Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 356
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
J Appl Clin Med Phys ; 20(10): 152-159, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31535782

RESUMEN

INTRODUCTION: Intrafractional motion can cause substantial uncertainty in precision radiotherapy. Traditionally, the target volume is defined to be sufficiently large to cover the tumor in every position. With the robotic treatment couch, a real-time motion compensation can improve tumor coverage and organ at risk sparing. However, this approach poses additional requirements, which are systematically developed and which allow the ideal robotic couch to be specified. METHODS AND MATERIALS: Data of intrafractional tumor motion were collected and analyzed regarding motion range, frequency, speed, and acceleration. Using this data, ideal couch requirements were formulated. The four robotic couches Protura, Perfect Pitch, RoboCouch, and RPSbase were tested with respect to these requirements. RESULTS: The data collected resulted in maximum speed requirements of 60 mm/s in all directions and maximum accelerations of 80 mm/s2 in the longitudinal, 60 mm/s2 in the lateral, and 30 mm/s2 in the vertical direction. While the two robotic couches RoboCouch and RPSbase completely met the requirements, even these two showed a substantial residual motion (40% of input amplitude), arguably due to their time delays. CONCLUSION: The requirements for the motion compensation by an ideal couch are formulated and found to be feasible for currently available robotic couches. However, the performance these couches can be improved further regarding the position control if the demanded speed and acceleration are taken into account as well.


Asunto(s)
Movimiento , Neoplasias/fisiopatología , Posicionamiento del Paciente , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Asistida por Computador/instrumentación , Robótica/métodos , Algoritmos , Humanos , Neoplasias/radioterapia , Dosificación Radioterapéutica , Radioterapia Asistida por Computador/métodos
2.
J Appl Clin Med Phys ; 20(2): 13-23, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30632271

RESUMEN

PURPOSE: The electron energy characteristics of mobile intraoperative radiotherapy (IORT) accelerator LIAC® differ from commonly used linear accelerators, thus some of the frequently used detectors can give less accurate results. The aim of this study is to evaluate the output factors (OFs) of several ionization chambers (IC) and solid state detectors (SS) for electron beam energies generated by LIAC® and compare with the output factor of Monte Carlo model (MC) in order to determine the adequate detectors for LIAC® . METHODS: The OFs were measured for 6, 8, 10, and 12 MeV electron energies with PTW 23343 Markus, PTW 34045 Advanced Markus, PTW 34001 Roos, IBA PPC05, IBA PPC40, IBA NACP-02, PTW 31010 Semiflex, PTW 31021 Semiflex 3D, PTW 31014 Pinpoint, PTW 60017 Diode E, PTW 60018 Diode SRS, SNC Diode EDGE, and PTW 60019 micro Diamond detectors. Ion recombination factors (ksat ) of IC were measured for all applicator sizes and OFs were corrected according to ksat . The measured OFs were compared with Monte Carlo output factors (OFMC ). RESULTS: The measured OFs of IBA PPC05, PTW Advanced Markus, PTW Pinpoint, PTW microDiamond, and PTW Diode E detectors are in good agreement with OFMC . The maximum deviations of IBA PPC05 OFs to OFMC are -1.6%, +1.5%, +1.5%, and +2.0%; for PTW Advanced Markus +1.0%, +1.5%, +2.0%, and +2.0%; for PTW Pinpoint +2.0%, +1.6%, +4.0%, and +2.0%; for PTW microDiamond -1.6%, +2%, +1.1%, and +1.0%; and for PTW Diode E -+1.7%, +1.7%, +1.3%, and +2.5% for 6, 8, 10, and 12 MeV, respectively. PTW Roos, PTW Markus, IBA PPC40, PTW Semiflex, PTW Semiflex 3D, SNC Diode Edge measured OFs with a maximum deviation of +5.6%, +4.5%, +5.6%, +8.1%, +4.8%, and +9.6% with respect to OFMC , while PTW Diode SRS and IBA NACP-02 were the least accurate (with highest deviations -37.1% and -18.0%, respectively). CONCLUSION: The OFs results of solid state detectors PTW microDiamond and PTW Diode E as well as the ICs with small electrode spacing distance such as IBA PPC05, PTW Advanced Markus and PTW Pinpoint are in excellent agreement with OFMC . The measurements of the other detectors evaluated in this study are less accurate, thus they should be used with caution. Particularly, PTW Diode SRS and IBA NACP-02 are not suitable and their use should be avoided in relative dosimetry measurements under high dose per pulsed (DPP) electron beams.


Asunto(s)
Electrones , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentación , Radiometría/instrumentación , Radioterapia Asistida por Computador/instrumentación , Diamante/química , Humanos , Periodo Intraoperatorio , Método de Montecarlo , Radiometría/clasificación , Dosificación Radioterapéutica
3.
Magn Reson Med ; 73(5): 1803-11, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-24903165

RESUMEN

PURPOSE: To develop an active MR-tracking system to guide placement of metallic devices for radiation therapy. METHODS: An actively tracked metallic stylet for brachytherapy was constructed by adding printed-circuit micro-coils to a commercial stylet. The coil design was optimized by electromagnetic simulation, and has a radio-frequency lobe pattern extending ∼5 mm beyond the strong B0 inhomogeneity region near the metal surface. An MR-tracking sequence with phase-field dithering was used to overcome residual effects of B0 and B1 inhomogeneities caused by the metal, as well as from inductive coupling to surrounding metallic stylets. The tracking system was integrated with a graphical workstation for real-time visualization. The 3 Tesla MRI catheter-insertion procedures were tested in phantoms and ex vivo animal tissue, and then performed in three patients during interstitial brachytherapy. RESULTS: The tracking system provided high-resolution (0.6 × 0.6 × 0.6 mm(3) ) and rapid (16 to 40 frames per second, with three to one phase-field dithering directions) catheter localization in phantoms, animals, and three gynecologic cancer patients. CONCLUSION: This is the first demonstration of active tracking of the shaft of metallic stylet in MR-guided brachytherapy. It holds the promise of assisting physicians to achieve better targeting and improving outcomes in interstitial brachytherapy.


Asunto(s)
Artefactos , Braquiterapia/instrumentación , Braquiterapia/métodos , Marcadores Fiduciales , Neoplasias de los Genitales Femeninos/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/instrumentación , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Metales , Radioterapia Asistida por Computador/instrumentación , Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/instrumentación , Radioterapia Guiada por Imagen/métodos , Animales , Pollos , Gráficos por Computador , Simulación por Computador , Campos Electromagnéticos , Diseño de Equipo , Femenino , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Fantasmas de Imagen , Programas Informáticos
4.
J Appl Clin Med Phys ; 16(3): 4930, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103472

RESUMEN

The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.


Asunto(s)
Absorción de Radiación , Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Asistida por Computador/instrumentación , Radioterapia Conformacional/instrumentación , Fenómenos Fisiológicos de la Piel , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Dosis de Radiación , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Transductores
5.
J Appl Clin Med Phys ; 16(2): 4964, 2015 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26103170

RESUMEN

TomoEDGE is an advanced delivery form of tomotherapy which uses a dynamic secondary collimator. This plan comparison study describes the new features, their clinical applicability, and their effect on plan quality and treatment speed. For the first 45 patients worldwide that were scheduled for a treatment with TomoEdge, at least two plans were created: one with the previous "standard"mode with static jaws and 2.5 cm field width (Reg 2.5) and one with TomoEdge technique and 5 cm field width (Edge 5). If, after analysis in terms of beam on time, integral dose, dose conformity, and organ at risk sparing the treating physician decided that the Edge 5 plan was not suitable for clinical treatment, a plan with TomoEdge and 2.5 cm field width was created (Edge 2.5) and used for the treatment. Among the 45 cases, 30 were suitable for Edge 5 treatment, including treatments of the head and neck, rectal cancer, anal cancer, malignancies of the chest, breast cancer, and palliative treatments. In these cases, the use of a 5 cm field width reduced beam on time by more than 30% without compromising plan quality. The 5 cm beam could not be clinically applied to treatments of the pelvic lymph nodes for prostate cancer and to head and neck irradiations with extensive involvement of the skull, as dose to critical organs at risk such as bladder (average dose 28 Gy vs. 29 Gy, Reg 2.5 vs. Edge 5), small bowel (29% vs. 31%, Reg 2.5 vs. Edge 5) and brain (average dose partial brain 19 Gy vs. 21 Gy, Reg 2.5 vs. Edge 5) increased to a clinically relevant, yet not statistically significant, amount. TomoEdge is an advantageous extension of the tomotherapy technique that can speed up treatments and thus increase patient comfort and safety in the majority of clinical settings.


Asunto(s)
Neoplasias de la Mama/radioterapia , Neoplasias Esofágicas/radioterapia , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de la Próstata/radioterapia , Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Radioterapia de Intensidad Modulada/métodos , Femenino , Humanos , Masculino , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Asistida por Computador/instrumentación
6.
J Xray Sci Technol ; 22(3): 395-406, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24865214

RESUMEN

A Monte Carlo simulation was applied to study the energy dependence on the transverse dose distribution of microplanar beam radiation therapy (MRT) for deep-seated tumors. The distribution was found to be the peak (in-beam) dose and the decay from the edge of the beam down to the valley. The area below the same valley dose level (valley region) was decreased with the increase in the energy of X-rays at the same beam separation. To optimize the MRT, we made the following two assumptions: the therapeutic gain may be attributed to the efficient recovery of normal tissue caused by the beam separation; and a key factor for the efficient recovery of normal tissue depends on the area size of the valley region. Based on these assumptions and the results of the simulated dose distribution, we concluded that the optimum X-ray energy was in the range of 100-300 keV depending on the effective peak dose to the target tumors and/or tolerable surface dose. In addition, we proposed parameters to be studied for the optimization of MRT to deep-seated tumors.


Asunto(s)
Simulación por Computador , Modelos Biológicos , Neoplasias/radioterapia , Radioterapia Asistida por Computador/métodos , Fantasmas de Imagen , Dosificación Radioterapéutica , Radioterapia Asistida por Computador/instrumentación
7.
Stat Med ; 32(8): 1376-82, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22933252

RESUMEN

In this paper, we study an unsupervised clustering problem. The originality of this problem lies in the data, which consist of the positions of five separate X-ray beams on a circle. Radiation therapists positioned the five X-ray beam 'projectors' around each patient on a predefined circle. However, similarities exist in positioning for certain groups of patients, and we aim to describe these similarities with the goal of creating pre-adjustment settings that could help save time during X-ray positioning. We therefore performed unsupervised clustering of observed X-ray positions. Because the data for each patient consist of five angle measurements, Euclidean distances are not appropriated. Furthermore, we cannot perform k-means algorithm, usually used for minimizing corresponding distortion because we cannot calculate centers of clusters. We present here solutions to these problems. First, we define a suitable distance on the circle. Then, we adapt an algorithm based on simulated annealing to minimize distortion. This algorithm is shown to be theoretically convergent. Finally, we present simulations on simulated and real data.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Análisis Multivariante , Neoplasias/radioterapia , Radioterapia Asistida por Computador/métodos , Simulación por Computador , Humanos , Radioterapia Asistida por Computador/instrumentación
8.
Zhongguo Yi Liao Qi Xie Za Zhi ; 37(1): 27-9, 2013 Jan.
Artículo en Zh | MEDLINE | ID: mdl-23668038

RESUMEN

To synchronize the radiation of microSelectron-HDR (Nucletron afterloading machine) and measurement of MOSFET dose system, a trigger system based on interface circuit was designed and corresponding monitor and trigger program were developed on Qt platform. This interface and control system was tested and showed stable operate and reliable work. This adopted serial port detect technique may expand to trigger application of other medical devices.


Asunto(s)
Radioterapia Asistida por Computador/instrumentación , Diseño de Equipo , Dosificación Radioterapéutica , Radioterapia Asistida por Computador/métodos
9.
Med Phys ; 39(3): 1345-50, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22380367

RESUMEN

PURPOSE: To develop a passive gating system incorporating with the real-time position management (RPM) system for the gated radiotherapy. METHODS: Passive breath gating (PBG) equipment, which consists of a breath-hold valve, a controller mechanism, a mouthpiece kit, and a supporting frame, was designed. A commercial real-time positioning management system was implemented to synchronize the target motion and radiation delivery on a linear accelerator with the patient's breathing cycle. The respiratory related target motion was investigated by using the RPM system for correlating the external markers with the internal target motion while using PBG for passively blocking patient's breathing. Six patients were enrolled in the preclinical feasibility and efficiency study of the PBG system. RESULTS: PBG equipment was designed and fabricated. The PBG can be manually triggered or released to block or unblock patient's breathing. A clinical workflow was outlined to integrate the PBG with the RPM system. After implementing the RPM based PBG system, the breath-hold period can be prolonged to 15-25 s and the treatment delivery efficiency for each field can be improved by 200%-400%. The results from the six patients showed that the diaphragm motion caused by respiration was reduced to less than 3 mm and the position of the diaphragm was reproducible for difference gating periods. CONCLUSIONS: A RPM based PBG system was developed and implemented. With the new gating system, the patient's breath-hold time can be extended and a significant improvement in the treatment delivery efficiency can also be achieved.


Asunto(s)
Radioterapia Asistida por Computador/instrumentación , Respiración , Humanos , Factores de Tiempo
10.
Med Phys ; 39(5): 2771-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22559649

RESUMEN

PURPOSE: With the increasing use of external 3D optical tracking cameras to guide modern radiation therapy procedures, it has become vitally important to have an accurate camera to linear accelerator (LINAC) reference frame calibration. To eliminate errors present in current calibration procedures based on the manual hand alignment of a device using the light field crosshairs and in room guidance lasers, a semiautomated quantitative calibration approach requiring only use of an electronic portal imaging device (EPID) was developed. METHODS: A phantom comprised of seven highly IR reflective plastic BBs was placed on the LINAC treatment couch and imaged with both a 3D stereoscopic IR imager and the on board megavoltage (MV) EPID imager. Having knowledge of the optically determined 3D positions and projected EPID images of the BBs, simulated annealing was used to optimize the location of the BBs in the LINAC frame using four different optimization functions. Singular value decomposition was then used to calculate the transformation matrix between the camera and LINAC reference frames. Results were then compared to a traditional camera calibration method for overall accuracy. RESULTS: Using modeled data, the simulated annealing process was able to determine the actual locations of the BBs with a RMSE of 0.23 mm. Using projection images acquired with an MV imager, the process was able to determine locations of BBs within .26 mm. The results depend on the choice of optimization function. CONCLUSIONS: Results show that the method can be used to provide highly accurate spatial registration between an external 3D imaging reference frame and the LINAC frame. The experimental MV imager results, while not as precise as the simulated results, exceed 1 mm accuracy and the current accepted AAPM TG-142 standard of ≤2 mm positioning accuracy.


Asunto(s)
Equipos y Suministros Eléctricos , Marcadores Fiduciales , Fenómenos Ópticos , Aceleradores de Partículas/normas , Radioterapia Asistida por Computador/instrumentación , Radioterapia Asistida por Computador/normas , Calibración , Rayos Infrarrojos , Fantasmas de Imagen
11.
Med Phys ; 39(5): 2854-66, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22559658

RESUMEN

PURPOSE: To calculate absorbed doses due to neutrons in 87 organs/tissues for anthropomorphic phantoms, irradiated in position supine (head first into the gantry) with orientations anteroposterior (AP) and right-left (RLAT) with a 18 MV accelerator. Conversion factors from monitor units to µGy per neutron in organs, equivalent doses in organs/tissues, and effective doses, which permit to quantify stochastic risks, are estimated. METHODS: MAX06 and FAX06 phantoms were modeled with MCNPX and irradiated with a 18 MV Varian Clinac 2100C/D accelerator whose geometry included a multileaf collimator. Two actual fields of a pelvic treatment were simulated using electron-photon-neutron coupled transport. Absorbed doses due to neutrons were estimated from kerma. Equivalent doses were estimated using the radiation weighting factor corresponding to an average incident neutron energy 0.47 MeV. Statistical uncertainties associated to absorbed doses, as calculated by MCNPX, were also obtained. RESULTS: Largest doses were absorbed in shallowest (with respect to the neutron pathway) organs. In µGyMU(-1), values of 2.66 (for penis) and 2.33 (for testes) were found in MAX06, and 1.68 (for breasts), 1.05 (for lenses of eyes), and 0.94 (for sublingual salivary glands) in FAX06, in AP orientation. In RLAT, the largest doses were found for bone tissues (leg) just at the entrance of the beam in the body (right side in our case). Values, in µGyMU(-1), of 1.09 in upper leg bone right spongiosa, for MAX06, and 0.63 in mandible spongiosa, for FAX06, were found. Except for gonads, liver, and stomach wall, equivalent doses found for FAX06 were, in both orientations, higher than for MAX06. Equivalent doses in AP are higher than in RLAT for all organs/tissues other than brain and liver. Effective doses of 12.6 and 4.1 µSvMU(-1) were found for AP and RLAT, respectively. The organs/tissues with larger relative contributions to the effective dose were testes and breasts, in AP, and breasts and red marrow, in RLAT. Equivalent and effective doses obtained for MAX06/FAX06 were smaller (between 2 and 20 times) than those quoted for the mathematical phantoms ADAM/EVA in ICRP-74. CONCLUSIONS: The new calculations of conversion coefficients for neutron irradiation in AP and RLAT irradiation geometries show a reduction in the values of effective dose by factors 7 (AP) and 6 (RLAT) with respect to the old data obtained with mathematical phantoms. The existence of tissues or anatomical regions with maximum absorbed doses, such as penis, lens of eyes, fascia (part of connective tissue), etc., organs/tissues that classic mathematical phantoms did not include because they were not considered for the study of stochastic effects, has been revealed. Absorbed doses due to photons, obtained following the same simulation methodology, are larger than those due to neutrons, reaching values 100 times larger as the primary beam is approached. However, for organs far from the treated volume, absorbed photon doses can be up to three times smaller than neutron ones. Calculations using voxel phantoms permitted to know the organ dose conversion coefficients per MU due to secondary neutrons in the complete anatomy of a patient.


Asunto(s)
Neutrones/uso terapéutico , Fantasmas de Imagen , Radioterapia Asistida por Computador/instrumentación , Adulto , Humanos , Especificidad de Órganos , Pelvis/efectos de la radiación , Radiometría
12.
Med Phys ; 39(11): 6947-56, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23127088

RESUMEN

PURPOSE: To quantify systematically the effect on accuracy of discretizing gantry rotation during the dose calculation process of TomoTherapy treatments. METHODS: Up to version 4.0.x included, TomoTherapy treatment planning system (TPS) approximates gantry rotation by computing dose from 51 discrete angles corresponding to the center of the projections used to control the binary multileaf collimator. Potential effects on dose computation accuracy for off-axis targets and low modulation factors have been shown previously for a few treatment configurations. In versions 4.1.x and later, TomoTherapy oversamples the projections to better account for gantry rotation, but only during full scatter optimization and final calculation (i.e., not during optimization in "beamlet" mode). The effect on accuracy of changing the number of angles was quantified with the following framework: (1) predict the impact of the discretization of gantry rotation for various modulation factors, target sizes, and off-axis positions using a simplified analytical algorithm; (2) perform regular quality assurance using measurements with EDR2 radiographic films; (3) isolating the effect of changing the number of discretized angles only (51, 153, and 459) using a previously validated Monte Carlo model (TomoPen). The diameters of the targets were 2, 3, and 5 cm; off-axis central positions of target volumes were 5, 10 and 15, and 17 cm (when accepted by the treatment unit); planned modulation factors were 1.3 and 2.0. RESULTS: For extreme configurations (3 cm tumor, 1.3 modulation factor, 15 cm off-axis position), effects on dose distributions were significant with 89.3% and 95.4% of the points passing gamma tests with 2%∕2 mm and 3%∕3 mm criteria, respectively, for TPS software version 4.0.x (51 gantry angles). The passing rate was 100% for both gamma criteria for the 4.1.x version (153 gantry angles). Those differences could be attributed almost completely to gantry motion discretization using TomoPen. Using 51 gantry angles for dose computation, TomoPen reproduced within statistical uncertainties (<1% standard deviation) dose distributions computed with version 4.0.x. Using 153 and 459 gantry angles, TomoPen reproduced within statistical uncertainties measurements and dose distributions computed with version 4.1.x. CONCLUSIONS: When low modulation factors and significant off-axis positions are used, accounting for gantry rotation during dose computation using at least 153 gantry angles is required to ensure optimal accuracy.


Asunto(s)
Método de Montecarlo , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Asistida por Computador/métodos , Algoritmos , Dosificación Radioterapéutica , Radioterapia Asistida por Computador/instrumentación , Rotación
13.
Med Phys ; 39(5): 2544-58, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22559625

RESUMEN

PURPOSE: Intensity modulated radiation therapy (IMRT) utilizes the technology of multileaf collimators to deliver highly modulated and complex radiation treatment. Dosimetric verification of the IMRT treatment requires the verification of the delivered dose distribution. Two dimensional ion chamber or diode arrays are gaining popularity as a dosimeter of choice due to their real time feedback compared to film dosimetry. This paper describes the characterization of a novel 2D diode array, which has been named the "magic plate" (MP). It was designed to function as a 2D transmission detector as well as a planar detector for dose distribution measurements in a solid water phantom for the dosimetric verification of IMRT treatment delivery. METHODS: The prototype MP is an 11 × 11 detector array based on thin (50 µm) epitaxial diode technology mounted on a 0.6 mm thick Kapton substrate using a proprietary "drop-in" technology developed by the Centre for Medical Radiation Physics, University of Wollongong. A full characterization of the detector was performed, including radiation damage study, dose per pulse effect, percent depth dose comparison with CC13 ion chamber and build up characteristics with a parallel plane ion chamber measurements, dose linearity, energy response and angular response. RESULTS: Postirradiated magic plate diodes showed a reproducibility of 2.1%. The MP dose per pulse response decreased at higher dose rates while at lower dose rates the MP appears to be dose rate independent. The depth dose measurement of the MP agrees with ion chamber depth dose measurements to within 0.7% while dose linearity was excellent. MP showed angular response dependency due to the anisotropy of the silicon diode with the maximum variation in angular response of 10.8% at gantry angle 180°. Angular dependence was within 3.5% for the gantry angles ± 75°. The field size dependence of the MP at isocenter agrees with ion chamber measurement to within 1.1%. In the beam perturbation study, the surface dose increased by 12.1% for a 30 × 30 cm(2) field size at the source to detector distance (SDD) of 80 cm whilst the transmission for the MP was 99%. CONCLUSIONS: The radiation response of the magic plate was successfully characterized. The array of epitaxial silicon based detectors with "drop-in" packaging showed properties suitable to be used as a simplified multipurpose and nonperturbing 2D radiation detector for radiation therapy dosimetric verification.


Asunto(s)
Radiometría/instrumentación , Radioterapia Asistida por Computador/instrumentación , Aire , Modelos Lineales , Fantasmas de Imagen , Dosificación Radioterapéutica , Radioterapia Asistida por Computador/efectos adversos , Propiedades de Superficie , Agua
14.
Med Phys ; 39(11): 6957-67, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23127089

RESUMEN

PURPOSE: This study presents the implementation and experimental results of a novel technique for 4D tumor tracking using a commercially available and commonly used treatment couch and evaluates the tumor tracking accuracy in clinical settings. METHODS: Commercially available couch is capable of positioning the patient accurately; however, currently there is no provision for compensating physiological movement using the treatment couch in real-time. In this paper, a real-time couch tracking control technique is presented together with experimental results in tumor motion compensation in four dimensions (superior-inferior, lateral, anterior-posterior, and time). To implement real-time couch motion for tracking, a novel control system for the treatment couch was developed. The primary functional requirements for this novel technique were: (a) the treatment couch should maintain all previous∕normal features for patient setup and positioning, (b) the new control system should be used as a parallel system when tumor tracking would be deployed, and (c) tracking could be performed in a single direction and∕or concurrently in all three directions of the couch motion (longitudinal, lateral, and vertical). To the authors' best knowledge, the implementation of such technique to a regular treatment couch for tumor tracking has not been reported so far. To evaluate the performance of the tracking couch, we investigated the mechanical characteristics of the system such as system positioning resolution, repeatability, accuracy, and tracking performance. Performance of the tracking system was evaluated using dosimetric test as an endpoint. To investigate the accuracy of real-time tracking in the clinical setting, the existing clinical treatment couch was replaced with our experimental couch and the linear accelerator was used to deliver 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) treatment plans with and without tracking. The results of radiation dose distribution from these two sets of experiments were compared and presented here. RESULTS: The mechanical accuracies were 0.12, 0.14, and 0.18 mm in X, Y, and Z directions. The repeatability of the desired motion was within ±0.2 mm. The differences of central axis dose between the 3D-CRT stationary plan and two tracking plans with different motion trajectories were 0.21% and 1.19%. The absolute dose differences of both 3D tracking plans comparing to the stationary plan were 1.09% and 1.20%. Comparing the stationary IMRT plan with the tracking IMRT plan, it was observed that the central axis dose difference was -0.87% and the absolute difference of both IMRT plans was 0.55%. CONCLUSIONS: The experimental results revealed that the treatment couch could be successfully used for real-time tumor tracking with a high level of accuracy. It was demonstrated that 4D tumor tracking was feasible using existing couch with implementation of appropriate tracking methodology and with modifications in the control system.


Asunto(s)
Neoplasias/radioterapia , Radioterapia Asistida por Computador/instrumentación , Robótica , Fenómenos Mecánicos , Movimiento , Fantasmas de Imagen , Radiometría
15.
Med Phys ; 39(11): 7032-41, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23127094

RESUMEN

PURPOSE: One limitation of accurate dose delivery in radiotherapy is intrafractional movement of the tumor or the entire patient which may lead to an underdosage of the target tissue or an overdosage of adjacent organs at risk. In order to compensate for this movement, different techniques have been developed. In this study the tracking performances of a multileaf collimator (MLC) tracking system and a robotic treatment couch tracking system were compared under equal conditions. METHODS: MLC tracking was performed using a tracking system based on the Siemens 160 MLC. A HexaPOD robotic treatment couch tracking system was also installed at the same linac. A programmable 4D motion stage was used to reproduce motion trajectories with different target phantoms. Motion localization of the target was provided by the 4D tracking system of Calypso Medical Inc. The gained positional data served as input signal for the control systems of the MLC and HexaPOD tracking systems attempting to compensate for the target motion. The geometric and dosimetric accuracy for the tracking of eight different respiratory motion trajectories was investigated for both systems. The dosimetric accuracy of both systems was also evaluated for the tracking of five prostate motion trajectories. RESULTS: For the respiratory motion the average root mean square error of all trajectories in y direction was reduced from 4.1 to 2.0 mm for MLC tracking and to 2.2 mm for HexaPOD tracking. In x direction it was reduced from 1.9 to 0.9 mm (MLC) and to 1.0 mm (HexaPOD). The average 2%/2 mm gamma pass rate for the respiratory motion trajectories was increased from 76.4% for no tracking to 89.8% and 95.3% for the MLC and the HexaPOD tracking systems, respectively. For the prostate motion trajectories the average 2%/2 mm gamma pass rate was 60.1% when no tracking was applied and was improved to 85.0% for MLC tracking and 95.3% for the HexaPOD tracking system. CONCLUSIONS: Both systems clearly increased the geometric and dosimetric accuracy during tracking of respiratory motion trajectories. Thereby, the geometric accuracy was increased almost equally by both systems, whereas the dosimetric accuracy of the HexaPOD tracking system was slightly better for all considered respiratory motion trajectories. Substantial improvement of the dosimetric accuracy was also observed during tracking of prostate motion trajectories during an intensity-modulated radiotherapy plan. Thereby, the HexaPOD tracking system showed better results than the MLC tracking.


Asunto(s)
Movimiento , Radioterapia Asistida por Computador/instrumentación , Robótica/instrumentación , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Radiometría , Respiración
16.
Med Phys ; 39(11): 7140-52, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23127105

RESUMEN

PURPOSE: Accurate tumor tracking remains a challenge in current radiation therapy. Many strategies including image guided radiation therapy alleviate the problem to certain extents. The authors propose a new modality called emission guided radiation therapy (EGRT) to accurately and directly track the tumor based on its biological signature. This work is to demonstrate the feasibility of EGRT under two clinical scenarios using a 4D digital patient model. METHODS: EGRT uses lines of response (LOR's) from positron emission events to direct beamlets of therapeutic radiation through the emission sites inside a tumor. This is accomplished by a radiation delivery system consisting of a Linac and positron emission tomography (PET) detectors on a fast rotating closed-ring gantry. During the treatment of radiotracer-administrated cancer patients, PET detectors collect LOR's from tumor uptake sites and the Linac responds in nearly real-time with beamlets of radiation along the same LOR paths. Moving tumors are therefore treated with a high targeting accuracy. Based on the EGRT concept, the authors design a treatment method with additional modulation algorithms including attenuation correction and an integrated boost scheme. Performance is evaluated using simulations of a lung tumor case with 3D motion and a prostate tumor case with setup errors. The emission process is simulated by Geant4 Application for Tomographic Emission package (GATE) and Linac dose delivery is simulated using a voxel-based Monte Carlo algorithm (VMC++). RESULTS: In the lung case with attenuation correction, compared to a conventional helical treatment, EGRT achieves a 41% relative increase in dose to 95% of the gross tumor volume (GTV) and a 55% increase to 50% of the GTV. All dose distributions are normalized for the same dose to the lung. In the prostate case with the integrated boost and no setup error, EGRT yields a 19% and 55% relative dose increase to 95% and 50% of the GTV, respectively, when all methods are normalized for the same dose to the rectum. In the prostate case with integrated boost where setup error is present, EGRT contributes a 21% and 52% relative dose increase to 95% and 50% of the GTV, respectively. CONCLUSIONS: As a new radiation therapy modality with inherent tumor tracking, EGRT has the potential to substantially improve targeting in radiation therapy in the presence of intrafractional and interfractional motion.


Asunto(s)
Electrones , Neoplasias Pulmonares/radioterapia , Método de Montecarlo , Fantasmas de Imagen , Neoplasias de la Próstata/radioterapia , Radioterapia Asistida por Computador/instrumentación , Algoritmos , Estudios de Factibilidad , Humanos , Masculino , Errores de Configuración en Radioterapia
17.
Appl Opt ; 51(13): 2441-50, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22614424

RESUMEN

A noninvasive eye tracking system based on infrared 3-D video-oculographic techniques is proposed for the automatic monitoring of eye position and orientation in external beam radiotherapy of ocular tumors. The presented method can be applied for the real-time estimation of lesion position and tumor-beam misalignments, allowing automatic patient setup and eye movement gated treatments. A prototypal eye tracker was developed and tested on five subjects, achieving gaze estimation errors of 0.5° and eye monitoring frequencies of 125 Hz. The proposed application can potentially improve quality and efficacy of ocular radiotherapy treatments, currently based on invasive, qualitative, and manual control procedures.


Asunto(s)
Neoplasias del Ojo/radioterapia , Imagenología Tridimensional/instrumentación , Monitoreo Fisiológico/instrumentación , Radioterapia Asistida por Computador/instrumentación , Ojo/patología , Movimientos Oculares , Humanos , Radioterapia Asistida por Computador/métodos , Programas Informáticos , Grabación en Video/instrumentación , Grabación en Video/métodos
18.
Laryngorhinootologie ; 91 Suppl 1: S144-50, 2012 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-22456915

RESUMEN

Over the last 20 years there was a dramatic change in therapeutic options for head and neck tumors mainly due to improvements in surgical and radiotherapeutic techniques and in the increasing use of multimodal therapy. Especially for locally advanced tumors, one can achieve long lasting disease free intervals in a large proportion of patients. The following article will focus on the novel techniques in radiation oncology and combined radiochemotherapy giving an overview without too many technical details.


Asunto(s)
Neoplasias de Oído, Nariz y Garganta/radioterapia , Quimioradioterapia Adyuvante/instrumentación , Quimioradioterapia Adyuvante/métodos , Terapia Combinada/instrumentación , Terapia Combinada/métodos , Tomografía Computarizada de Haz Cónico/instrumentación , Tomografía Computarizada de Haz Cónico/métodos , Diseño de Equipo , Humanos , Metástasis Linfática/patología , Metástasis Linfática/radioterapia , Estadificación de Neoplasias , Neoplasias de Oído, Nariz y Garganta/tratamiento farmacológico , Neoplasias de Oído, Nariz y Garganta/patología , Neoplasias de Oído, Nariz y Garganta/cirugía , Pronóstico , Protección Radiológica/instrumentación , Protección Radiológica/métodos , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Adyuvante/instrumentación , Radioterapia Adyuvante/métodos , Radioterapia Asistida por Computador/instrumentación , Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/instrumentación , Radioterapia de Intensidad Modulada/métodos
19.
Med Phys ; 38(6): 2841-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21815359

RESUMEN

PURPOSE: To obtain accurate x-ray source profile measurements using a slit-collimator, the slit-collimator should have a narrow width, large height, and be positioned near the source. However, these conditions may not always be met. In this paper, the authors provide a detailed analysis of the slit measurement geometry and the relationship between the slit parameters and the measured x-ray source profile. The slit model allows the use of a shorter and more easily available slit-collimator, while accurate source profile measurements can still be obtained. METHODS: Measurements were performed with a variety of slit widths and/or slit to source distances. The relationship derived between the slit parameters and the measured profile was used to determine the true focal spot profile through a least square fit of the profile data. The model was verified by comparing the predicted profiles at a variety of slit-collimator parameters with the measured results on the TomoTherapy Hi-Art system. RESULTS: Both the treatment beam and the imaging beam were measured. For treatment mode, it was found that a source consisting of one Gaussian with a 0.75 mm full-width-half-maximum (FWHM) and 72% peak amplitude and a second Gaussian with a 2.27 mm FWHM and 18% peak amplitude matched measurement profiles. The overall source profile has a FWHM of 0.93 mm, but with a higher amplitude in the tail region than a single Gaussian. For imaging mode, the source consists of one Gaussian with a 0.68 mm FWHM and 82% peak amplitude and a second Gaussian with a 1.83 mm FWHM and 18% peak amplitude. The overall source profile has a FWHM of 0.77 mm. CONCLUSIONS: Our study of the focal spot measurement using slit-collimators showed that accurate source profile measurements can be achieved through fitting of measurement results at different slit widths and source-to-slit distances (SSD). Quantitative measurements of the TomoTherapy linac focal spot showed that the source distribution could be better described with a model consisting of two Gaussian components rather than a single Gaussian model as assumed in previous studies.


Asunto(s)
Radioterapia Asistida por Computador/métodos , Método de Montecarlo , Distribución Normal , Radioterapia Asistida por Computador/instrumentación
20.
Med Phys ; 38(6): 3260-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21815400

RESUMEN

PURPOSE: Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. METHODS: The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. RESULTS: The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. CONCLUSIONS: The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.


Asunto(s)
Aceleración , Cabeza , Magnetismo , Método de Montecarlo , Radioterapia Asistida por Computador/instrumentación , Humanos , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda