Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Mol Pain ; 20: 17448069241234451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325814

RESUMEN

Toothache is one of the most common types of pain, but the mechanisms underlying pulpitis-induced pain remain unknown. The ionotropic purinergic receptor family (P2X) is reported to mediate nociception in the nervous system. This study aims to investigate the involvement of P2X3 in the sensitisation of the trigeminal ganglion (TG) and the inflammation caused by acute pulpitis. An acute tooth inflammation model was established by applying LPS to the pulp of SD rats. We found that the increased expression of P2X3 was induced by acute pulpitis. A selective P2X3 inhibitor (A-317491) reduced pain-like behavior in the maxillofacial region of rats and depressed the activation of neurons in the trigeminal ganglion induced by pulpitis. The upregulated MAPK signaling (p-p38, p-ERK1/2) expression in the ipsilateral TG induced by pulpitis could also be depressed by the application of the P2X3 inhibitor. Furthermore, the expression of markers of inflammatory processes, such as NF-κB, TNF-α and IL-1ß, could be induced by acute pulpitis and deduced by the intraperitoneal injection of P2X3 antagonists. Our findings demonstrate that purinergic P2X3 receptor signaling in TG neurons contributes to pulpitis-induced pain in rats and that P2X3 signaling may be a potential therapeutic target for tooth pain.


Asunto(s)
Pulpitis , Ratas , Animales , Pulpitis/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Dolor/metabolismo , Transducción de Señal , Inflamación/complicaciones , Inflamación/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Ganglio del Trigémino/metabolismo
2.
Exp Physiol ; 109(4): 524-534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38213082

RESUMEN

Hindlimb ischaemia-reperfusion (IR) is among the most prominent pathophysiological conditions observed in peripheral artery disease (PAD). An exaggerated arterial blood pressure (BP) response during exercise is associated with an elevated risk of cardiovascular events in individuals with PAD. However, the precise mechanisms leading to this exaggerated BP response are poorly elucidated. The P2X3 signalling pathway, which plays a key role in modifying the exercise pressor reflex (EPR), is the focus of the present study. We determined the regulatory role of P2X3 on the EPR in a rat model of hindlimb IR. In vivo and in vitro approaches were used to determine the expression and functions of P2X3 in muscle afferent nerves and EPR in IR rats. We found that in IR rats there was (1) upregulation of P2X3 protein expression in the L4-6 dorsal root ganglia (DRG); (2) amplified P2X currents in isolated isolectin B4 (IB4)-positive muscle DRG neurons; and (3) amplification of the P2X-mediated BP response. We further verified that both A-317491 and siRNA knockdown of P2X3 significantly decreased the activity of P2X currents in isolated muscle DRG neurons. Moreover, inhibition of muscle afferents' P2X3 receptor using A-317491 was observed to alleviate the exaggerated BP response induced by static muscle contraction and P2X-induced BP response by α,ß-methylene ATP injection. P2X3 signalling pathway activity is amplified in muscle afferent DRG neurons in regulating the EPR following hindlimb IR.


Asunto(s)
Ganglios Espinales , Neuronas Aferentes , Fenoles , Compuestos Policíclicos , Ratas , Animales , Ganglios Espinales/metabolismo , Ratas Sprague-Dawley , Neuronas Aferentes/fisiología , Reflejo , Neuronas/metabolismo , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Miembro Posterior/metabolismo , Receptores Purinérgicos P2X3/metabolismo
3.
Purinergic Signal ; 20(1): 5-8, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37211586

RESUMEN

Heart failure is associated with multiple mechanisms, including sympatho-excitation, and is one of the leading causes of death worldwide. Enhanced carotid body chemoreflex function is strongly related to excessive sympathetic nerve activity and sleep-disordered breathing in heart failure. How to reduce the excitability of the carotid body is still scientifically challenging. Both clinical and experimental evidence have suggested that targeting purinergic receptors is of great potential to combat heart failure. In a recent study, Lataro et al. (Lataro et al. in Nat Commun 14:1725, 5) demonstrated that targeting purinergic P2X3 receptors in the carotid body attenuates the progression of heart failure. Using a series of molecular, biochemical, and functional assays, the authors observed that the carotid body generates spontaneous, episodic burst discharges coincident with the onset of disordered breathing in male rats with heart failure, which was generated by ligating the left anterior descending coronary artery. Moreover, P2X3 receptor expression was found to be upregulated in the petrosal ganglion chemoreceptive neurons of rats with heart failure. Of particular note, treatment with a P2X3 antagonist rescued pathological breathing disturbances, abolished episodic discharges, reinstated autonomic balance, attenuated cardiac dysfunction, and reduced the immune cell response and plasma cytokine levels in those rats.


Asunto(s)
Cuerpo Carotídeo , Insuficiencia Cardíaca , Ratas , Masculino , Animales , Cuerpo Carotídeo/metabolismo , Receptores Purinérgicos P2X/metabolismo , Insuficiencia Cardíaca/metabolismo , Neuronas/metabolismo , Sistema Nervioso Simpático , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X2/metabolismo
4.
Purinergic Signal ; 19(1): 29-41, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35218450

RESUMEN

Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate), a nonspecific P2X1-7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4-L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Electroacupuntura , Ratas , Animales , Hiperalgesia/metabolismo , Regulación hacia Abajo , Ganglios Espinales/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Neuropatías Diabéticas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Diabetes Mellitus/metabolismo
5.
Purinergic Signal ; 19(1): 13-27, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35478452

RESUMEN

Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 µL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,ß-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,ß-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,ß-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Electroacupuntura , Ratas , Animales , Hiperalgesia/metabolismo , Dolor en Cáncer/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Ratas Sprague-Dawley , Electroacupuntura/métodos , Dolor/metabolismo , Neoplasias Óseas/metabolismo , Analgésicos , Ganglios Espinales/metabolismo
6.
Purinergic Signal ; 19(1): 99-111, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34973115

RESUMEN

Diabetic neuropathic pain (DNP) is frequent among patients with diabetes. We previously showed that P2X3 upregulation in dorsal root ganglia (DRG) plays a role in streptozotocin (STZ)-induced DNP but the underlying mechanism is unclear. Here, a rat model of DNP was established by a single injection of STZ (65 mg/kg). Fasting blood glucose was significantly elevated from the 1st to 3rd week. Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) in diabetic rats significantly reduced from the 2nd to 3rd week. Western blot analysis revealed that elevated p-CaMKIIα levels in the DRG of DNP rats were accompanied by pain-associated behaviors while CaMKIIα levels were unchanged. Immunofluorescence revealed significant increase in the proportion of p-CaMKIIα immune positive DRG neurons (stained with NeuN) in the 2nd and 3rd week and p-CaMKIIα was co-expressed with P2X3 in DNP rats. KN93, a CaMKII antagonist, significantly reduce mechanical hyperalgesia and thermal hyperalgesia and these effects varied dose-dependently, and suppressed p-CaMKIIα and P2X3 upregulation in the DRGs of DNP rats. These results revealed that the p-CaMKIIα upregulation in DRG is involved in DNP, which possibly mediated P2X3 upregulation, indicating CaMKIIα may be an effective pharmacological target for DNP management.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Neuralgia , Ratas , Animales , Ratas Sprague-Dawley , Diabetes Mellitus Experimental/metabolismo , Calcio/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacología , Receptores Purinérgicos P2X3/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Ganglios Espinales/metabolismo , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Neuropatías Diabéticas/metabolismo
7.
Bioorg Med Chem Lett ; 72: 128820, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644300

RESUMEN

Drug discovery programs targeting P2X3 receptors (P2X3R), an extracellular adenosine 5'-triphosphate (ATP) gated cation channel family, have been actively investigated for several CNS-related diseases. The current unmet need in the field of P2X3R targeted drugs is to avoid a side effect, the loss of taste, that could be reduced by increase of the P2X3R selectivity vs P2X2/3R. In this study, 5-methyl-1H-benzo[d]imidazole derivatives were designed and synthesized from the analysis of key pharmacophores of current antagonists. In the structure-activity relationship study, the most potent compounds 17a-b was discovered as potent P2X3R antagonists with IC50 values of 145 and 206 nM, and selectivity index of 60 and 41, respectively. In addition, 17a-b showed the not-competitive antagonism, but poor binding score in the docking study at the known allosteric binding site of Gefapixant binding site, indicating that another allosteric binding site might be existing for the novel P2X3R antagonists.


Asunto(s)
Nitroimidazoles , Antagonistas del Receptor Purinérgico P2X , Inhibidores de 14 alfa Desmetilasa , Adenosina Trifosfato/metabolismo , Sitio Alostérico , Antifúngicos , Sitios de Unión , Inhibidores del Citocromo P-450 CYP2C9 , Inhibidores del Citocromo P-450 CYP3A , Imidazoles/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X3/metabolismo
8.
J Pharmacol Sci ; 148(2): 255-261, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35063141

RESUMEN

Mechanical stimulation of cultured keratinocytes and a living epidermis increases intracellular calcium ion concentrations ([Ca2+]i) in stimulated cells. This action propagates a Ca2+ wave to neighboring keratinocytes via ATP/P2Y2 receptors. Recent behavioral, pharmacological studies revealed that exogenous ATP induces itching via P2X3 receptors in mice. We previously showed that alloknesis occurs when an external stimulus is applied to the skin with increased epidermal histamine in the absence of spontaneous pruritus. Based on these results, we investigated the effects of histamine at a concentration that does not cause itching on ATP-induced itching. The mean number of scratching events induced by the mixture of ATP and histamine increased by 28% over the sum of that induced by histamine alone or ATP alone. A317491, a P2X3 receptor antagonist, suppressed the mixture-induced scratching more often than the ATP-induced scratching. Next, we examined the ATP-induced [Ca2+]i change before and after histamine stimulation using normal human epidermal keratinocytes. Some cells did not respond to ATP before histamine stimulation but responded to ATP afterward, the phenomenon suppressed by chlorpheniramine maleate. These findings suggest that histamine enhances ATP-induced itching and that a potential mechanism could involve increased responsiveness to ATP in keratinocytes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Histamina/farmacología , Queratinocitos/metabolismo , Prurito/inducido químicamente , Prurito/tratamiento farmacológico , Animales , Calcio/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Masculino , Ratones Endogámicos ICR , Fenoles/farmacología , Fenoles/uso terapéutico , Estimulación Física , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/uso terapéutico , Agonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2Y2/metabolismo
9.
Neurourol Urodyn ; 41(1): 174-187, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34622458

RESUMEN

AIMS: The therapeutic effect of estrogen on interstitial cystitis/bladder pain syndrome is unclear. We aim to explore the effect of estrogen on bladder overactivity in rats with cyclophosphamide-induced cystitis and its underlying mechanism. METHODS: In vivo cystometry was used to determine the effect of estrogen on bladder excitability. The effect of estrogen on the expression of P2X3 receptors in bladder epithelium was detected by real-time polymerase chain reaction and western blot. Effect of P2X3 receptors in bladder urothelium on stretch-released adenosine triphosphate was performed by a Flexcell FX5000 Compression system and an Enzyme-Linked Immunosorbent Assay Kit. RESULTS: Estrogen deprivation significantly increased the urinary frequency, while supplementation with diarylpropionitrile (DPN), an estrogen receptor ß (ERß) agonist, alleviated the urinary frequency. 17ß-Estradiol and DPN decreased the expression of P2X3 receptors in urothelium cells which was partially inhibited by ERß antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol. Meanwhile, inhibiting the expression of P2X3 receptors by ERß agonist or antagonizing the function of P2X3 receptors by selective P2X3 receptor antagonist AF-353 or A-317491 significantly reduced the stretch-released ATP from urothelium cells. CONCLUSIONS: Estrogen has a direct effect on the regulation of bladder overactivity in rats with cyclophosphamide-induced cystitis by downregulating the expression of bladder epithelial P2X3 receptors through ERß and reducing the adenosine triphosphate released from urothelium during bladder filling, thereby inhibiting the generation of the micturition reflex.


Asunto(s)
Cistitis , Receptores Purinérgicos P2X3 , Vejiga Urinaria , Adenosina Trifosfato/metabolismo , Animales , Ciclofosfamida/farmacología , Cistitis/inducido químicamente , Cistitis/tratamiento farmacológico , Cistitis/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Estrógenos/uso terapéutico , Ratas , Receptores Purinérgicos P2X3/metabolismo , Urotelio/metabolismo
10.
Brain ; 144(11): 3405-3420, 2021 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-34244727

RESUMEN

Neuropathic pain is a major health problem that affects up to 7-10% of the population worldwide. Currently, neuropathic pain is difficult to treat because of its elusive mechanisms. Here we report that orphan G protein-coupled receptor 151 (GPR151) in nociceptive sensory neurons controls neuropathic pain induced by nerve injury. GPR151 was mainly expressed in non-peptidergic C-fibre dorsal root ganglion neurons and highly upregulated after nerve injury. Importantly, conditional knockout of Gpr151 in adult nociceptive sensory neurons significantly alleviated chronic constriction injury-induced neuropathic pain-like behaviour but did not affect basal nociception. Moreover, GPR151 in DRG neurons was required for chronic constriction injury-induced neuronal hyperexcitability and upregulation of colony-stimulating factor 1 (CSF1), which is necessary for microglial activation in the spinal cord after nerve injury. Mechanistically, GPR151 coupled with P2X3 ion channels and promoted their functional activities in neuropathic pain-like hypersensitivity. Knockout of Gpr151 suppressed P2X3-mediated calcium elevation and spontaneous pain behaviour in chronic constriction injury mice. Conversely, overexpression of Gpr151 significantly enhanced P2X3-mediated calcium elevation and dorsal root ganglion neuronal excitability. Furthermore, knockdown of P2X3 in dorsal root ganglia reversed chronic constriction injury-induced CSF1 upregulation, spinal microglial activation and neuropathic pain-like behaviour. Finally, the coexpression of GPR151 and P2X3 was confirmed in small-diameter human dorsal root ganglion neurons, indicating the clinical relevance of our findings. Together, our results indicate that GPR151 in nociceptive dorsal root ganglion neurons plays a key role in the pathogenesis of neuropathic pain and could be a potential target for treating neuropathic pain.


Asunto(s)
Microglía/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animales , Ganglios Espinales/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Nature ; 538(7623): 66-71, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27626375

RESUMEN

P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the 'cytoplasmic cap', which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X3/química , Receptores Purinérgicos P2X3/metabolismo , Apoproteínas/agonistas , Apoproteínas/antagonistas & inhibidores , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión/efectos de los fármacos , Unión Competitiva/efectos de los fármacos , Cristalización , Cristalografía por Rayos X , Humanos , Transporte Iónico , Ligandos , Modelos Moleculares , Porosidad , Conformación Proteica , Agonistas Purinérgicos/farmacología
12.
Mol Pain ; 17: 17448069211011315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33906494

RESUMEN

Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund's adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. TRPV1 was shown to promote the induction of spontaneous pain caused by P2X3 in the SNI model, but the induction of spontaneous pain behaviour by TRPV1 was not completely dependent on P2X3 in vivo. In both the CFA and SNI models, the activation of peripheral P2X3 enhanced the effect of TRPV1 on spontaneous pain, while the inhibition of peripheral TRPV1 reduced the induction of spontaneous pain by P2X3 in the CFA model. TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.


Asunto(s)
Ganglios Espinales/metabolismo , Dolor/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Conducta Animal/fisiología , Capsaicina/análogos & derivados , Capsaicina/farmacología , Ganglios Espinales/efectos de los fármacos , Inflamación/metabolismo , Masculino , Neuralgia/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dimensión del Dolor , Ratas , Ratas Sprague-Dawley , Fármacos del Sistema Sensorial/farmacología
13.
Bioorg Med Chem Lett ; 52: 128384, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34587541

RESUMEN

In previous work, we discovered a lead compound and conducted initial SAR studies on a novel series of dioxotriazines to identify the compound as one of the P2X3 receptor antagonists. This compound showed high P2X3 receptor selectivity and a strong analgesic effect. Although not selected for clinical development, the compound was evaluated from various aspects as a tool compound. In the course of the following study, the molecular structures of the dioxotriazines were modified based on pharmacokinetic/pharmacodynamic (PK/PD) analyses. As a result of these SAR studies, Sivopixant (S-600918) was identified as a clinical candidate with potent and selective antagonistic activity (P2X3 IC50, 4.2 nM; P2X2/3 IC50, 1100 nM) and a strong analgesic effect in the rat partial sciatic nerve ligation model (Seltzer model) of allodynia (ED50, 0.4 mg/kg).


Asunto(s)
Compuestos de Anilina/farmacología , Descubrimiento de Drogas , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Receptores Purinérgicos P2X3/metabolismo , Triazinas/farmacología , Compuestos de Anilina/síntesis química , Compuestos de Anilina/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Antagonistas del Receptor Purinérgico P2X/síntesis química , Antagonistas del Receptor Purinérgico P2X/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Triazinas/síntesis química , Triazinas/química
14.
Bioorg Med Chem Lett ; 37: 127833, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33540044

RESUMEN

P2X3 receptor is an ATP-gated ion channel, mainly localized on peripheral sensory neurons. Currently, several clinical trials are being conducted with P2X3 receptor antagonists for the treatment of chronic pain or cough. To identify a P2X3 lead compound, we reexamined the HTS evaluation compounds and selected dioxotriazine derivatives from which we identified a hit compound. As a result of the hit-to-lead SAR, we obtained lead compound 1 which had a moderate inhibitory effect on P2X3 receptors (IC50, 128 nM). Further improvement of the potency and PK profiles of this lead compound finally led to the selected compound 74 (P2X3 IC50, 16.1 nM; P2X2/3 IC50, 2931 nM), which demonstrated a strong analgesic effect against allodynia on oral administration in the rat partial sciatic nerve ligation model of neuropathic pain (ED50, 3.1 mg/kg).


Asunto(s)
Neuralgia/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X3/metabolismo , Triazinas/farmacología , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Humanos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Neuralgia/metabolismo , Antagonistas del Receptor Purinérgico P2X/administración & dosificación , Antagonistas del Receptor Purinérgico P2X/química , Ratas , Relación Estructura-Actividad , Triazinas/administración & dosificación , Triazinas/química
15.
Int J Mol Sci ; 22(1)2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33401689

RESUMEN

The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Calcio/farmacología , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/metabolismo , Canales de potasio activados por Sodio/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Células Receptoras Sensoriales/fisiología , Adenosina Trifosfato/farmacología , Animales , Escala de Evaluación de la Conducta , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Técnicas de Placa-Clamp , Nervios Periféricos/patología , Canales de Potasio/metabolismo , Canales de Potasio/fisiología , Canales de potasio activados por Sodio/genética , Receptores Purinérgicos P2X3/fisiología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología
16.
Am J Physiol Cell Physiol ; 318(6): C1123-C1135, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267716

RESUMEN

Praja2 (Pja2), a member of the growing family of mammalian RING E3 ubiquitin ligases, is reportedly involved in not only several types of cancer but also neurological diseases and disorders, but the genetic mechanism underlying the regulation of Pja2 in the nervous system remains unclear. To study the cellular and molecular functions of Pja2 in mouse hippocampal neuronal cells (MHNCs), we used gain- and loss-of-function manipulations of Pja2 in HT-22 cells and tested their regulatory effects on three Alzheimer's disease (AD) genes and cell proliferation. The results revealed that the expression of AD markers, including amyloid beta precursor protein (App), microtubule-associated protein tau (Mapt), and gamma-secretase activating protein (Gsap), could be inhibited by Pja2 overexpression and activated by Pja2 knockdown. In addition, HT-22 cell proliferation was enhanced by Pja2 upregulation and suppressed by its downregulation. We also evaluated and quantified the targets that responded to the enforced expression of Pja2 by RNA-Seq, and the results showed that purinergic receptor P2X, ligand-gated ion channel 3 and 7 (P2rx3 and P2rx7), which show different expression patterns in the critical calcium signaling pathway, mediated the regulatory effect of Pja2 in HT-22 cells. Functional studies indicated that Pja2 regulated HT-22 cells development and AD marker genes by inhibiting P2rx3 but promoting P2rx7, a gene downstream of P2rx3. In conclusion, our results provide new insights into the regulatory function of the Pja2 gene in MHNCs and thus underscore the potential relevance of this molecule to the pathophysiology of AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Proliferación Celular , Hipocampo/enzimología , Neuronas/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Hipocampo/patología , Humanos , Ratones , Neuronas/patología , Proteínas/genética , Proteínas/metabolismo , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X7/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Proteínas tau/genética , Proteínas tau/metabolismo
17.
Purinergic Signal ; 16(4): 491-502, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011961

RESUMEN

Diabetic neuropathic pain (DNP) is a troublesome diabetes complication all over the world. P2X3 receptor (P2X3R), a purinergic receptor from dorsal root ganglion (DRG), has important roles in neuropathic pain pathology and nociceptive sensations. Here, we investigated the involvement of DRG P2X3R and the effect of 2 Hz electroacupuncture (EA) on DNP. We monitored the rats' body weight, fasting blood glucose level, paw withdrawal thresholds, and paw withdrawal latency, and evaluated P2X3R expression in DRG. We found that P2X3R expression is upregulated on DNP, while 2 Hz EA is analgesic against DNP and suppresses P2X3R expression in DRG. To evaluate P2X3R involvement in pain modulation, we then treated the animals with A317491, a P2X3R specific antagonist, or α ß-me ATP, a P2X3R agonist. We found that A317491 alleviates hyperalgesia, while α ß-me ATP blocks EA's analgesic effects. Our findings indicated that 2 Hz EA alleviates DNP, possibly by suppressing P2X3R upregulation in DRG.


Asunto(s)
Neuropatías Diabéticas/metabolismo , Electroacupuntura , Ganglios Espinales/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animales , Hiperalgesia/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
18.
Purinergic Signal ; 16(3): 403-414, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32766958

RESUMEN

This study aimed to evaluate whether the development and/or maintenance of chronic-latent muscle hyperalgesia is modulated by P2X3 receptors. We also evaluate the expression of P2X3 receptors and PKCε of dorsal root ganglions during these processes. A mouse model of chronic-latent muscle hyperalgesia, induced by carrageenan and evidenced by PGE2, was used. Mechanical muscle hyperalgesia was measured by Randall-Selitto analgesimeter. The involvement of P2X3 receptors was analyzed by using the selective P2X3 receptors antagonist A-317491 by intramuscular or intrathecal injections. Expression of P2X3 and PKCε in dorsal root ganglion (L4-S1) were evaluated by Western blotting. Intrathecal blockade of P2X3 receptors previously to carrageenan prevented the development and maintenance of acute and chronic-latent muscle hyperalgesia, while intramuscular blockade of P2X3 receptors previously to carrageenan only reduced the acute muscle hyperalgesia and had no effect on chronic-latent muscle hyperalgesia. Intrathecal, but not intramuscular, blockade of P2X3 receptors immediately before PGE2, in animals previously sensitized by carrageenan, reversed the chronic-latent muscle hyperalgesia. There was an increase in total and phosphorylated PKCε 48 h after the beginning of acute muscle hyperalgesia, and in P2X3 receptors at the period of chronic muscle hyperalgesia. P2X3 receptors expressed on spinal cord dorsal horn contribute to transition from acute to chronic muscle pain. We also suggest an interaction of PKCε and P2X3 receptors in this process. Therefore, we point out P2X3 receptors of the spinal cord dorsal horn as a pharmacological target to prevent the development or reverse the chronic muscle pain conditions.


Asunto(s)
Dolor Agudo/metabolismo , Dolor Crónico/metabolismo , Músculo Esquelético/metabolismo , Mialgia/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animales , Progresión de la Enfermedad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Fenoles/farmacología , Compuestos Policíclicos/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología
19.
Bioorg Med Chem Lett ; 30(24): 127636, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33132115

RESUMEN

The P2X3 receptor is an attractive target for the treatment of pain and chronic coughing, and thus P2X3 antagonists have been developed as new therapeutic drugs. We previously reported selective P2X3 receptor antagonists by derivatization of hit compound 1. As a result, we identified hit compound 3, the structure of which was similar to hit compound 1. On the basis of SAR studies of hit compound 1, we modified hit compound 3 and compound 42 was identified as having analgesic efficacy by oral administration.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X/química , Antagonistas del Receptor Purinérgico P2X/farmacología , Pirazolonas/química , Pirazolonas/farmacología , Receptores Purinérgicos P2X3/metabolismo , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Pirroles/química , Pirroles/farmacología , Receptores Purinérgicos P2X3/química , Relación Estructura-Actividad
20.
J Cell Biochem ; 120(9): 15776-15789, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31074048

RESUMEN

Traumatic brain injury (TBI) is a serious public health problem as well as a leading cause of severe posttraumatic disability. Numerous studies indicate that the differentially expressed genes (DEGs) of neural signaling pathways are strongly correlated with brain injury. To further analyze the roles of the DGEs in the central nervous system, here we systematically investigated TBI on the hippocampus and its injury mechanism at the whole genome level. On the basis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Analyses, we revealed that the DEGs were involved in many signaling pathways related to the nervous system, especially neuronal survival-related pathways. Finally, we verified the microarray results and detected the gene expression of neuronal survival-related genes in the hippocampus by using real-time quantitative polymerase chain reaction. With Western blot and axon growth assay, the expression of P2rx3 was upregulated in rats subjected to TBI, and overexpression of P2rx3 promoted neurite growth of NG108 cells. Our results suggested that the DEGs (especially P2rx3) and several signaling pathways might play a pivotal role in TBI. We also provided several targeted genes related to TBI for future investigation.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Perfilación de la Expresión Génica/métodos , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda