporomycete-specific and six Saprolegniale-specific clades. Proteins of all clades, except one, contain an N-terminal microtubule interacting and trafficking (MIT) domain as predicted by protein domain databases or manual analysis, which is supported by homology modelling and comparison of conserved structural features from sequence logos. We identified at least three groups of CHSs conserved among all oomycete lineages and used phylogenetic reconciliation analysis to infer the dynamic evolution of CHSs in oomycetes. The evolutionary aspects of CHS diversity in modern-day oomycetes are discussed. In addition, we observed hyphal tip rupture in Phytophthora infestans upon treatment with the CHS inhibitor nikkomycin Z. Combining data on phylogeny, gene expression, and response to CHS inhibitors, we propose the association of different CHS clades with certain developmental stages.


Asunto(s)
Quitina Sintasa/genética , Evolución Molecular , Variación Genética , Oomicetos/enzimología , Oomicetos/genética , Secuencia de Aminoácidos , Quitina Sintasa/química , Secuencia Conservada/genética , Funciones de Verosimilitud , Filogenia , Dominios Proteicos
3.
Int J Mol Sci ; 18(4)2017 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-28346351

RESUMEN

Chitin biosynthesis in yeast is accomplished by three chitin synthases (Chs) termed Chs1, Chs2 and Chs3, of which the latter accounts for most of the chitin deposited within the cell wall. While the overall structures of Chs1 and Chs2 are similar to those of other chitin synthases from fungi and arthropods, Chs3 lacks some of the C-terminal transmembrane helices raising questions regarding its structure and topology. To fill this gap of knowledge, we performed bioinformatic analyses and protease protection assays that revealed significant information about the catalytic domain, the chitin-translocating channel and the interfacial helices in between. In particular, we identified an amphipathic, crescent-shaped α-helix attached to the inner side of the membrane that presumably controls the channel entrance and a finger helix pushing the polymer into the channel. Evidence has accumulated in the past years that chitin synthases form oligomeric complexes, which may be necessary for the formation of chitin nanofibrils. However, the functional significance for living yeast cells has remained elusive. To test Chs3 oligomerization in vivo, we used bimolecular fluorescence complementation. We detected oligomeric complexes at the bud neck, the lateral plasma membrane, and in membranes of Golgi vesicles, and analyzed their transport route using various trafficking mutants.


Asunto(s)
Quitina Sintasa/química , Proteínas de Saccharomyces cerevisiae/química , Dominio Catalítico , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Unión Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
EMBO J ; 31(21): 4191-203, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23000721

RESUMEN

Cargo adaptors control intracellular trafficking of transmembrane proteins by sorting them into membrane transport carriers. The COPI, COPII, and clathrin cargo adaptors are structurally well characterized, but other cargo adaptors remain poorly understood. Exomer is a specialized cargo adaptor that sorts specific proteins into trans-Golgi network (TGN)-derived vesicles in response to cellular signals. Exomer is recruited to the TGN by the Arf1 GTPase, a universally conserved trafficking regulator. Here, we report the crystal structure of a tetrameric exomer complex composed of two copies each of the Chs5 and Chs6 subunits. The structure reveals the FN3 and BRCT domains of Chs5, which together we refer to as the FBE domain (FN3-BRCT of exomer), project from the exomer core complex. The overall architecture of the FBE domain is reminiscent of the appendage domains of other cargo adaptors, although it exhibits a distinct topology. In contrast to appendage domains, which bind accessory factors, we show that the primary role of the FBE domain is to bind Arf1 for recruitment of exomer to membranes.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Red trans-Golgi/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Aparato de Golgi/metabolismo , Liposomas , Modelos Moleculares , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/crecimiento & desarrollo
5.
Glob Chang Biol ; 22(6): 2025-37, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26644007

RESUMEN

Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.


Asunto(s)
Exoesqueleto/fisiología , Calcificación Fisiológica , Cadena Alimentaria , Pectinidae/fisiología , Agua de Mar/química , Adaptación Fisiológica , Animales , Chile , Quitina/química , Quitina Sintasa/química , Cambio Climático , Concentración de Iones de Hidrógeno , Océanos y Mares , Consumo de Oxígeno
6.
Phys Chem Chem Phys ; 18(7): 5281-90, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26818595

RESUMEN

The critical role of chitin synthases in oomycete hyphal tip growth has been established. A microtubule interacting and trafficking (MIT) domain was discovered in the chitin synthases of the oomycete model organism, Saprolegnia monoica. MIT domains have been identified in diverse proteins and may play a role in intracellular trafficking. The structure of the Saprolegnia monoica chitin synthase 1 (SmChs1) MIT domain has been recently determined by our group. However, although our in vitro assay identified increased strength in interactions between the MIT domain and phosphatidic acid (PA) relative to other phospholipids including phosphatidylcholine (PC), the mechanism used by the MIT domain remains unknown. In this work, the adsorption behavior of the SmChs1 MIT domain on POPA and POPC membranes was systematically investigated by molecular dynamics simulations. Our results indicate that the MIT domain can adsorb onto the tested membranes in varying orientations. Interestingly, due to the specific interactions between MIT residues and lipid molecules, the binding affinity to the POPA membrane is much higher than that to the POPC membrane. A binding hotspot, which is critical for the adsorption of the MIT domain onto the POPA membrane, was also identified. The lower binding affinity to the POPC membrane can be attributed to the self-saturated membrane surface, which is unfavorable for hydrogen-bond and electrostatic interactions. The present study provides insight into the adsorption profile of SmChs1 and additionally has the potential to improve our understanding of other proteins containing MIT domains.


Asunto(s)
Quitina Sintasa/metabolismo , Membranas Artificiales , Ácidos Fosfatidicos/metabolismo , Fosfatidilcolinas/metabolismo , Saprolegnia/enzimología , Adsorción , Secuencia de Aminoácidos , Quitina Sintasa/química , Simulación de Dinámica Molecular , Datos de Secuencia Molecular
7.
Arch Insect Biochem Physiol ; 92(4): 242-58, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27030662

RESUMEN

Chitin synthase (ChS) plays a critical role in chitin synthesis and excretion. In this study, two ChS genes (LdChSA and LdChSB) were identified in Leptinotarsa decemlineata. LdChSA contains two splicing variants, LdChSAa and LdChSAb. Within the first, second, and third larval instars, the mRNA levels of LdChSAa, LdChSAb, and LdChSB coincide with the peaks of circulating 20-hydroxyecdysone (20E) and juvenile hormone (JH). In vitro culture of midguts and an in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide stimulated the expression of the three LdChSs. Conversely, a reduction of 20E by RNA interference (RNAi) of an ecdysteroidogenesis gene LdSHD repressed the expression of these LdChSs, and ingestion of halofenozide by LdSHD RNAi larvae rescued the repression. Moreover, disruption of 20E signaling by RNAi of LdEcR, LdE75, LdHR3, and LdFTZ-F1 reduced the expression levels of these genes. Similarly, in vitro culture and an in vivo bioassay showed that exogenous JH and a JH analog methoprene activated the expression of the three LdChSs, whereas a decrease in JH by RNAi of a JH biosynthesis gene LdJHAMT downregulated these LdChSs. It seems that JH upregulates LdChSs at the early stage of each instar, whereas a 20E pulse triggers the transcription of LdChSs during molting in L. decemlineata.


Asunto(s)
Quitina Sintasa/genética , Escarabajos/enzimología , Escarabajos/genética , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Secuencia de Aminoácidos , Animales , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Clonación Molecular , Escarabajos/clasificación , Escarabajos/crecimiento & desarrollo , ADN Complementario/genética , ADN Complementario/metabolismo , Ecdisterona/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Isoenzimas/genética , Hormonas Juveniles/metabolismo , Larva/enzimología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia
8.
J Biol Chem ; 289(33): 23020-23028, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24942743

RESUMEN

Chitin synthases (CHS) produce chitin, an essential component of the fungal cell wall. The molecular mechanism of processive chitin synthesis is not understood, limiting the discovery of new inhibitors of this enzyme class. We identified the bacterial glycosyltransferase NodC as an appropriate model system to study the general structure and reaction mechanism of CHS. A high throughput screening-compatible novel assay demonstrates that a known inhibitor of fungal CHS also inhibit NodC. A structural model of NodC, on the basis of the recently published BcsA cellulose synthase structure, enabled probing of the catalytic mechanism by mutagenesis, demonstrating the essential roles of the DD and QXXRW catalytic motifs. The NodC membrane topology was mapped, validating the structural model. Together, these approaches give insight into the CHS structure and mechanism and provide a platform for the discovery of inhibitors for this antifungal target.


Asunto(s)
Proteínas Bacterianas , Quitina Sintasa , Quitina , Modelos Biológicos , Modelos Moleculares , Sinorhizobium meliloti/enzimología , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Quitina/biosíntesis , Quitina/química , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo
9.
Genet Mol Res ; 14(4): 19264-74, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26782579

RESUMEN

The triangle sail mussel, Hyriopsis cumingii, is the most important freshwater pearl mussel in China. However, the mechanisms underlying its chitin-mediated shell and nacre formation remain largely unknown. Here, we characterized a chitin synthase (CS) gene (HcCS1) in H. cumingii, and analyzed its possible physiological function. The complete ORF sequence of HcCS1 contained 6903 bp, encoding a 2300-amino acid protein (theoretical molecular mass = 264 kDa; isoelectric point = 6.22), and no putative signal peptide was predicted. A myosin motor head domain, a CS domain, and 12 transmembrane domains were found. The predicted spatial structures of the myosin head and CS domains were similar to the electron microscopic structure of the heavy meromyosin subfragment of chicken smooth muscle myosin and the crystal structure of bacterial cellulose synthase, respectively. This structural similarity indicates that the functions of these two domains might be conserved. Quantitative reverse transcription PCR results showed that HcCS1 was present in all detected tissues, with the highest expression levels detected in the mantle. The HcCS1 transcripts in the mantle were upregulated following shell damage from 12 to 24 h post-damage, and they peaked (approximately 1.5-fold increase) at 12 h after shell damage. These findings suggest that HcCS1 was involved in shell regeneration, and that it might participate in shell and nacre formation in this species via chitin synthesis. HcCS1 might also dynamically regulate chitin deposition during the process of shell and nacre formation with the help of its conserved myosin head domain.


Asunto(s)
Exoesqueleto/metabolismo , Bivalvos/genética , Quitina Sintasa/genética , Quitina/biosíntesis , Nácar/metabolismo , Secuencia de Aminoácidos , Animales , Bivalvos/clasificación , Bivalvos/enzimología , Pollos , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Agua Dulce , Expresión Génica , Glucosiltransferasas/química , Glucosiltransferasas/genética , Punto Isoeléctrico , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Subfragmentos de Miosina/química , Subfragmentos de Miosina/genética , Sistemas de Lectura Abierta , Filogenia , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
10.
Mol Microbiol ; 90(2): 252-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23926947

RESUMEN

Chs3, the catalytic subunit of chitin synthase III in Saccharomyces cerevisiae, is a complex polytopic membrane protein whose plasma membrane expression is tightly controlled: export from the ER requires interaction with Chs7; exit from the Golgi is dependent on the exomer complex, and precise bud neck localization relies on endocytosis. Moreover, Chs3 is efficiently recycled from endosomes to the TGN in an AP-1-dependent manner. Here we show that the export of Chs3 requires the cargo receptor Erv14, in a step that is independent of Chs7. Chs3 oligomerized in the ER through its N-terminal cytosolic region. However, the truncated (Δ126)Chs3 was still exported by Erv14, but was sent back from the Golgi to the ER in a COPI- and Rer1-dependent manner. A subset of the oligomerization-deficient Chs3 proteins evaded Golgi quality control and reached the plasma membrane, where they were enzymatically active but poorly endocytosed. This resulted in high CSIII levels, but calcofluor white resistance, explained by the reduced intercalation of calcofluor white between nascent chitin fibres. Our data show that the oligomerization of Chs3 through its N-terminus is essential for proper protein trafficking and chitin synthesis and is therefore monitored intracellularly.


Asunto(s)
Quitina Sintasa/química , Quitina Sintasa/metabolismo , Endocitosis , Aparato de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Quitina/biosíntesis , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética
11.
J Cell Sci ; 125(Pt 22): 5453-66, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22956544

RESUMEN

The chitin synthase that makes the primary septum during cell division in budding yeasts is an important therapeutic target with an unknown activation mechanism. We previously found that the C2-domain of the Saccharomyces cerevisiae Inn1 protein plays an essential but uncharacterised role at the cleavage site during cytokinesis. By combining a novel degron allele of INN1 with a point mutation in the C2-domain, we screened for mutations in other genes that suppress the resulting defect in cell division. In this way, we identified 22 dominant mutations of CHS2 (chitin synthase II) that map to two neighbouring sites in the catalytic domain. Chs2 in isolated cell membranes is normally nearly inactive (unless protease treatment is used to bypass inhibition); however, the dominant suppressor allele Chs2-V377I has enhanced activity in vitro. We show that Inn1 associates with Chs2 in yeast cell extracts. It also interacts in a yeast two-hybrid assay with the N-terminal 65% of Chs2, which contains the catalytic domain. In addition to compensating for mutations in the Inn1 C2-domain, the dominant CHS2 alleles suppress cytokinesis defects produced by the lack of the Cyk3 protein. Our data support a model in which the C2-domain of Inn1 acts in conjunction with Cyk3 to regulate the catalytic domain of Chs2 during cytokinesis. These findings suggest novel approaches for developing future drugs against important fungal pathogens.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quitina Sintasa/metabolismo , Citocinesis , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Alelos , Secuencia de Aminoácidos , Biocatálisis , Proliferación Celular , Quitina Sintasa/química , Genes Dominantes/genética , Genes Fúngicos/genética , Genes Supresores , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Supresión Genética
12.
J Agric Food Chem ; 72(23): 13431-13438, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38815265

RESUMEN

In order to speculate the three-dimensional structure of the potential binding pocket of the chitin synthase inhibitor, a series of 2,4-diphenyloxazoline derivatives with different lengths of alkyl chains and heteroatoms were designed and synthesized by a homologous strategy. The bioassay results indicate that both the length of the alkyl chains and the type of substituents can affect the acaricidal activity against mite eggs. Compounds containing chloropropyl, alkoxyalkyl, and para-substituted phenoxyalkyl or phenylthioalkyl groups exhibit good activity, while those containing steric hindrance substituents or carbonyl substituents on the benzene ring exhibit reduced activity. Three-dimensional quantitative structure-activity relationship (3D-QSAR) study showed that there may be a narrow hydrophobic region deep in the pocket, and the steric effect plays a more important role than the electrostatic effect. The current work will provide assistance for future molecular design and target binding research.


Asunto(s)
Acaricidas , Relación Estructura-Actividad Cuantitativa , Acaricidas/química , Acaricidas/farmacología , Animales , Ácaros/efectos de los fármacos , Ácaros/química , Oxazoles/química , Oxazoles/farmacología , Diseño de Fármacos , Estructura Molecular , Quitina Sintasa/química , Quitina Sintasa/antagonistas & inhibidores , Quitina Sintasa/metabolismo
13.
Science ; 383(6684): eadk3468, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38359131

RESUMEN

Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) analyzed to date oligomerize and form resistosomes upon activation to initiate immune responses. Some NLRs are encoded in tightly linked co-regulated head-to-head genes whose products function together as pairs. We uncover the oligomerization requirements for different Arabidopsis paired CHS3-CSA1 alleles. These pairs form resting-state heterodimers that oligomerize into complexes distinct from NLRs analyzed previously. Oligomerization requires both conserved and allele-specific features of the respective CHS3 and CSA1 Toll-like interleukin-1 receptor (TIR) domains. The receptor kinases BAK1 and BIRs inhibit CHS3-CSA1 pair oligomerization to maintain the CHS3-CSA1 heterodimer in an inactive state. Our study reveals that paired NLRs hetero-oligomerize and likely form a distinctive "dimer of heterodimers" and that structural heterogeneity is expected even among alleles of closely related paired NLRs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quitina Sintasa , Proteínas NLR , Enfermedades de las Plantas , Inmunidad de la Planta , Receptores Inmunológicos , Alelos , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quitina Sintasa/química , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Mutación , Proteínas NLR/química , Proteínas NLR/genética , Proteínas NLR/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Multimerización de Proteína
14.
J Struct Biol ; 183(3): 474-483, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23831449

RESUMEN

This work demonstrates that chitin is an important structural component within the skeletal fibers of the freshwater sponge Spongilla lacustris. Using a variety of analytical techniques ((13)C solid state NMR, FT-IR, Raman, NEXAFS, ESI-MS, Morgan-Elson assay and Calcofluor White Staining); we show that this sponge chitin is much closer to α-chitin, known to be present in other animals, than to ß-chitin. Genetic analysis confirmed the presence of chitin synthases, which are described for the first time in a sponge. The presence of chitin in both marine (demosponges and hexactinellids) and freshwater sponges indicates that this important structural biopolymer was already present in their common ancestor.


Asunto(s)
Quitina/biosíntesis , Poríferos/metabolismo , Acetilglucosamina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Quitina/química , Quitina Sintasa/química , Quitina Sintasa/genética , Clonación Molecular , Datos de Secuencia Molecular , Poríferos/genética , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Absorción de Rayos X
15.
Proc Biol Sci ; 280(1762): 20130339, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23677340

RESUMEN

A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to ß-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.


Asunto(s)
Quitina Sintasa/genética , Quitina/química , Poríferos/química , Poríferos/genética , Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Animales , Bencenosulfonatos/metabolismo , Quitina/metabolismo , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Medios de Contraste/metabolismo , Lagos , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Poríferos/anatomía & histología , Federación de Rusia , Alineación de Secuencia , Espectrometría de Masa por Ionización de Electrospray , Espectrometría Raman , Espectroscopía de Absorción de Rayos X
16.
Biosci Biotechnol Biochem ; 77(6): 1275-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23748777

RESUMEN

In this study, we identified seven chitin synthase-encoding genes in the genome of the dimorphic yeast Yarrowia lipolytica. Three encoded chitin synthases with myosin motor-like domains at their N-termini, and we designated these CSM1 to CSM3, whereas four were identified as CHS1 to CHS4. To investigate the functions of these seven genes, we constructed and characterized their deletion mutants. The chs2Δ mutant formed chained cells in which daughter cells were connected with mother cells and had abnormally thick septa at the bud neck. The chs4Δ mutant showed remarkably reduced chitin content in its cell wall. The chs2Δ, csm1Δ, and csm2Δ mutants were found to be highly sensitive to chitin binding dyes, calcofluor white (CFW) and Congo red, whereas the chs4Δ mutant was resistant to CFW. These results suggest that Chs2 and Chs4 play major roles in septum formation and cell wall chitin synthesis respectively, whereas Csm1 and Csm2 are involved in the maintenance of cell wall architecture and/or cell wall integrity. The populations of filamentous cells, a type of cell population that are defined by the lengths of the cellular long and short axes, decreased in the chs3Δ mutant, suggesting that Chs3 is involved in cellular morphogenesis.


Asunto(s)
Quitina Sintasa/genética , Quitina/metabolismo , Yarrowia/enzimología , Pared Celular/química , Pared Celular/genética , Pared Celular/metabolismo , Quitina/genética , Quitina Sintasa/química , Quitina Sintasa/clasificación , Rojo Congo , Mutación , Miosinas/química , Estructura Terciaria de Proteína
17.
Biosci Biotechnol Biochem ; 77(2): 369-74, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23391938

RESUMEN

Chitin is a major cell wall component of many filamentous fungi. Among the eight chitin synthase genes of Aspergillus nidulans, csmA and csmB encode a myosin motor-like domain (MMD) and a chitin synthase domain (CSD) at their N- and C-termini respectively. In our previous reports, we suggested that CsmA and CsmB play compensatory roles essential for polarized hyphal growth although their functions do not completely overlap, and that their MMDs are essential for their functions. In the present study, we constructed chimeric csm genes by swapping N-terminal MMD-encoding halves of csmA and csmB and studied them to identify functional differences in the MMDs. Expression of the chimeric gene encoding the MMD-including half of CsmA (MA) and the CSD-including half of CsmB thoroughly suppressed the phenotypic defects of the ΔcsmB mutant, whereas the chimeric gene encoding the MMD-including half of CsmB (MB) and the CSD-including half of CsmA did not fully suppress the defects of the ΔcsmA mutant, suggesting that MA suffices for the function of MB while MB is not functionally equivalent to MA.


Asunto(s)
Aspergillus nidulans/genética , Quitina Sintasa/genética , Proteínas Fúngicas/genética , Proteínas Recombinantes de Fusión/genética , Aspergillus nidulans/enzimología , Pared Celular/enzimología , Pared Celular/genética , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Prueba de Complementación Genética , Miosinas/química , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
18.
Nat Commun ; 14(1): 4776, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553334

RESUMEN

Chitin is one of the most abundant natural biopolymers and serves as a critical structural component of extracellular matrices, including fungal cell walls and insect exoskeletons. As a linear polymer of ß-(1,4)-linked N-acetylglucosamine, chitin is synthesized by chitin synthases, which are recognized as targets for antifungal and anti-insect drugs. In this study, we determine seven different cryo-electron microscopy structures of a Saccharomyces cerevisiae chitin synthase in the absence and presence of glycosyl donor, acceptor, product, or peptidyl nucleoside inhibitors. Combined with functional analyses, these structures show how the donor and acceptor substrates bind in the active site, how substrate hydrolysis drives self-priming, how a chitin-conducting transmembrane channel opens, and how peptidyl nucleoside inhibitors inhibit chitin synthase. Our work provides a structural basis for understanding the function and inhibition of chitin synthase.


Asunto(s)
Quitina Sintasa , Quitina , Quitina Sintasa/química , Quitina Sintasa/metabolismo , Quitina/metabolismo , Microscopía por Crioelectrón , Nucleósidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Catálisis
19.
Antimicrob Agents Chemother ; 56(12): 6121-31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22964252

RESUMEN

Aspergillus fumigatus has two chitin synthases (CSMA and CSMB) with a myosin motor-like domain (MMD) arranged in a head-to-head configuration. To understand the function of these chitin synthases, single and double csm mutant strains were constructed and analyzed. Although there was a slight reduction in mycelial growth of the mutants, the total chitin synthase activity and the cell wall chitin content were similar in the mycelium of all of the mutants and the parental strain. In the conidia, chitin content in the ΔcsmA strain cell wall was less than half the amount found in the parental strain. In contrast, the ΔcsmB mutant strain and, unexpectedly, the ΔcsmA/ΔcsmB mutant strain did not show any modification of chitin content in their conidial cell walls. In contrast to the hydrophobic conidia of the parental strain, conidia of all of the csm mutants were hydrophilic due to the presence of an amorphous material covering the hydrophobic surface-rodlet layer. The deletion of CSM genes also resulted in an increased susceptibility of resting and germinating conidia to echinocandins. These results show that the deletion of the CSMA and CSMB genes induced a significant disorganization of the cell wall structure, even though they contribute only weakly to the overall cell wall chitin synthesis.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Quitina Sintasa/metabolismo , Equinocandinas/farmacología , Miosinas/química , Aspergillus fumigatus/genética , Carbohidratos/química , Pared Celular/química , Quitina Sintasa/química , Quitina Sintasa/genética , ADN de Hongos/genética , Farmacorresistencia Fúngica/genética , Regulación Fúngica de la Expresión Génica , Glucosiltransferasas/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Mutación , Micelio/efectos de los fármacos , Fenotipo , Polisacáridos/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Esporas Fúngicas/química
20.
Med Microbiol Immunol ; 201(3): 337-48, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22535444

RESUMEN

Pneumocystis pneumonia remains an important complication of immune suppression. The cell wall of Pneumocystis has been demonstrated to potently stimulate host inflammatory responses, with most studies focusing on ß-glucan components of the Pneumocystis cell wall. In the current study, we have elaborated the potential role of chitins and chitinases in Pneumocystis pneumonia. We demonstrated differential host mammalian chitinase expression during Pneumocystis pneumonia. We further characterized a chitin synthase gene in Pneumocystis carinii termed Pcchs5, a gene with considerable homolog to the fungal chitin biosynthesis protein Chs5. We also observed the impact of chitinase digestion on Pneumocystis-induced host inflammatory responses by measuring TNFα release and mammalian chitinase expression by cultured lung epithelial and macrophage cells stimulated with Pneumocystis cell wall isolates in the presence and absence of exogenous chitinase digestion. These findings provide evidence supporting a chitin biosynthetic pathway in Pneumocystis organisms and that chitinases modulate inflammatory responses in lung cells. We further demonstrate lung expression of chitinase molecules during Pneumocystis pneumonia.


Asunto(s)
Quitina Sintasa/metabolismo , Quitina/metabolismo , Quitinasas/metabolismo , Proteínas Fúngicas/metabolismo , Pulmón/enzimología , Pneumocystis carinii/patogenicidad , Neumonía por Pneumocystis/fisiopatología , Secuencia de Aminoácidos , Animales , Pared Celular/enzimología , Células Cultivadas , Quitina Sintasa/química , Quitina Sintasa/genética , Quitinasas/química , Quitinasas/genética , Células Epiteliales/enzimología , Femenino , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Pulmón/citología , Macrófagos/enzimología , Macrófagos/inmunología , Datos de Secuencia Molecular , Pneumocystis carinii/enzimología , Pneumocystis carinii/genética , Neumonía por Pneumocystis/microbiología , Ratas , Análisis de Secuencia de ADN , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda