Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Cell ; 168(1-2): 101-110.e10, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28086082

RESUMEN

ATP-sensitive potassium channels (KATP) couple intracellular ATP levels with membrane excitability. These channels play crucial roles in many essential physiological processes and have been implicated extensively in a spectrum of metabolic diseases and disorders. To gain insight into the mechanism of KATP, we elucidated the structure of a hetero-octameric pancreatic KATP channel in complex with a non-competitive inhibitor glibenclamide by single-particle cryoelectron microscopy to 5.6-Å resolution. The structure shows that four SUR1 regulatory subunits locate peripherally and dock onto the central Kir6.2 channel tetramer through the SUR1 TMD0-L0 fragment. Glibenclamide-bound SUR1 uses TMD0-L0 fragment to stabilize Kir6.2 channel in a closed conformation. In another structural population, a putative co-purified phosphatidylinositol 4,5-bisphosphate (PIP2) molecule uncouples Kir6.2 from glibenclamide-bound SUR1. These structural observations suggest a molecular mechanism for KATP regulation by anti-diabetic sulfonylurea drugs, intracellular adenosine nucleotide concentrations, and PIP2 lipid.


Asunto(s)
Canales KATP/química , Canales KATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Microscopía por Crioelectrón , Humanos , Hidrolasas/química , Hidrolasas/metabolismo , Mamíferos/metabolismo , Mesocricetus , Ratones , Modelos Moleculares , Fosfoinositido Fosfolipasa C/química , Fosfoinositido Fosfolipasa C/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo
2.
Annu Rev Pharmacol Toxicol ; 63: 541-563, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36170658

RESUMEN

Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.


Asunto(s)
Canales de Potasio de Rectificación Interna , Humanos , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Mutación , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología
3.
Bioessays ; 46(3): e2300151, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38227376

RESUMEN

SUR2, similar to SUR1, is a regulatory subunit of the ATP-sensitive potassium channel (KATP), which plays a key role in numerous important physiological processes and is implicated in various diseases. Recent structural studies have revealed that, like SUR1, SUR2 can undergo ligand-dependent dynamic conformational changes, transitioning between an inhibitory inward-facing conformation and an activating occluded conformation. In addition, SUR2 possesses a unique inhibitory Regulatory helix (R helix) that is absent in SUR1. The binding of the activating Mg-ADP to NBD2 of SUR2 competes with the inhibitory Mg-ATP, thereby promoting the release of the R helix and initiating the activation process. Moreover, the signal generated by Mg-ADP binding to NBD2 might be directly transmitted to the TMD of SUR2, prior to NBD dimerization. Furthermore, the C-terminal 42 residues (C42) of SUR2 might allosterically regulate the kinetics of Mg-nucleotide binding on NBD2. These distinctive properties render SUR2 intricate sensors for intracellular Mg-nucleotides.


Asunto(s)
Nucleótidos , Canales de Potasio de Rectificación Interna , Nucleótidos/metabolismo , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/metabolismo , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Adenosina Trifosfato/metabolismo
4.
Diabetologia ; 67(5): 940-951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38366195

RESUMEN

AIMS/HYPOTHESIS: The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS: A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS: Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION: Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.


Asunto(s)
Hiperinsulinismo Congénito , Diabetes Gestacional , Canales de Potasio de Rectificación Interna , Recién Nacido , Adulto , Persona de Mediana Edad , Femenino , Embarazo , Humanos , Canales de Potasio de Rectificación Interna/genética , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Hiperinsulinismo Congénito/genética , Compuestos de Sulfonilurea/uso terapéutico , Mutación/genética , Gliburida , Adenosina Trifosfato/metabolismo
5.
Clin Genet ; 105(5): 549-554, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38225536

RESUMEN

Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.


Asunto(s)
Hiperinsulinismo Congénito , Canales de Potasio de Rectificación Interna , Lactante , Animales , Ratas , Masculino , Humanos , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Células HEK293 , Receptores de Droga/genética , Receptores de Droga/metabolismo , Mutación/genética , Hiperinsulinismo Congénito/genética , Adenosina Trifosfato , Potasio/metabolismo
6.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34711681

RESUMEN

Vascular tone is dependent on smooth muscle KATP channels comprising pore-forming Kir6.1 and regulatory SUR2B subunits, in which mutations cause Cantú syndrome. Unique among KATP isoforms, they lack spontaneous activity and require Mg-nucleotides for activation. Structural mechanisms underlying these properties are unknown. Here, we determined cryogenic electron microscopy structures of vascular KATP channels bound to inhibitory ATP and glibenclamide, which differ informatively from similarly determined pancreatic KATP channel isoform (Kir6.2/SUR1). Unlike SUR1, SUR2B subunits adopt distinct rotational "propeller" and "quatrefoil" geometries surrounding their Kir6.1 core. The glutamate/aspartate-rich linker connecting the two halves of the SUR-ABC core is observed in a quatrefoil-like conformation. Molecular dynamics simulations reveal MgADP-dependent dynamic tripartite interactions between this linker, SUR2B, and Kir6.1. The structures captured implicate a progression of intermediate states between MgADP-free inactivated, and MgADP-bound activated conformations wherein the glutamate/aspartate-rich linker participates as mobile autoinhibitory domain, suggesting a conformational pathway toward KATP channel activation.


Asunto(s)
Adenosina Difosfato/metabolismo , Canales KATP/ultraestructura , Receptores de Sulfonilureas/ultraestructura , Adenosina Trifosfato/metabolismo , Cardiomegalia/metabolismo , Humanos , Hipertricosis/metabolismo , Canales KATP/genética , Canales KATP/metabolismo , Músculo Liso/metabolismo , Osteocondrodisplasias/metabolismo , Páncreas/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Relación Estructura-Actividad , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34021087

RESUMEN

ATP binding cassette (ABC) proteins typically function in active transport of solutes across membranes. The ABC core structure is composed of two transmembrane domains (TMD1 and TMD2) and two cytosolic nucleotide binding domains (NBD1 and NBD2). Some members of the C-subfamily of ABC (ABCC) proteins, including human multidrug resistance proteins (MRPs), also possess an N-terminal transmembrane domain (TMD0) that contains five transmembrane α-helices and is connected to the ABC core by the L0 linker. While TMD0 was resolved in SUR1, the atypical ABCC protein that is part of the hetero-octameric ATP-sensitive K+ channel, little is known about the structure of TMD0 in monomeric ABC transporters. Here, we present the structure of yeast cadmium factor 1 protein (Ycf1p), a homolog of human MRP1, determined by electron cryo-microscopy (cryo-EM). A comparison of Ycf1p, SUR1, and a structure of MRP1 that showed TMD0 at low resolution demonstrates that TMD0 can adopt different orientations relative to the ABC core, including a ∼145° rotation between Ycf1p and SUR1. The cryo-EM map also reveals that segments of the regulatory (R) region, which links NBD1 to TMD2 and was poorly resolved in earlier ABCC structures, interacts with the L0 linker, NBD1, and TMD2. These interactions, combined with fluorescence quenching experiments of isolated NBD1 with and without the R region, suggest how posttranslational modifications of the R region modulate ABC protein activity. Mapping known mutations from MRP2 and MRP6 onto the Ycf1p structure explains how mutations involving TMD0 and the R region of these proteins lead to disease.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Clonación Molecular , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/química , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/genética , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Receptores de Sulfonilureas/química , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
8.
J Biol Chem ; 298(5): 101904, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398096

RESUMEN

Pancreatic ß-cells express ATP-sensitive potassium (KATP) channels, consisting of octamer complexes containing four sulfonylurea receptor 1 (SUR1) and four Kir6.2 subunits. Loss of KATP channel function causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI), a rare but debilitating condition if not treated. We previously showed that the sodium-channel blocker carbamazepine (Carb) corrects KATP channel surface expression defects induced by PHHI-causing mutations in SUR1. In this study, we show that Carb treatment can also ameliorate the trafficking deficits associated with a recently discovered PHHI-causing mutation in Kir6.2 (Kir6.2-A28V). In human embryonic kidney 293 or INS-1 cells expressing this mutant KATP channel (SUR1 and Kir6.2-A28V), biotinylation and immunostaining assays revealed that Carb can increase surface expression of the mutant KATP channels. We further examined the subcellular distributions of mutant KATP channels before and after Carb treatment; without Carb treatment, we found that mutant KATP channels were aberrantly accumulated in the Golgi apparatus. However, after Carb treatment, coimmunoprecipitation of mutant KATP channels and Golgi marker GM130 was diminished, and KATP staining was also reduced in lysosomes. Intriguingly, Carb treatment also simultaneously increased autophagic flux and p62 accumulation, suggesting that autophagy-dependent degradation of the mutant channel was not only stimulated but also interrupted. In summary, our data suggest that surface expression of Kir6.2-A28V KATP channels is rescued by Carb treatment via promotion of mutant KATP channel exit from the Golgi apparatus and reduction of autophagy-mediated protein degradation.


Asunto(s)
Carbamazepina/farmacología , Aparato de Golgi , Canales KATP , Adenosina Trifosfato/metabolismo , Animales , Autofagia , Línea Celular , Aparato de Golgi/genética , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Canales KATP/genética , Canales KATP/metabolismo , Ratas , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
9.
J Pharmacol Exp Ther ; 386(3): 298-309, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37527933

RESUMEN

Gain-of-function of KATP channels, resulting from mutations in either KCNJ8 (encoding inward rectifier sub-family 6 [Kir6.1]) or ABCC9 (encoding sulphonylurea receptor [SUR2]), cause Cantú syndrome (CS), a channelopathy characterized by excess hair growth, coarse facial appearance, cardiomegaly, and lymphedema. Here, we established a pipeline for rapid analysis of CS mutation consequences in Landing pad HEK 293 cell lines stably expressing wild type (WT) and mutant human Kir6.1 and SUR2B. Thallium-influx and cell membrane potential, reported by fluorescent Tl-sensitive Fluozin-2 and voltage-sensitive bis-(1,3-dibutylbarbituric acid)trimethine oxonol (DiBAC4(3)) dyes, respectively, were used to assess channel activity. In the Tl-influx assay, CS-associated Kir6.1 mutations increased sensitivity to the ATP-sensitive potassium (KATP) channel activator, pinacidil, but there was strikingly little effect of pinacidil for any SUR2B mutations, reflecting unexpected differences in the molecular mechanisms of Kir6.1 versus SUR2B mutations. Compared with the Tl-influx assay, the DiBAC4(3) assay presents more significant signal changes in response to subtle KATP channel activity changes, and all CS mutants (both Kir6.1 and SUR2B), but not WT channels, caused marked hyperpolarization, demonstrating that all mutants were activated under ambient conditions in intact cells. Most SUR2 CS mutations were markedly inhibited by <100 nM glibenclamide, but sensitivity to inhibition by glibenclamide, repaglinide, and PNU37883A was markedly reduced for Kir6.1 CS mutations. Understanding functional consequences of mutations can help with disease diagnosis and treatment. The analysis pipeline we have developed has the potential to rapidly identify mutational consequences, aiding future CS diagnosis, drug discovery, and individualization of treatment. SIGNIFICANCE STATEMENT: We have developed new fluorescence-based assays of channel activities and drug sensitivities of Cantú syndrome (CS) mutations in human Kir6.1/SUR2B-dependent KATP channels, showing that Kir6.1 mutations increase sensitivity to potassium channel openers, while SUR2B mutations markedly reduce K channel opener (KCO) sensitivity. However, both Kir6.1 and SUR2B CS mutations are both more hyperpolarized than WT cells under basal conditions, confirming pathophysiologically relevant gain-of-function, validating DiBAC4(3) fluorescence to characterize hyperpolarization induced by KATP channel activity under basal, non KCO-activated conditions.


Asunto(s)
Gliburida , Canales KATP , Humanos , Gliburida/farmacología , Gliburida/metabolismo , Pinacidilo/farmacología , Células HEK293 , Canales KATP/genética , Canales KATP/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo , Mutación , Cardiomegalia/genética , Adenosina Trifosfato/metabolismo
10.
Pancreatology ; 23(8): 978-987, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839922

RESUMEN

BACKGROUND: ATP-binding cassette (ABC) transporters translocate various substances across cellular membranes. Their deregulation may cause cancer drug resistance or perturbations in the supply of building blocks for cancer cells and modify patients' prognosis. This study investigated protein expression and cellular localization of the previously suggested putative prognostic biomarkers - ABCB2/TAP1, ABCC7/CFTR, ABCC8/SUR1, and ABCD4 in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: Protein expression and localization were assessed by immunohistochemistry in formalin-fixed paraffin-embedded primary tumor tissue blocks of 61 PDAC patients and associated with clinical data and the survival of patients. RESULTS: No CFTR protein expression was observed in PDAC, while TAP1 and ABCC8 were expressed predominantly in the cytoplasm of tumor cells. Most samples (81 %) had detectable both membranous and cytoplasmic ABCD4 staining and 42 % had ABCD4 expressed in the apical orientation. Negative membranous ABCD4 staining was significantly more frequent in advanced stage III or IV tumors (p = 0.022). Small or medium counts of individual ABCC8-positive cells in the stroma surrounding tumor tubules were also more often found in stage III or IV (p = 0.044). Patients with moderate or strong ABCC8 cytoplasmic staining intensity in tumor cells had a 3.5-fold higher risk of disease progression than those with weak staining (p = 0.002). CONCLUSIONS: The study shows for the first time that the cytoplasmic ABCC8 protein expression has prognostic value in PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptores de Sulfonilureas , Humanos , Adenocarcinoma/patología , Transportadoras de Casetes de Unión a ATP/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/patología , Progresión de la Enfermedad , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patología , Pronóstico , Receptores de Sulfonilureas/metabolismo
11.
Cephalalgia ; 43(12): 3331024231219475, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064318

RESUMEN

OBJECTIVE: Preclinical and clinical studies implicate the vascular ATP-sensitive potassium (KATP) channel in the signaling cascades underlying headache and migraine. However, attempts to demonstrate that the KATP channel inhibitor glibenclamide would attenuate triggered headache in healthy volunteers have proven unsuccessful. It is questionable, however, whether target engagement was achieved in these clinical studies. METHODS: Literature data for human glibenclamide pharmacokinetics, plasma protein binding and functional IC50 values were used to predict the KATP receptor occupancy (RO) levels obtained after glibenclamide dosing in the published exploratory clinical headache provocation studies. RO vs. time profiles of glibenclamide were simulated for the pancreatic KATP channel subtype Kir6.2/SUR1 and the vascular subtype Kir6.1/SUR2B. RESULTS: At the clinical dose of 10 mg of glibenclamide used in the headache provocation studies, predicted maximal occupancy levels of up to 90% and up to 26% were found for Kir6.2/SUR1 and Kir6.1/SUR2B, respectively. CONCLUSIONS: The findings of the present study indicate that effective Kir6.1/SUR2B target engagement was not achieved in the clinical headache provocation studies using glibenclamide. Therefore, development of novel selective Kir6.1/SUR2B inhibitors, with good bioavailability and low plasma protein binding, is required to reveal the potential of KATP channel inhibition in the treatment of migraine.


Asunto(s)
Trastornos Migrañosos , Canales de Potasio de Rectificación Interna , Humanos , Gliburida/uso terapéutico , Gliburida/farmacología , Receptores de Sulfonilureas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Cefalea , Trastornos Migrañosos/tratamiento farmacológico , Adenosina Trifosfato/metabolismo
12.
Bioorg Med Chem Lett ; 87: 129256, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966977

RESUMEN

Kir6.2/SUR1 is an ATP-regulated potassium channel that acts as an intracellular metabolic sensor, controlling insulin and appetite-stimulatory neuropeptides secretion. In this Letter, we present the SAR around a novel Kir6.2/SUR1 channel opener scaffold derived from an HTS screening campaign. New series of compounds with tractable SAR trends and favorable potencies are reported.


Asunto(s)
Receptores de Sulfonilureas , Receptores de Sulfonilureas/metabolismo
13.
Mol Pharmacol ; 102(5): 234-239, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36253099

RESUMEN

ATP-sensitive potassium channels (KATP) are energy sensors that participate in a range of physiologic processes. These channels are also clinically validated drug targets. For decades, KATP inhibitors have been prescribed for diabetes and KATP activators have been used for the treatment of hypoglycemia, hypertension, and hair loss. In this Emerging Concepts article, we highlight our current knowledge about the drug binding modes observed using cryogenic electron microscopy techniques. The inhibitors and activators bind to two distinct sites in the transmembrane domain of the sulfonylurea receptor (SUR) subunit. We also discuss the possible mechanism of how these drugs allosterically modulate the dimerization of SUR nucleotide-binding domains (NBDs) and thus KATP channel activity. SIGNIFICANCE STATEMENT: ATP-sensitive potassium channels (KATP) are fundamental to energy homeostasis, and they participate in many vital physiological processes. KATP channels are important drug targets. Both KATP inhibitors (insulin secretagogues) and KATP activators are broadly used clinically for the treatment of related diseases. Recent cryogenic electron microscopy studies allow us to understand the emerging concept of KATP structural pharmacology.


Asunto(s)
Insulinas , Canales de Potasio de Rectificación Interna , Adenosina Trifosfato/metabolismo , Insulinas/metabolismo , Canales KATP/metabolismo , Nucleótidos/metabolismo , Canales de Potasio de Rectificación Interna/química , Receptores de Droga/química , Receptores de Droga/metabolismo , Secretagogos , Receptores de Sulfonilureas/metabolismo
14.
Mol Biol Rep ; 49(7): 6717-6723, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35301655

RESUMEN

BACKGROUND: ATP-sensitive K+ (KATP) channels link the metabolic state of the cell with membrane excitability and SUR2A serves as a regulatory subunit of sarcolemmal KATP channels. The aim of the present study was to review SUR2A-mediated cardioprotection. METHODS AND RESULTS: A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science direct was performed. Levels of SUR2A regulate number of fully assembled KATP channels in the sarcolemma. Increased numbers of sarcolemmal KATP channels protect cardiomyocytes against different types of stress by improving the timing of KATP channels opening, but, also, by catalyzing ATP production in subsarcolemmal space. Fully-assembled sarcolemmal KATP channels protein complex contain ATP-producing enzymes in addition to channel subunits, SUR2A and Kir6.2. An increase in the number of fully-assembled channels results in increased levels of ATP-producing enzymes and subsarcolemmal ATP, which is beneficial in ischemia. Expression of SUR2A is regulated by diverse mechanisms, including AMPK, PI3K/Akt, and ERK1/2 as well as intracellular levels of NAD+/NADH and ATP. There are many compounds and treatments that can be used to regulate SUR2A and some of them seem to be clinically viable options. The most suitable medication to use to increase SUR2A and confer cardioprotection in the clinical setting seems to be nicotinamide. It is one of the safest compounds used in clinical practice and all pre-clinical studies demonstrated that it is an efficient cardioprotective agent. CONCLUSIONS: Taken all together, SUR2A-based cardioprotection is a likely efficient and safe cardioprotective strategy that can be quickly introduced into clinical practice.


Asunto(s)
Canales KATP , Canales de Potasio de Rectificación Interna , Adenosina Trifosfato , Canales KATP/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
15.
Diabetologia ; 64(3): 630-640, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33404684

RESUMEN

AIMS/HYPOTHESIS: Congenital hyperinsulinism caused by mutations in the KATP-channel-encoding genes (KATPHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KATPHI. Therefore, we aimed to create a model of KATPHI using patient induced pluripotent stem cell (iPSC)-derived islets. METHODS: We derived iPSCs from a patient carrying a homozygous ABCC8V187D mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the KATP-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice. RESULTS: SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological KATP-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to KATP-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation. CONCLUSIONS/INTERPRETATION: We have created a model recapitulating the known pathophysiology of KATPHI both in vitro and in vivo. We have also identified a novel role for KATP-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KATPHI without the need for primary patient tissue.


Asunto(s)
Hiperinsulinismo Congénito/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Islotes Pancreáticos/metabolismo , Receptores de Sulfonilureas/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/patología , Hiperinsulinismo Congénito/fisiopatología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Secreción de Insulina , Islotes Pancreáticos/patología , Islotes Pancreáticos/fisiopatología , Trasplante de Islotes Pancreáticos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Mutación , Fenotipo , Receptores de Sulfonilureas/genética
16.
Mol Pain ; 17: 17448069211006603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33788643

RESUMEN

BACKGROUND: Neuropathic pain following peripheral nerve injury (PNI) is linked to neuroinflammation in the spinal cord marked by astrocyte activation and upregulation of interleukin 6 (IL-6), chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 1 (CXCL1), with inhibition of each individually being beneficial in pain models. METHODS: Wild type (WT) mice and mice with global or pGfap-cre- or pGFAP-cre/ERT2-driven Abcc8/SUR1 deletion or global Trpm4 deletion underwent unilateral sciatic nerve cuffing. WT mice received prophylactic (starting on post-operative day [pod]-0) or therapeutic (starting on pod-21) administration of the SUR1 antagonist, glibenclamide (10 µg IP) daily. We measured mechanical and thermal sensitivity using von Frey filaments and an automated Hargreaves method. Spinal cord tissues were evaluated for SUR1-TRPM4, IL-6, CCL2 and CXCL1. RESULTS: Sciatic nerve cuffing in WT mice resulted in pain behaviors (mechanical allodynia, thermal hyperalgesia) and newly upregulated SUR1-TRPM4 in dorsal horn astrocytes. Global and pGfap-cre-driven Abcc8 deletion and global Trpm4 deletion prevented development of pain behaviors. In mice with Abcc8 deletion regulated by pGFAP-cre/ERT2, after pain behaviors were established, delayed silencing of Abcc8 by tamoxifen resulted in gradual improvement over the next 14 days. After PNI, leakage of the blood-spinal barrier allowed entry of glibenclamide into the affected dorsal horn. Daily repeated administration of glibenclamide, both prophylactically and after allodynia was established, prevented or reduced allodynia. The salutary effects of glibenclamide on pain behaviors correlated with reduced expression of IL-6, CCL2 and CXCL1 by dorsal horn astrocytes. CONCLUSION: SUR1-TRPM4 may represent a novel non-addicting target for neuropathic pain.


Asunto(s)
Astrocitos/metabolismo , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Receptores de Sulfonilureas/metabolismo , Animales , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Ratones Endogámicos C57BL , Neuralgia/fisiopatología , Nervio Ciático/metabolismo , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo
17.
Acta Pharmacol Sin ; 42(6): 898-908, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33154555

RESUMEN

Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.


Asunto(s)
Vías Aferentes/metabolismo , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Sulfuro de Hidrógeno/metabolismo , Hipertensión/fisiopatología , Animales , Antihipertensivos/farmacología , Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Cardiotónicos/farmacología , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Hipertensión/tratamiento farmacológico , Masculino , Ganglio Nudoso/efectos de los fármacos , Ganglio Nudoso/enzimología , Ganglio Nudoso/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Ratas Sprague-Dawley , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/enzimología , Núcleo Solitario/metabolismo , Sulfuros/farmacología , Receptores de Sulfonilureas/metabolismo , Sulfurtransferasas/metabolismo
18.
Biochem J ; 477(3): 671-689, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31957808

RESUMEN

ATP-sensitive potassium (KATP) channels are widely expressed and play key roles in many tissues by coupling metabolic state to membrane excitability. The SUR subunits confer drug and enhanced nucleotide sensitivity to the pore-forming Kir6 subunit, and so information transfer between the subunits must occur. In our previous study, we identified an electrostatic interaction between Kir6 and SUR2 subunits that was key for allosteric information transfer between the regulatory and pore-forming subunit. In this study, we demonstrate a second putative interaction between Kir6.2-D323 and SUR2A-Q1336 using patch clamp electrophysiological recording, where charge swap mutation of the residues on either side of the potential interaction compromise normal channel function. The Kir6.2-D323K mutation gave rise to a constitutively active, glibenclamide and ATP-insensitive KATP complex, further confirming the importance of information transfer between the Kir6 and SUR2 subunits. Sensitivity to modulators was restored when Kir6.2-D323K was co-expressed with a reciprocal charge swap mutant, SUR-Q1336E. Importantly, equivalent interactions have been identified in both Kir6.1 and Kir6.2 suggesting this is a second important interaction between Kir6 and the proximal C terminus of SUR.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Canales KATP , Canales de Potasio de Rectificación Interna/química , Receptores de Sulfonilureas/química , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Sitio Alostérico , Células HEK293 , Humanos , Canales KATP/química , Canales KATP/metabolismo , Modelos Estructurales , Mutación , Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Receptores de Sulfonilureas/genética , Receptores de Sulfonilureas/metabolismo
19.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34769328

RESUMEN

Sulfonylurea receptor 1 (SUR1) is a member of the adenosine triphosphate (ATP)-binding cassette (ABC) protein superfamily, encoded by Abcc8, and is recognized as a key mediator of central nervous system (CNS) cellular swelling via the transient receptor potential melastatin 4 (TRPM4) channel. Discovered approximately 20 years ago, this channel is normally absent in the CNS but is transcriptionally upregulated after CNS injury. A comprehensive review on the pathophysiology and role of SUR1 in the CNS was published in 2012. Since then, the breadth and depth of understanding of the involvement of this channel in secondary injury has undergone exponential growth: SUR1-TRPM4 inhibition has been shown to decrease cerebral edema and hemorrhage progression in multiple preclinical models as well as in early clinical studies across a range of CNS diseases including ischemic stroke, traumatic brain injury, cardiac arrest, subarachnoid hemorrhage, spinal cord injury, intracerebral hemorrhage, multiple sclerosis, encephalitis, neuromalignancies, pain, liver failure, status epilepticus, retinopathies and HIV-associated neurocognitive disorder. Given these substantial developments, combined with the timeliness of ongoing clinical trials of SUR1 inhibition, now, another decade later, we review advances pertaining to SUR1-TRPM4 pathobiology in this spectrum of CNS disease-providing an overview of the journey from patch-clamp experiments to phase III trials.


Asunto(s)
Lesiones Encefálicas/patología , Enfermedades del Sistema Nervioso Central/patología , Receptores de Sulfonilureas/metabolismo , Animales , Lesiones Encefálicas/etiología , Lesiones Encefálicas/metabolismo , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/metabolismo , Humanos
20.
Biochemistry ; 59(1): 18-25, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31566370

RESUMEN

Sulfonylureas and glinides are commonly used oral insulin secretagogues (ISs) that act on the pancreatic ATP-sensitive potassium (KATP) channel to promote insulin secretion in order to lower the blood glucose level. Physiologically, KATP channels are inhibited by intracellular ATP and activated by Mg-ADP. Therefore, they sense the cellular energy status to regulate the permeability of potassium ions across the plasma membrane. The pancreatic KATP channel is composed of the pore-forming Kir6.2 subunits and the regulatory SUR1 subunits. Previous electrophysiological studies have established that ISs bind to the SUR1 subunit and inhibit the channel activity primarily by two mechanisms. First, ISs prevent Mg-ADP activation. Second, ISs inhibit the channel activity of Kir6.2 directly. Several cryo-EM structures of the pancreatic KATP channel determined recently have provided remarkable structural insights into these two mechanisms.


Asunto(s)
Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Secretagogos/metabolismo , Receptores de Sulfonilureas/metabolismo , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Conformación Proteica , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda