Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
J Biol Chem ; 299(6): 104785, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146967

RESUMEN

Adrenomedullin 2/intermedin (AM2/IMD), adrenomedullin (AM), and calcitonin gene-related peptide (CGRP) have functions in the cardiovascular, lymphatic, and nervous systems by activating three heterodimeric receptors comprising the class B GPCR CLR and a RAMP1, -2, or -3 modulatory subunit. CGRP and AM prefer the RAMP1 and RAMP2/3 complexes, respectively, whereas AM2/IMD is thought to be relatively nonselective. Accordingly, AM2/IMD exhibits overlapping actions with CGRP and AM, so the rationale for this third agonist for the CLR-RAMP complexes is unclear. Here, we report that AM2/IMD is kinetically selective for CLR-RAMP3, known as the AM2R, and we define the structural basis for its distinct kinetics. In live cell biosensor assays, AM2/IMD-AM2R elicited longer-duration cAMP signaling than the other peptide-receptor combinations. AM2/IMD and AM bound the AM2R with similar equilibrium affinities, but AM2/IMD had a slower off-rate and longer receptor residence time, thus explaining its prolonged signaling capacity. Peptide and receptor chimeras and mutagenesis were used to map the regions responsible for the distinct binding and signaling kinetics to the AM2/IMD mid-region and the RAMP3 extracellular domain (ECD). Molecular dynamics simulations revealed how the former forms stable interactions at the CLR ECD-transmembrane domain interface and how the latter augments the CLR ECD binding pocket to anchor the AM2/IMD C terminus. These strong binding components only combine in the AM2R. Our findings uncover AM2/IMD-AM2R as a cognate pair with unique temporal features, reveal how AM2/IMD and RAMP3 collaborate to shape CLR signaling, and have significant implications for AM2/IMD biology.


Asunto(s)
Adrenomedulina , Péptido Relacionado con Gen de Calcitonina , Proteínas Modificadoras de la Actividad de Receptores , Receptores de Adrenomedulina , Receptores Acoplados a Proteínas G , Animales , Humanos , Adrenomedulina/química , Adrenomedulina/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Chlorocebus aethiops , Células COS , AMP Cíclico/metabolismo , Células HEK293 , Modelos Moleculares , Simulación de Dinámica Molecular , Estabilidad Proteica , Proteínas Modificadoras de la Actividad de Receptores/química , Proteínas Modificadoras de la Actividad de Receptores/genética , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
2.
J Pept Sci ; 29(12): e3530, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37423610

RESUMEN

The peptide hormone adrenomedullin (ADM) consists of 52 amino acids with a disulfide bond and an amidated C-terminus. Due to the vasodilatory and cardioprotective effects, the agonistic activity of the peptide on the adrenomedullin 1 receptor (AM1 R) is of high pharmacological interest. However, the wild-type peptide shows low metabolic stability leading to rapid degradation in the cardiovascular system. Previous work by our group has identified proteolytic cleavage sites and demonstrated stabilization of ADM by lipidation, cyclization, and N-methylation. Nevertheless, these ADM analogs showed reduced activity and subtype selectivity toward the closely related calcitonin gene-related peptide receptor (CGRPR). Here, we report on the rational development of ADM derivatives with increased proteolytic stability and high receptor selectivity. Stabilizing motifs, including lactamization and lipidation, were evaluated regarding AM1 R and CGRPR activation. Furthermore, the central DKDK motif of the peptide was replaced by oligoethylene glycol linkers. The modified peptides were synthesized by Fmoc/t-Bu solid-phase peptide synthesis and receptor activation of AM1 R and CGRPR was measured by cAMP reporter gene assay. Peptide stability was tested in human blood plasma and porcine liver homogenate and analyzed by RP-HPLC and MALDI-ToF mass spectrometry. Combination of the favorable lactam, lipidation, ethylene glycol linker, and previously described disulfide mimetic resulted in highly stabilized analogs with a plasma half-life of more than 144 h. The compounds display excellent AM1 R activity and wild-type-like selectivity toward CGRPR. Additionally, dose-dependent vasodilatory effects of the ADM derivatives lasted for several hours in rodents. Thus, we successfully developed an ADM analog with long-term in vivo activity.


Asunto(s)
Adrenomedulina , Disulfuros , Humanos , Animales , Porcinos , Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo
3.
J Biol Chem ; 295(28): 9736-9751, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32487746

RESUMEN

Calcitonin gene-related peptide (CGRP), adrenomedullin (AM), and adrenomedullin 2/intermedin (AM2/IMD) have overlapping and unique functions in the nervous and circulatory systems including vasodilation, cardioprotection, and pain transmission. Their actions are mediated by the class B calcitonin-like G protein-coupled receptor (CLR), which heterodimerizes with three receptor activity-modifying proteins (RAMP1-3) that determine its peptide ligand selectivity. How the three agonists and RAMPs modulate CLR binding to transducer proteins remains poorly understood. Here, we biochemically characterized agonist-promoted G protein coupling to each CLR·RAMP complex. We adapted a native PAGE method to assess the formation and thermostabilities of detergent-solubilized fluorescent protein-tagged CLR·RAMP complexes expressed in mammalian cells. Addition of agonist and the purified Gs protein surrogate mini-Gs (mGs) yielded a mobility-shifted agonist·CLR·RAMP·mGs quaternary complex gel band that was sensitive to antagonists. Measuring the apparent affinities of the agonists for the mGs-coupled receptors and of mGs for the agonist-occupied receptors revealed that both ligand and RAMP control mGs coupling and defined how agonist engagement of the CLR extracellular and transmembrane domains affects transducer recruitment. Using mini-Gsq and -Gsi chimeras, we observed a coupling rank order of mGs > mGsq > mGsi for each receptor. Last, we demonstrated the physiological relevance of the native gel assays by showing that they can predict the cAMP-signaling potencies of AM and AM2/IMD chimeras. These results highlight the power of the native PAGE assay for membrane protein biochemistry and provide a biochemical foundation for understanding the molecular basis of shared and distinct signaling properties of CGRP, AM, and AM2/IMD.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Electroforesis en Gel de Poliacrilamida Nativa , Receptores de Adrenomedulina , Animales , Células COS , Péptido Relacionado con Gen de Calcitonina/química , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Chlorocebus aethiops , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Dominios Proteicos , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Sistemas de Mensajero Secundario
4.
Lab Invest ; 101(11): 1449-1457, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34611305

RESUMEN

Adrenomedullin (ADM), a member of the calcitonin family of peptides, is a potent vasodilator and was shown to have the ability to modulate bone metabolism. We have previously found a unique cell surface antigen (Kat1 antigen) expressed in rat osteoclasts, which is involved in the functional regulation of the calcitonin receptor (CTR). Cross-linking of cell surface Kat1 antigen with anti-Kat1 antigen monoclonal antibody (mAbKat1) stimulated osteoclast formation only under conditions suppressed by calcitonin. Here, we found that ADM provoked a significant stimulation in osteoclastogenesis only in the presence of calcitonin; a similar biological effect was seen with mAbKat1 in the bone marrow culture system. This stimulatory effect on osteoclastogenesis mediated by ADM was abolished by the addition of mAbKat1. 125I-labeled rat ADM (125I-ADM)-binding experiments involving micro-autoradiographic studies demonstrated that mononuclear precursors of osteoclasts abundantly expressed ADM receptors, and the specific binding of 125I-ADM was markedly inhibited by the addition of mAbKat1, suggesting a close relationship between the Kat1 antigen and the functional ADM receptors expressed on cells in the osteoclast lineage. ADM receptors were also detected in the osteoclast progenitor cells in the late mitotic phase, in which only one daughter cell of the dividing cell express ADM receptors, suggesting the semiconservative cell division of the osteoclast progenitors in the initiation of osteoclastogenesis. Messenger RNAs for the receptor activity-modifying-protein 1 (RAMP1) and calcitonin receptor-like receptor (CRLR) were expressed in cells in the osteoclast lineage; however, the expression of RAMP2 or RAMP3 was not detected in these cells. It is suggested that the Kat1 antigen is involved in the functional ADM receptor distinct from the general ADM receptor, consisting of CRLR and RAMP2 or RAMP3. Modulation of osteoclastogenesis through functional ADM receptors abundantly expressed on mononuclear osteoclast precursors is supposed to be important in the fine regulation of osteoclast differentiation in a specific osteotrophic hormonal condition with a high level of calcitonin in blood.


Asunto(s)
Huesos/citología , Calcitonina/metabolismo , Diferenciación Celular , Osteogénesis , Receptores de Adrenomedulina/metabolismo , Animales , Animales Recién Nacidos , Huesos/irrigación sanguínea , Ratas Sprague-Dawley
5.
Biol Reprod ; 105(4): 876-891, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34104954

RESUMEN

Adrenomedullin (ADM) is an evolutionarily conserved multifunctional peptide hormone that regulates implantation, embryo spacing, and placentation in humans and rodents. However, the potential roles of ADM in implantation and placentation in pigs, as a litter-bearing species, are not known. This study determined abundances of ADM in uterine luminal fluid, and the patterns of expression of ADM and its receptor components (CALCRL, RAMP2, RAMP3, and ACKR3) in uteri from cyclic and pregnant gilts, as well as conceptuses (embryonic/fetus and its extra-embryonic membranes) during the peri-implantation period of pregnancy. Total recoverable ADM was greater in the uterine fluid of pregnant compared with cyclic gilts between Days 10 and 16 post-estrus and was from uterine luminal epithelial (LE) and conceptus trophectoderm (Tr) cells. Uterine expression of CALCRL, RAMP2, and ACKR3 were affected by day (P < 0.05), pregnant status (P < 0.01) and/or day x status (P < 0.05). Within porcine conceptuses, the expression of CALCRL, RAMP2, and ACKR3 increased between Days 10 and 16 of pregnancy. Using an established porcine trophectoderm (pTr1) cell line, it was determined that 10-7 M ADM stimulated proliferation of pTr1 cells (P < 0.05) at 48 h, and increased phosphorylated mechanistic target of rapamycin (p-MTOR) and 4E binding protein 1 (p-4EBP1) by 6.1- and 4.9-fold (P < 0.0001), respectively. These novel results indicate a significant role for ADM in uterine receptivity for implantation and conceptus growth and development in pigs. They also provide a framework for future studies of ADM signaling to affect proliferation and migration of Tr cells, spacing of blastocysts, implantation, and placentation in pigs.


Asunto(s)
Adrenomedulina/genética , Embrión de Mamíferos/metabolismo , Receptores de Adrenomedulina/genética , Sus scrofa/genética , Útero/metabolismo , Adrenomedulina/metabolismo , Animales , Femenino , Receptores de Adrenomedulina/inmunología , Análisis Espacio-Temporal , Sus scrofa/embriología
6.
Gen Comp Endocrinol ; 306: 113752, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33711314

RESUMEN

The adrenomedullin (AM) family is involved in diverse biological functions, including cardiovascular regulation and body fluid homeostasis, in multiple vertebrate lineages. The AM family consists of AM1, AM2, and AM5 in tetrapods, and the receptor for mammalian AMs has been identified as the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2) or RAMP3. However, the receptors for AM in amphibians have not been identified. In this study, we identified the cDNAs encoding calcrl (clr), ramp2, and ramp3 receptor components from the western clawed frog (Xenopus tropicalis). Messenger RNAs of amphibian clr and ramp2 were highly expressed in the heart, whereas that of ramp3 was highly expressed in the whole blood. In HEK293T cells expressing clr-ramp2, cAMP response element luciferase (CRE-Luc) reporter activity was activated by am1. In HEK293T cells expressing clr-ramp3, CRE-Luc reporter activity was increased by the treatment with am2 at the lowest dose, but with am5 and am1 at higher dose. Our results provided new insights into the roles of AM family peptides through CLR-RAMP receptor complexes in the tetrapods.


Asunto(s)
Adrenomedulina , Hormonas Peptídicas , Receptores de Calcitonina , Adrenomedulina/genética , Animales , Proteína Similar al Receptor de Calcitonina/genética , Células HEK293 , Humanos , Proteína 2 Modificadora de la Actividad de Receptores/genética , Proteína 3 Modificadora de la Actividad de Receptores/genética , Receptores de Adrenomedulina/genética , Receptores de Calcitonina/genética , Xenopus
7.
Graefes Arch Clin Exp Ophthalmol ; 258(5): 1039-1047, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32140926

RESUMEN

PURPOSE: Subthreshold micropulse laser irradiation has been used for the treatment of retinal edema; however, there are few reports about the mechanism of its therapeutic effect. In this study, we compared threshold short pulse and subthreshold micropulse laser irradiation in mice and investigated their mechanism. METHODS: Nine to 12-week-old male C57BL/6J mice were used in this study. After general anesthesia, threshold short pulse or subthreshold micropulse laser irradiation was performed on the right eye using IQ577. Enucleation was performed 24 h after the laser irradiation, and histological and gene expression analyses were carried out. RESULTS: Coagulation spots and atrophy of the retinal pigment epithelium were observed after threshold short pulse laser irradiation but not after subthreshold micropulse laser irradiation. Twenty-four hours after laser, aquaporin (AQP) 1, 2, 7, and 11 levels were significantly elevated by 1.7- to 3-fold in the threshold short pulse laser group compared with non-treated control group. AQP 3 was increased significantly and prominently by 100-fold. VEGF-A and VEGFR2 were upregulated 1.5- and 2.3-fold, respectively. In the subthreshold micropulse laser group, AQP 3 was increased by 6-fold compared with the non-treated control group. Angiopoietin-1 and the adrenomedullin (AM) receptor CLR were decreased by 0.6-fold and 0.5-fold, respectively. CONCLUSION: Threshold short pulse laser irradiation caused retinal damage and prominent changes in the expression of various genes. Contrarily, subthreshold micropulse laser irradiation did not induce retinal damage; it upregulated AQP 3, which might have improved retinal edema by drainage of subretinal fluid.


Asunto(s)
Coagulación con Láser/métodos , Láseres de Semiconductores/uso terapéutico , Retina/cirugía , Animales , Atrofia , Proteína Similar al Receptor de Calcitonina/genética , Angiografía con Fluoresceína , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Adrenomedulina/genética , Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/cirugía , Tomografía de Coherencia Óptica , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
8.
J Biol Chem ; 293(41): 15840-15854, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30139742

RESUMEN

The cardioprotective vasodilator peptide adrenomedullin 2/intermedin (AM2/IMD) and the related adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) signal through three heterodimeric receptors comprising the calcitonin receptor-like class B G protein-coupled receptor (CLR) and a variable receptor activity-modifying protein (RAMP1, -2, or -3) that determines ligand selectivity. The CGRP receptor (RAMP1:CLR) favors CGRP binding, whereas the AM1 (RAMP2:CLR) and AM2 (RAMP3:CLR) receptors favor AM binding. How AM2/IMD binds the receptors and how RAMPs modulate its binding is unknown. Here, we show that AM2/IMD binds the three purified RAMP-CLR extracellular domain (ECD) complexes with a selectivity profile that is distinct from those of CGRP and AM. AM2/IMD bound all three ECD complexes but preferred the CGRP and AM2 receptor complexes. A 2.05 Å resolution crystal structure of an AM2/IMD antagonist fragment-bound RAMP1-CLR ECD complex revealed that AM2/IMD binds the complex through a unique triple ß-turn conformation that was confirmed by peptide and receptor mutagenesis. Comparisons of the receptor-bound conformations of AM2/IMD, AM, and a high-affinity CGRP analog revealed differences that may have implications for biased signaling. Guided by the structure, enhanced-affinity AM2/IMD antagonist variants were developed, including one that discriminates the AM1 and AM2 receptors with ∼40-fold difference in affinities and one stabilized by an intramolecular disulfide bond. These results reveal differences in how the three peptides engage the receptors, inform development of AM2/IMD-based pharmacological tools and therapeutics, and provide insights into RAMP modulation of receptor pharmacology.


Asunto(s)
Adrenomedulina/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Proteína Similar al Receptor de Calcitonina/metabolismo , Hormonas Peptídicas/metabolismo , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/aislamiento & purificación , Péptido Relacionado con Gen de Calcitonina/aislamiento & purificación , Proteína Similar al Receptor de Calcitonina/aislamiento & purificación , Diseño de Fármacos , Células HEK293 , Humanos , Ligandos , Mutagénesis Sitio-Dirigida , Hormonas Peptídicas/antagonistas & inhibidores , Hormonas Peptídicas/genética , Hormonas Peptídicas/aislamiento & purificación , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Proteína 1 Modificadora de la Actividad de Receptores/aislamiento & purificación , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Proteína 2 Modificadora de la Actividad de Receptores/aislamiento & purificación , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Proteína 3 Modificadora de la Actividad de Receptores/aislamiento & purificación , Proteína 3 Modificadora de la Actividad de Receptores/metabolismo , Proteínas Modificadoras de la Actividad de Receptores/aislamiento & purificación , Receptores de Adrenomedulina/aislamiento & purificación
9.
J Pept Sci ; 25(3): e3147, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30680847

RESUMEN

Adrenomedullin (ADM) is a vasoactive peptide hormone of 52 amino acids and belongs to the calcitonin peptide superfamily. Its vasodilative effects are mediated by the interaction with the calcitonin receptor-like receptor (CLR), a class B G protein-coupled receptor (GPCR), associated with the receptor activity modifying protein 2 (RAMP2) and functionally described as AM-1 receptor (AM1 R). A disulfide-bonded ring structure consisting of six amino acids between Cys16 and Cys21 has been shown to be a key motif for receptor activation. However, the specific structural requirements remain to be elucidated. To investigate the influence of ring size and position of additional functional groups that replace the native disulfide bond, we generated ADM analogs containing thioether, thioacetal, alkane, and lactam bonds between amino acids 16 and 21 by Fmoc/t-Bu solid phase peptide synthesis. Activity studies of the ADM disulfide bond mimetics (DSBM) revealed a strong impact of structural parameters. Interestingly, an increased ring size was tolerated but the activity of lactam-based mimetics depended on its position within the bridging structure. Furthermore, we found the thioacetal as well as the thioether-based mimetics to be well accepted with full AM1 R activity. While a reduced selectivity over the calcitonin gene-related peptide receptor (CGRPR) was observed for the thioethers, the thioacetal was able to retain a wild-type-like selectivity profile. The carbon analog in contrast displayed weak antagonistic properties. These results provide insight into the structural requirements for AM1 R activation as well as new possibilities for the development of metabolically stabilized analogs for therapeutic applications of ADM.


Asunto(s)
Adrenomedulina/química , Adrenomedulina/farmacología , Disulfuros/química , Receptores de Adrenomedulina/agonistas , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/síntesis química , Disulfuros/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Relación Estructura-Actividad
10.
Biochemistry ; 57(8): 1410-1422, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29388762

RESUMEN

The calcitonin receptor-like receptor (CLR) is a class B G protein-coupled receptor (GPCR) that forms the basis of three pharmacologically distinct receptors, the calcitonin gene-related peptide (CGRP) receptor, and two adrenomedullin (AM) receptors. These three receptors are created by CLR interacting with three receptor activity-modifying proteins (RAMPs). Class B GPCRs have an N-terminal extracellular domain (ECD) and transmembrane bundle that are both important for binding endogenous ligands. These two domains are joined together by a stretch of amino acids that is referred to as the "stalk". Studies of other class B GPCRs suggest that the stalk may act as hinge, allowing the ECD to adopt multiple conformations. It is unclear what the role of the stalk is within CLR and whether RAMPs can influence its function. Therefore, this study investigated the role of this region using an alanine scan. Effects of mutations were measured with all three RAMPs through cell surface expression, cAMP production and, in select cases, radioligand binding and total cell expression assays. Most mutants did not affect expression or cAMP signaling. CLR C127A, N140A, F142A, and L144A impaired cell surface expression with all three RAMPs. T125A decreased the potency of all peptides at all receptors. N128A, V135A, and L139A showed ligand-dependent effects. While the stalk appears to play a role in CLR function, the effect of RAMPs on this region seems limited, in contrast to their effects on the structure of CLR in other receptor regions.


Asunto(s)
Proteína Similar al Receptor de Calcitonina/metabolismo , AMP Cíclico/metabolismo , Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Proteína Similar al Receptor de Calcitonina/análisis , Proteína Similar al Receptor de Calcitonina/genética , Chlorocebus aethiops , Humanos , Dominios Proteicos , Receptores de Adrenomedulina/metabolismo
11.
J Biol Chem ; 291(22): 11657-75, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27013657

RESUMEN

Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.


Asunto(s)
Adrenomedulina/metabolismo , Proteína Similar al Receptor de Calcitonina/metabolismo , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Proteína 3 Modificadora de la Actividad de Receptores/metabolismo , Adrenomedulina/genética , Secuencia de Aminoácidos , Proteína Similar al Receptor de Calcitonina/química , Proteína Similar al Receptor de Calcitonina/genética , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Proteína 2 Modificadora de la Actividad de Receptores/química , Proteína 2 Modificadora de la Actividad de Receptores/genética , Proteína 3 Modificadora de la Actividad de Receptores/química , Proteína 3 Modificadora de la Actividad de Receptores/genética , Receptores de Adrenomedulina/química , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Alineación de Secuencia
12.
Biochem Biophys Res Commun ; 487(3): 666-671, 2017 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-28438602

RESUMEN

Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease of human infants that is characterized by disrupted lung angiogenesis. Adrenomedullin (AM) is a multifunctional peptide with angiogenic and vasoprotective properties. AM signals via its cognate receptors, calcitonin receptor-like receptor (Calcrl) and receptor activity-modifying protein 2 (RAMP2). Whether hyperoxia affects the pulmonary AM signaling pathway in neonatal mice and whether AM promotes lung angiogenesis in human infants are unknown. Therefore, we tested the following hypotheses: (1) hyperoxia exposure will disrupt AM signaling during the lung development period in neonatal mice; and (2) AM will promote angiogenesis in fetal human pulmonary artery endothelial cells (HPAECs) via extracellular signal-regulated kinases (ERK) 1/2 activation. We initially determined AM, Calcrl, and RAMP2 mRNA levels in mouse lungs on postnatal days (PND) 3, 7, 14, and 28. Next we determined the mRNA expression of these genes in neonatal mice exposed to hyperoxia (70% O2) for up to 14 d. Finally, using HPAECs, we evaluated if AM activates ERK1/2 and promotes tubule formation and cell migration. Lung AM, Calcrl, and RAMP2 mRNA expression increased from PND 3 and peaked at PND 14, a time period during which lung development occurs in mice. Interestingly, hyperoxia exposure blunted this peak expression in neonatal mice. In HPAECs, AM activated ERK1/2 and promoted tubule formation and cell migration. These findings support our hypotheses, emphasizing that AM signaling axis is a potential therapeutic target for human infants with BPD.


Asunto(s)
Adrenomedulina/metabolismo , Hiperoxia/metabolismo , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Receptores de Adrenomedulina/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Humanos , Recién Nacido , Recien Nacido Prematuro , Ratones
13.
Biochem Biophys Res Commun ; 487(2): 438-443, 2017 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28427767

RESUMEN

Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two ß-arrestin (ß-arr) isoforms, ß-arr-1 and ß-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, ß-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of ß-arr-1 and ß-arr-2 on human AM1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the ß2-adrenergic receptor (ß2-AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [125I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of ß-arr-1 or -2 resulted in significant decreases in AM1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) ß-arr-1 or -2 also significantly decreased AM-induced AM1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM1 receptor was markedly augmented by the cotransfection of ß-arr-1 or -2 and significantly reduced by the coexpression of DN-ß-arr-1 or -2. These results were consistent with those seen for ß2-AR. Thus, both ß-arrs negatively control AM1 receptor internalization, which depends on the C-tail of CLR.


Asunto(s)
Adrenomedulina/metabolismo , Proteína Similar al Receptor de Calcitonina/metabolismo , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 1/metabolismo , Arrestina beta 2/metabolismo , Células HEK293 , Humanos
14.
Adv Exp Med Biol ; 956: 541-560, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27614623

RESUMEN

Adrenomedullin (AM) is a multifunctional peptide which exerts numerous biological activities through the activation of AM1 (CRLR + RAMP2) and AM2 (CRLR + RAMP3) receptors. AM immunoreactivity, AM binding sites and CRLR, RAMP1, RAMP2 and RAMP3 are expressed in rat cerebellar vermis. AM binding sites are discretely and differentially distributed in the rat cerebellar cortex with higher levels detected in SHR when compared with WKY rats. In addition, there is an up-regulation of cerebellar CGRP1 (CRLR + RAMP1) and AM2 (CRLR + RAMP3) receptors and a down-regulation of AM1 (CRLR + RAMP2) receptor during hypertension associated with a decreased AM expression. These changes may constitute a mechanism which contributes to the development of hypertension, and supports the notion that cerebellar AM is involved in the regulation of blood pressure. Cerebellar AM activates ERK, increases cAMP, cGMP and nitric oxide, and decreases antioxidant enzyme activity. These effects are mediated through AM1 receptor since they are blunted by AM(22-52). AM-stimulated cAMP production is mediated through AM2 and CGRP receptors. In vivo administration of AM into the cerebellar vermis caused a profound, specific and dose-dependent hypotensive effect in SHR, but not in normotensive WKY rats. This effect was mediated through AM1 receptor since it was abolished by AM(22-52). In addition, AM injected into the cerebellar vermis reduced vasopressor response to footshock stress. These findings demonstrate dysregulation of cerebellar AM system during hypertension, and suggest that cerebellar AM plays an important role in the regulation of blood pressure. Likewise, they constitute a novel mechanism of blood pressure control which has not been described so far.


Asunto(s)
Adrenomedulina/metabolismo , Presión Sanguínea , Sistema Cardiovascular/metabolismo , Cerebelo/metabolismo , Hipertensión/metabolismo , Animales , Antihipertensivos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/fisiopatología , Cerebelo/efectos de los fármacos , Cerebelo/fisiopatología , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Receptores de Adrenomedulina/metabolismo , Transducción de Señal
15.
Sheng Li Xue Bao ; 69(1): 70-76, 2017 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-28217810

RESUMEN

The pain peptide adrenomedullin (AM) plays a pivotal role in pathological pain. The present study was designed to investigate the effect of blockade of AM receptor on bone cancer pain (BCP) and its mechanism. BCP was developed by inoculation of Walker 256 mammary gland carcinoma cells in the tibia medullary cavity of Sprague Dawley rats. The selective AM receptor antagonist AM22-52 was administered intrathecally on 15 d after the inoculation. Quantitative real-time PCR was used to detect mRNA level of CC chemokine ligand 2 (CCL2) in dorsal root ganglion (DRG). Double immunofluorescence staining was used to analyze the localizations of CCL2 and AM in DRG of normal rats. The results showed that, from 6 to15 d after the inoculation, the animals showed significant reduction in the mechanical pain threshold in the ipsilateral hindpaw, companied by the decline in bone density of tibia bone. The expression of CCL2 mRNA in DRG of BCP rats was increased by 3 folds (P < 0.001 vs saline group). Intrathecal administration of AM22-52 abolished bone cancer-induced mechanical allodynia and increase of CCL2 mRNA level (P < 0.001). In normal rats, CCL2 was co-localized with AM in DRG neurons. These results suggest that AM may play a role in the pathogenesis of BCP. The increased AM bioactivity up-regulates CCL2 expression in DRG, which may contribute to the induction of pain hypersensitivity in bone cancer.


Asunto(s)
Adrenomedulina/farmacología , Neoplasias Óseas/tratamiento farmacológico , Quimiocina CCL2/metabolismo , Hiperalgesia/tratamiento farmacológico , Dolor/tratamiento farmacológico , Fragmentos de Péptidos/farmacología , Adrenomedulina/administración & dosificación , Animales , Ganglios Espinales/fisiopatología , Umbral del Dolor , Fragmentos de Péptidos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Adrenomedulina/antagonistas & inhibidores
16.
Gut ; 65(7): 1165-74, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26061593

RESUMEN

BACKGROUND AND OBJECTIVES: New-onset diabetes and concomitant weight loss occurring several months before the clinical presentation of pancreatic cancer (PC) appear to be paraneoplastic phenomena caused by tumour-secreted products. Our recent findings have shown exosomal adrenomedullin (AM) is important in development of diabetes in PC. Adipose tissue lipolysis might explain early onset weight loss in PC. We hypothesise that lipolysis-inducing cargo is carried in exosomes shed by PC and is responsible for the paraneoplastic effects. Therefore, in this study we investigate if exosomes secreted by PC induce lipolysis in adipocytes and explore the role of AM in PC-exosomes as the mediator of this lipolysis. DESIGN: Exosomes from patient-derived cell lines and from plasma of patients with PC and non-PC controls were isolated and characterised. Differentiated murine (3T3-L1) and human adipocytes were exposed to these exosomes to study lipolysis. Glycerol assay and western blotting were used to study lipolysis. Duolink Assay was used to study AM and adrenomedullin receptor (ADMR) interaction in adipocytes treated with exosomes. RESULTS: In murine and human adipocytes, we found that both AM and PC-exosomes promoted lipolysis, which was abrogated by ADMR blockade. AM interacted with its receptor on the adipocytes, activated p38 and extracellular signal-regulated (ERK1/2) mitogen-activated protein kinases and promoted lipolysis by phosphorylating hormone-sensitive lipase. PKH67-labelled PC-exosomes were readily internalised into adipocytes and involved both caveolin and macropinocytosis as possible mechanisms for endocytosis. CONCLUSIONS: PC-secreted exosomes induce lipolysis in subcutaneous adipose tissue; exosomal AM is a candidate mediator of this effect.


Asunto(s)
Adipocitos/metabolismo , Adrenomedulina/metabolismo , Exosomas/metabolismo , Lipólisis , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Endocitosis/fisiología , Glicerol/metabolismo , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptores de Adrenomedulina/antagonistas & inhibidores , Receptores de Adrenomedulina/metabolismo , Grasa Subcutánea/citología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Biochem Biophys Res Commun ; 470(4): 894-9, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26820533

RESUMEN

Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM1 receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM1 receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM1 receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [(125)I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or ß2-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449-453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM1 receptor and further determined the region of the CLR C-tail responsible for this GRK function.


Asunto(s)
Membrana Celular/metabolismo , Quinasa 4 del Receptor Acoplado a Proteína-G/metabolismo , Quinasa 5 del Receptor Acoplado a Proteína-G/metabolismo , Receptores de Adrenomedulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Regulación hacia Abajo/fisiología , Células HEK293 , Humanos
18.
Cell Mol Life Sci ; 72(16): 3115-26, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25953627

RESUMEN

Over the past decade, we have begun to appreciate that the lymphatic vascular system does more than simply return plasma back into the circulatory system and, in fact, contributes to a wide variety of normal and disease states. For this reason, much research has been devoted to understanding how lymphatic vessels form and function, with a particular interest in which molecules contribute to lymphatic vessel growth and maintenance. In the following review, we focus on a potent lymphangiogenic factor, adrenomedullin, and its known roles in lymphangiogenesis, lymphatic function, and human lymphatic disease. As one of the first, pharmacologically tractable G protein-coupled receptor pathways characterized in lymphatic endothelial cells, the continued study of adrenomedullin effects on the lymphatic system may open new avenues for the modulation of lymphatic growth and function in a variety of lymphatic-related diseases that currently have few treatments.


Asunto(s)
Adrenomedulina/metabolismo , Linfangiogénesis/fisiología , Enfermedades Linfáticas/fisiopatología , Sistema Linfático/fisiología , Modelos Biológicos , Receptores de Adrenomedulina/metabolismo , Transducción de Señal/fisiología , Humanos
19.
Mol Imaging ; 142015.
Artículo en Inglés | MEDLINE | ID: mdl-25812438

RESUMEN

This phase I study (NCT01539889) evaluated the safety, efficacy, and dosing of PulmoBind for molecular imaging of pulmonary circulation. PulmoBind is a ligand of the adrenomedullin receptor abundantly distributed in lung capillaries. Labeled with 99mTc, it allows single-photon emission computed tomographic (SPECT) imaging of lung perfusion. In preclinical studies, PulmoBind scans enabled detection of lung perfusion defects and quantification of microcirculatory occlusion caused by pulmonary hypertension. Healthy humans (N  =  20) were included into escalating groups of 5 mCi (n  =  5), 10 mCi (n  =  5), or 15 mCi (n  =  10) 99mTc-PulmoBind. SPECT imaging was serially performed, and 99mTc-PulmoBind dosimetric analysis was accomplished. The radiochemical purity of 99mTc-PulmoBind was greater than 95%. There were no safety concerns at the three dosages studied. Imaging revealed predominant and prolonged lung uptake with a mean peak extraction of 58% ± 7%. PulmoBind was well tolerated, with no clinically significant adverse event related to the study drug. The highest dose of 15 mCi provided a favorable dosimetric profile and excellent imaging. The postural lung perfusion gradient was detectable. 99mTc-PulmoBind is safe and provides good quality lung perfusion imaging. The safety/efficacy of this agent can be tested in disorders of pulmonary circulation such as pulmonary arterial hypertension.


Asunto(s)
Endotelio Vascular/patología , Pulmón/patología , Imagen Molecular , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/análogos & derivados , Adrenomedulina/química , Adrenomedulina/metabolismo , Adulto , Anciano , Diástole , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Masculino , Microcirculación , Persona de Mediana Edad , Fragmentos de Péptidos/química , Radiometría , Sístole , Tecnecio/química , Adulto Joven
20.
J Pept Sci ; 21(12): 905-12, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26767744

RESUMEN

The human adrenomedullin (ADM) is a 52 amino acid peptide hormone belonging to the calcitonin family of peptides, which plays a major role in the development and regulation of cardiovascular and lymphatic systems. For potential use in clinical applications, we aimed to investigate the fate of the peptide ligand after binding and activation of the adrenomedullin receptor (AM1), a heterodimer consisting of the calcitonin receptor-like receptor (CLR), a G protein-coupled receptor, associated with the receptor activity-modifying protein 2 (RAMP2). Full length and N-terminally shortened ADM peptides were synthesized using Fmoc/tBu solid phase peptide synthesis and site-specifically labeled with the fluorophore carboxytetramethylrhodamine (Tam) either by amide bond formation or copper(I)-catalyzed azide alkyne cycloaddition. For the first time, Tam-labeled ligands allowed the observation of co-internalization of the whole ligand-receptor complex in living cells co-transfected with fluorescent fusion proteins of CLR and RAMP2. Application of a fluorescent probe to track lysosomal compartments revealed that ADM together with the CLR/RAMP2-complex is routed to the degradative pathway. Moreover, we found that the N-terminus of ADM is not a crucial component of the peptide sequence in terms of AM1 internalization behavior.


Asunto(s)
Adrenomedulina/química , Péptidos/síntesis química , Péptidos/metabolismo , Receptores de Adrenomedulina/metabolismo , Adrenomedulina/metabolismo , Proteína Similar al Receptor de Calcitonina/química , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Colorantes Fluorescentes/química , Células HEK293 , Humanos , Lisosomas/ultraestructura , Péptidos/química , Transporte de Proteínas , Proteína 2 Modificadora de la Actividad de Receptores/química , Proteína 2 Modificadora de la Actividad de Receptores/genética , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rodaminas/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda