Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Eur Respir J ; 55(5)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139465

RESUMEN

Cystic fibrosis (CF) is a common multi-system genetically inherited condition, predominately found in individuals of Caucasian decent. Since the identification of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene in 1989, and the subsequent improvement in understanding of CF pathophysiology, significant increases in life-expectancy have followed. Initially this was related to improvements in the management and systems of care for treating the various affected organ systems. These cornerstone treatments are still essential for CF patients born today. However, over the last decade, the major advance has been in therapies that target the resultant genetic defect: the dysfunctional CFTR protein. Small molecule agents that target this dysfunctional protein via a variety of mechanisms have led to lung function improvements, reductions in pulmonary exacerbation rates and increases in weight and quality-of-life indices. As more patients receive these agents earlier and earlier in life, it is likely that general CF care will increasingly pivot around these specific therapies, although it is also likely that effects other than those identified in the initial trials will be discovered and need to be managed. Despite great excitement for modulator therapies, they are unlikely to be suitable or available for all; whether this is due to a lack of availability for specific CFTR mutations, drug-reactions or the health economic set-up in certain countries. Nevertheless, the CF community must be applauded for its ongoing focus on research and development for this life-limiting disease. With time, personalised individualised therapy would ideally be the mainstay of CF care.


Asunto(s)
Fibrosis Quística/terapia , Atención a la Salud/tendencias , Progresión de la Enfermedad , Calidad de Vida , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Terapia Genética/métodos , Humanos , Trasplante de Pulmón
2.
Nucleic Acids Res ; 46(18): 9591-9600, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30165523

RESUMEN

Cystic fibrosis (CF) is a common genetic disease caused by mutations in the gene coding for cystic fibrosis transmembrane conductance regulator (CFTR). Although CF affects multiple organ systems, chronic bacterial infections and inflammation in the lung are the leading causes of morbidity and mortality in people with CF. Complementation with a functional CFTR gene repairs this defect, regardless of the disease-causing mutation. In this study, we used a gene delivery system termed piggyBac/adenovirus (Ad), which combines the delivery efficiency of an adenoviral-based vector with the persistent expression of a DNA transposon-based vector. We aerosolized piggyBac/Ad to the airways of pigs and observed widespread pulmonary distribution of vector. We quantified the regional distribution in the airways and observed transduction of large and small airway epithelial cells of non-CF pigs, with ∼30-50% of surface epithelial cells positive for GFP. We transduced multiple cell types including ciliated, non-ciliated, basal, and submucosal gland cells. In addition, we phenotypically corrected CF pigs following delivery of piggyBac/Ad expressing CFTR as measured by anion channel activity, airway surface liquid pH, and bacterial killing ability. Combining an integrating DNA transposon with adenoviral vector delivery is an efficient method for achieving functional CFTR correction from a single vector administration.


Asunto(s)
Adenoviridae/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/terapia , Elementos Transponibles de ADN/genética , Terapia Genética/métodos , Pulmón/metabolismo , Aerosoles/administración & dosificación , Aerosoles/farmacocinética , Animales , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Vectores Genéticos/farmacocinética , Fenotipo , Mucosa Respiratoria/metabolismo , Porcinos , Distribución Tisular , Resultado del Tratamiento
3.
Am J Respir Cell Mol Biol ; 61(6): 747-754, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31184507

RESUMEN

Cystic fibrosis is an autosomal-recessive disease that is caused by a mutant CFTR (cystic fibrosis transmembrane conductance regulator) gene and is characterized by chronic bacterial lung infections and inflammation. Complementation with functional CFTR normalizes anion transport across the airway surface. Adeno-associated virus (AAV) is a useful vector for gene therapy because of its low immunogenicity and ability to persist for months to years. However, because its episomal expression may decrease after cell division, readministration of the AAV vector may be required. To overcome this, we designed an integrating AAV-based CFTR-expressing vector, termed piggyBac (PB)/AAV, carrying CFTR flanked by the terminal repeats of the piggyBac transposon. With codelivery of the piggyBac transposase, PB/AAV can integrate into the host genome. Because of the packaging constraints of AAV, careful consideration was required to ensure that the vector would package and express its CFTR cDNA cargo. In this short-term study, PB/AAV-CFTR was aerosolized to the airways of CF pigs in the absence of the transposase. Two weeks later, transepithelial Cl- current was restored in freshly excised tracheal and bronchial tissue. Additionally, we observed an increase in tracheal airway surface liquid pH and bacterial killing in comparison with untreated CF pigs. Airway surface liquid from primary airway cells cultured from treated CF pigs exhibited increased pH correlating with decreased viscosity. Together, these results show that complementing CFTR in CF pigs with PB/AAV rescues the anion transport defect in a large-animal CF model. Delivery of this integrating viral vector system to airway progenitor cells could lead to persistent, life-long expression in vivo.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Fibrosis Quística/terapia , Dependovirus/genética , Terapia Genética , Vectores Genéticos/uso terapéutico , Animales , Animales Recién Nacidos , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Elementos Transponibles de ADN , Técnicas de Inactivación de Genes , Genes Sintéticos , Humanos , Regiones Promotoras Genéticas , Staphylococcus aureus , Porcinos , Tráquea/metabolismo , Tráquea/microbiología , Integración Viral
6.
Perspect Biol Med ; 54(3): 316-31, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21857124

RESUMEN

In 1989 the gene that causes cystic fibrosis (CF) was identified in a search accompanied by intense anticipation that the gene, once discovered, would lead rapidly to gene therapy. Many hoped that the disease would effectively disappear. Those affected were going to inhale vectors packed with functioning genes, which would go immediately to work in the lungs. It was a bewitching image, repeatedly invoked in both scientific and popular texts. Gene therapy clinical trials were carried out with a range of strategies and occasionally success seemed close, but by 1996 the idea that gene therapy for CF would quickly provide a cure was being abandoned by the communities engaged with treatment and research. While conventional wisdom holds that the death of Jesse Gelsinger in an unrelated gene therapy trial in 1999 produced new skepticism about gene therapy, the CF story suggests a different trajectory, and some different lessons. This article considers the rise and fall of gene therapy for CF and suggests that CF may provide a particularly compelling case study of a failed genomic technology, perhaps even of a medical "canary." The story of CF might be a kind of warning to us that genetic medicine may create as many problems as it solves, and that moving forward constructively with these techniques and practices requires many kinds of right information, not just about biology, but also about values, priorities, market forces, uncertainty, and consumer choice.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Fibrosis Quística/terapia , Terapia Genética/historia , Adenoviridae/genética , Adenoviridae/metabolismo , Ensayos Clínicos como Asunto , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Mutación
7.
Cells ; 10(5)2021 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923029

RESUMEN

Cystic fibrosis (CF) is caused by genetic mutations of the CF transmembrane conductance regulator (CFTR), leading to disrupted transport of Cl- and bicarbonate and CF lung disease featuring bacterial colonization and chronic infection in conducting airways. CF pigs engineered by mutating CFTR develop lung disease that mimics human CF, and are well-suited for investigating CF lung disease therapeutics. Clinical data suggest small airways play a key role in the early pathogenesis of CF lung disease, but few preclinical studies have focused on small airways. Efficient targeted delivery of CFTR cDNA to small airway epithelium may correct the CFTR defect and prevent lung infections. Adeno-associated virus 4 (AAV4) is a natural AAV serotype and a safe vector with lower immunogenicity than other gene therapy vectors such as adenovirus. Our analysis of AAV natural serotypes using cultured primary pig airway epithelia showed that AAV4 has high tropism for airway epithelia and higher transduction efficiency for small airways compared with large airways. AAV4 mediated the delivery of CFTR, and corrected Cl- transport in cultured primary small airway epithelia from CF pigs. Moreover, AAV4 was superior to all other natural AAV serotypes in transducing ITGα6ß4+ pig distal lung progenitor cells. In addition, AAV4 encoding eGFP can infect pig distal lung epithelia in vivo. This study demonstrates AAV4 tropism in small airway progenitor cells, which it efficiently transduces. AAV4 offers a novel tool for mechanistical study of the role of small airway in CF lung pathogenesis in a preclinical large animal model.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Fibrosis Quística/terapia , Dependovirus/genética , Vectores Genéticos/administración & dosificación , Pulmón/metabolismo , Mucosa Respiratoria/metabolismo , Células Madre/metabolismo , Animales , Células Cultivadas , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Vectores Genéticos/genética , Humanos , Porcinos
8.
Lancet Respir Med ; 8(1): 65-124, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31570318

RESUMEN

The past six decades have seen remarkable improvements in health outcomes for people with cystic fibrosis, which was once a fatal disease of infants and young children. However, although life expectancy for people with cystic fibrosis has increased substantially, the disease continues to limit survival and quality of life, and results in a large burden of care for people with cystic fibrosis and their families. Furthermore, epidemiological studies in the past two decades have shown that cystic fibrosis occurs and is more frequent than was previously thought in populations of non-European descent, and the disease is now recognised in many regions of the world. The Lancet Respiratory Medicine Commission on the future of cystic fibrosis care was established at a time of great change in the clinical care of people with the disease, with a growing population of adult patients, widespread genetic testing supporting the diagnosis of cystic fibrosis, and the development of therapies targeting defects in the cystic fibrosis transmembrane conductance regulator (CFTR), which are likely to affect the natural trajectory of the disease. The aim of the Commission was to bring to the attention of patients, health-care professionals, researchers, funders, service providers, and policy makers the various challenges associated with the changing landscape of cystic fibrosis care and the opportunities available for progress, providing a blueprint for the future of cystic fibrosis care. The discovery of the CFTR gene in the late 1980s triggered a surge of basic research that enhanced understanding of the pathophysiology and the genotype-phenotype relationships of this clinically variable disease. Until recently, available treatments could only control symptoms and restrict the complications of cystic fibrosis, but advances in CFTR modulator therapies to address the basic defect of cystic fibrosis have been remarkable and the field is evolving rapidly. However, CFTR modulators approved for use to date are highly expensive, which has prompted questions about the affordability of new treatments and served to emphasise the considerable gap in health outcomes for patients with cystic fibrosis between high-income countries, and low-income and middle-income countries (LMICs). Advances in clinical care have been multifaceted and include earlier diagnosis through the implementation of newborn screening programmes, formalised airway clearance therapy, and reduced malnutrition through the use of effective pancreatic enzyme replacement and a high-energy, high-protein diet. Centre-based care has become the norm in high-income countries, allowing patients to benefit from the skills of expert members of multidisciplinary teams. Pharmacological interventions to address respiratory manifestations now include drugs that target airway mucus and airway surface liquid hydration, and antimicrobial therapies such as antibiotic eradication treatment in early-stage infections and protocols for maintenance therapy of chronic infections. Despite the recent breakthrough with CFTR modulators for cystic fibrosis, the development of novel mucolytic, anti-inflammatory, and anti-infective therapies is likely to remain important, especially for patients with more advanced stages of lung disease. As the median age of patients with cystic fibrosis increases, with a rapid increase in the population of adults living with the disease, complications of cystic fibrosis are becoming increasingly common. Steps need to be taken to ensure that enough highly qualified professionals are present in cystic fibrosis centres to meet the needs of ageing patients, and new technologies need to be adopted to support communication between patients and health-care providers. In considering the future of cystic fibrosis care, the Commission focused on five key areas, which are discussed in this report: the changing epidemiology of cystic fibrosis (section 1); future challenges of clinical care and its delivery (section 2); the building of cystic fibrosis care globally (section 3); novel therapeutics (section 4); and patient engagement (section 5). In panel 1, we summarise key messages of the Commission. The challenges faced by all stakeholders in building and developing cystic fibrosis care globally are substantial, but many opportunities exist for improved care and health outcomes for patients in countries with established cystic fibrosis care programmes, and in LMICs where integrated multidisciplinary care is not available and resources are lacking at present. A concerted effort is needed to ensure that all patients with cystic fibrosis have access to high-quality health care in the future.


Asunto(s)
Fibrosis Quística/terapia , Atención a la Salud/tendencias , Progresión de la Enfermedad , Calidad de Vida , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Terapia Genética/métodos , Salud Global , Humanos , Trasplante de Pulmón/métodos
9.
Genes (Basel) ; 11(4)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-32224868

RESUMEN

Extracellular vesicles (EVs) are a class of naturally occurring secreted cellular bodies that are involved in long distance cell-to-cell communication. Proteins, lipids, mRNA, and miRNA can be packaged into these vesicles and released from the cell. This information is then delivered to target cells. Since EVs are naturally adapted molecular messengers, they have emerged as an innovative, inexpensive, and robust method to deliver therapeutic cargo in vitro and in vivo. Well-differentiated primary cultures of human airway epithelial cells (HAE) are refractory to standard transfection techniques. Indeed, common strategies used to overexpress or knockdown gene expression in immortalized cell lines simply have no detectable effect in HAE. Here we use EVs to efficiently deliver siRNA or protein to HAE. Furthermore, EVs can deliver CFTR protein to cystic fibrosis donor cells and functionally correct the Cl- channel defect in vitro. EV-mediated delivery of siRNA or proteins to HAE provides a powerful genetic tool in a model system that closely recapitulates the in vivo airways.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Células Epiteliales/metabolismo , Vesículas Extracelulares/química , Técnicas de Transferencia de Gen , ARN Interferente Pequeño/administración & dosificación , Sistema Respiratorio/metabolismo , Transporte Biológico , Comunicación Celular , Células Cultivadas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/citología , Prueba de Complementación Genética , Humanos , Activación del Canal Iónico , ARN Interferente Pequeño/genética , Sistema Respiratorio/citología
10.
Respir Physiol Neurobiol ; 273: 103338, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31726235

RESUMEN

OBJECTIVE: The beneficial role of Cystic fibrosis transmembrane conductance regulator (CFTR) was reported in acute lung injury (ALI), however, there was no direct evidence supporting the relationship between CFTR and cell autophagy in ALI. Here, this study is to analyze the protective role of CFTR on autophagy in lipopolysaccharide (LPS)-induced ALI mice and its special mechanism. METHODS: ALI mouse models were established by the stimulation of LPS. ALI mice were subjected to tail vein injection of Lv-CFTR, intraperitoneal injection of autophagy activator RAPA or tail vein injection of Lv-sh-HMGB1 before lung tissues and bronchoalveolar lavage fluid (BALF) were collected. The expression levels of CFTR, HMGB1, Beclin-1, p62, p-AKT, p-mTOR, and LC3-II/LC3-I ratio were estimated by qRT-PCR and Western blot. The lung edema in ALI mice was inspected by wet/dry weight (W/D) ratio. Hematoxylin and eosin (H&E) staining was utilized to observe pathological features of lung tissue. Immunofluorescence was applied to determine the expression intensity of LC-3. The superoxidase dismutase (SOD) and myeloperoxidase (MPO) activity and malondialdehyde (MDA) content were assayed, and inflammatory response in ALI mice was measured. RESULTS: ALI mouse models were successfully induced by LPS, evidenced by an enhanced inflammatory response in lung tissues, heightened W/D ratio and cell autophagy markers. ALI mice had suppressed expression of CFTR, while injection of CFTR overexpression in ALI mice attenuated inflammation, autophagy, MPO activity and MDA content in addition to elevating SOD activity. Moreover, CFTR overexpression could increase the p-AKT, and p-mTOR. Overexpression of HMGB1 could reverse the expression pattern in mice injected with CFTR overexpression. CONCLUSION: CFTR could inhibit cell autophagy by enhancing PI3K/AKT/mTOR signaling pathway, thereby playing a protective role in LPS-induced ALI in mice.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Autofagia/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/farmacología , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Modelos Animales de Enfermedad , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacología , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Sirolimus/farmacología
11.
Ther Adv Respir Dis ; 13: 1753466619844424, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31027466

RESUMEN

Years of tremendous study have dawned a new era for the treatment of cystic fibrosis (CF). For years CF care was rooted in the management of organ dysfunction resulting from the mal-effects of absent anion transport through the CF transmembrane regulator (CFTR) protein. CFTR, an adenosine triphosphate binding anion channel, has multiple functions, but primarily regulates the movement of chloride anions, thiocyanate and bicarbonate across luminal cell membranes. Additional roles include effects on other electrolyte channels such as the epithelial sodium channel (ENaC) and on pulmonary innate immunity. Inappropriate luminal anion movement leads to elevated sweat chloride concentrations, dehydrated airway surface liquid, overall viscous mucous production, and inspissated bile and pancreatic secretions. As a result, patients develop the well-known CF symptoms and disease-defining complications such as chronic cough, oily stools, recurrent pulmonary infections, bronchiectasis, chronic sinusitis and malnutrition. Traditionally, CF has been symptomatically managed, but over the past 6 years those with CF have been offered a new mode of therapy; CFTR protein modulation. These medications affect the basic defect in CF: abnormal CFTR function. Ivacaftor, approved for use in the United States in 2012, is the first medication in CF history to improve CFTR function at the molecular level. Its study and approval were followed by two additional CFTR modulators, lumacaftor/ivacaftor and tezacaftor/ivacaftor. To effectively use currently available CF therapies, clinicians should be familiar with the side effects of the drugs and their impacts on patient outcomes. As many new modulators are on the horizon, this information will equip providers to discuss the benefits and shortcomings of modulator therapy especially in the context of limited healthcare resources.


Asunto(s)
Aminofenoles/administración & dosificación , Benzodioxoles/administración & dosificación , Fibrosis Quística/tratamiento farmacológico , Indoles/administración & dosificación , Quinolonas/administración & dosificación , Aminofenoles/efectos adversos , Aminofenoles/farmacología , Animales , Benzodioxoles/efectos adversos , Benzodioxoles/farmacología , Agonistas de los Canales de Cloruro/administración & dosificación , Agonistas de los Canales de Cloruro/efectos adversos , Agonistas de los Canales de Cloruro/farmacología , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/farmacología , Combinación de Medicamentos , Humanos , Indoles/efectos adversos , Indoles/farmacología , Quinolonas/efectos adversos , Quinolonas/farmacología
12.
J Clin Invest ; 104(9): 1245-55, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10545523

RESUMEN

We sought to evaluate the ability of an E1(-), E3(-) adenovirus (Ad) vector (Ad(GV)CFTR.10) to transfer the normal human cystic fibrosis transmembrane conductance regulator (CFTR) cDNA to the airway epithelium of individuals with cystic fibrosis (CF). We administered Ad(GV)CFTR.10 at doses of 3 x 10(6) to 2 x 10(9) plaque-forming units over 9 months by endobronchial spray to 7 pairs of individuals with CF. Each 3-month cycle, we measured vector-derived versus endogenous CFTR mRNA in airway epithelial cells prior to therapy, as well as 3 and 30 days after therapy. The data demonstrate that (a) this strategy appears to be safe; (b) after the first administration, vector-derived CFTR cDNA expression in the CF airway epithelium is dose-dependent, with greater than 5% endogenous CFTR mRNA levels at the higher vector doses; (c) expression is transient, lasting less than 30 days; (d) expression can be achieved with a second administration, but only at intermediate doses, and no expression is observed with the third administration; and (e) the progressive lack of expression with repetitive administration does not closely correlate with induction of systemic anti-Ad neutralizing antibodies. The major advantage of an Ad vector is that it can deliver sufficient levels of CFTR cDNA to the airway epithelium so that CFTR expression protects the lungs from the respiratory manifestations of CF. However, this impressive level of expression is linked to the challenging fact that expression is limited in time. Although this can be initially overcome by repetitive administration, unknown mechanisms eventually limit this strategy, and further repetitive administration does not lead to repetitive expression.


Asunto(s)
Bronquios/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/terapia , Terapia Genética/métodos , Tráquea/metabolismo , Adenoviridae/genética , Adolescente , Adulto , Estudios de Cohortes , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , ADN Complementario/genética , Relación Dosis-Respuesta a Droga , Epitelio/metabolismo , Femenino , Vectores Genéticos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Modelos Genéticos , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Recombinación Genética , Factores de Tiempo
13.
Lancet Respir Med ; 3(9): 684-691, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149841

RESUMEN

BACKGROUND: Lung delivery of plasmid DNA encoding the CFTR gene complexed with a cationic liposome is a potential treatment option for patients with cystic fibrosis. We aimed to assess the efficacy of non-viral CFTR gene therapy in patients with cystic fibrosis. METHODS: We did this randomised, double-blind, placebo-controlled, phase 2b trial in two cystic fibrosis centres with patients recruited from 18 sites in the UK. Patients (aged ≥12 years) with a forced expiratory volume in 1 s (FEV1) of 50-90% predicted and any combination of CFTR mutations, were randomly assigned, via a computer-based randomisation system, to receive 5 mL of either nebulised pGM169/GL67A gene-liposome complex or 0.9% saline (placebo) every 28 days (plus or minus 5 days) for 1 year. Randomisation was stratified by % predicted FEV1 (<70 vs ≥70%), age (<18 vs ≥18 years), inclusion in the mechanistic substudy, and dosing site (London or Edinburgh). Participants and investigators were masked to treatment allocation. The primary endpoint was the relative change in % predicted FEV1. The primary analysis was per protocol. This trial is registered with ClinicalTrials.gov, number NCT01621867. FINDINGS: Between June 12, 2012, and June 24, 2013, we randomly assigned 140 patients to receive placebo (n=62) or pGM169/GL67A (n=78), of whom 116 (83%) patients comprised the per-protocol population. We noted a significant, albeit modest, treatment effect in the pGM169/GL67A group versus placebo at 12 months' follow-up (3.7%, 95% CI 0.1-7.3; p=0.046). This outcome was associated with a stabilisation of lung function in the pGM169/GL67A group compared with a decline in the placebo group. We recorded no significant difference in treatment-attributable adverse events between groups. INTERPRETATION: Monthly application of the pGM169/GL67A gene therapy formulation was associated with a significant, albeit modest, benefit in FEV1 compared with placebo at 1 year, indicating a stabilisation of lung function in the treatment group. Further improvements in efficacy and consistency of response to the current formulation are needed before gene therapy is suitable for clinical care; however, our findings should also encourage the rapid introduction of more potent gene transfer vectors into early phase trials. FUNDING: Medical Research Council/National Institute for Health Research Efficacy and Mechanism Evaluation Programme.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Terapia Genética/métodos , Plásmidos/administración & dosificación , Administración por Inhalación , Adolescente , Adulto , Niño , Fibrosis Quística/genética , Fibrosis Quística/fisiopatología , Método Doble Ciego , Femenino , Volumen Espiratorio Forzado/efectos de los fármacos , Humanos , Liposomas , Masculino , Mutación , Nebulizadores y Vaporizadores , Reino Unido , Adulto Joven
14.
Hum Gene Ther ; 8(4): 411-22, 1997 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-9054516

RESUMEN

In this study, the safety and efficacy of aerosol delivery to non-human primates of an adenoviral vector encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR) were evaluated. The technique of concurrent flow spirometry was used to determine the deposited dose of Ad2/CFTR-2, which ranged from 3 to 8 x 10(10) I.U. Transgene DNA was detected by the polymerase chain reaction (PCR) in lung tissue from all treated animals, and human CFTR mRNA was detected on days 3, 7, and 21 post-exposure. The treatment was well tolerated, with no evidence of respiratory distress. Histologic changes in the lungs from Ad2/CFTR-2-treated animals were mild and, overall, indistinguishable from animals exposed to aerosolized vehicle. One vector-treated animal demonstrated an increase in lavage lymphocyte numbers 3 days after treatment and another had an abnormal chest radiograph 14 days after treatment. A third vector-treated animal had histologic evidence of a bronchointerstitial pneumonia 7 days after aerosol treatment that resolved by day 21. This study demonstrated that Ad2/CFTR-2 can effectively be delivered to the lungs of nonhuman primates and result in minimal adverse effects.


Asunto(s)
Adenovirus Humanos/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Pulmón , Adenovirus Humanos/inmunología , Adulto , Aerosoles , Animales , Expresión Génica , Vectores Genéticos/genética , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Macaca mulatta/fisiología , Reacción en Cadena de la Polimerasa , ARN Mensajero/análisis , Radiografía , Transgenes
15.
Hum Gene Ther ; 15(12): 1255-69, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15684701

RESUMEN

A double-blind, dose escalation gene transfer trial was conducted in subjects with cystic fibrosis (CF), among whom placebo (saline) or compacted DNA was superfused onto the inferior turbinate of the right or left nostril. The vector consisted of single molecules of plasmid DNA carrying the cystic fibrosis transmembrane regulator- encoding gene compacted into DNA nanoparticles, using polyethylene glycol-substituted 30-mer lysine peptides. Entry criteria included age greater than 18 years, FEV1 exceeding 50% predicted, and basal nasal potential difference (NPD) isoproterenol responses (> or = -5 mV) that are typical for subjects with classic CF. Twelve subjects were enrolled: 2 in dose level I (DLI) (0.8 mg DNA), 4 in DLII (2.67 mg), and 6 in DLIII (8.0 mg). The primary trial end points were safety and tolerability, and secondary gene transfer end points were assessed. In addition to routine clinical assessments and laboratory tests, subjects were serially evaluated for serum IL-6, complement, and C-reactive protein; nasal washings were taken for cell counts, protein, IL-6, and IL-8; and pulmonary function and hearing tests were performed. No serious adverse events occurred, and no events were attributed to compacted DNA. There was no association of serum or nasal washing inflammatory mediators with administration of compacted DNA. Day 14 vector polymerase chain reaction analysis showed a mean value in DLIII nasal scraping samples of 0.58 copy per cell. Partial to complete NPD isoproterenol responses were observed in eight subjects: one of two in DLI, three of four in DLII, and four of six in DLIII. Corrections persisted for as long as 6 days (1 subject to day 28) after gene transfer. In conclusion, compacted DNA nanoparticles can be safely administered to the nares of CF subjects, with evidence of vector gene transfer and partial NPD correction.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , ADN/genética , Técnicas de Transferencia de Gen , Nanoestructuras/química , Mucosa Nasal/metabolismo , Administración Intranasal , Proteína C-Reactiva/análisis , Protocolos Clínicos , Proteínas del Sistema Complemento/análisis , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos adversos , Método Doble Ciego , Terapia Genética/métodos , Vectores Genéticos , Interleucina-6/sangre , Líquido del Lavado Nasal , Reacción en Cadena de la Polimerasa , Factores de Tiempo
16.
Hum Gene Ther ; 12(11): 1369-82, 2001 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-11485629

RESUMEN

Cystic fibrosis (CF), an autosomal recessive disorder resulting from mutations in the cystic fibrosis trans-membrane conductance regulator (CFTR) gene, is the most common lethal genetic illness in the Caucasian population. Gene transfer to airway epithelium, using adenoviruses containing normal CFTR cDNA, leads to transient production of CFTR mRNA and, in some studies, to correction of the airway epithelial ion transport defect caused by dysfunctional CFTR. Inflammatory responses to the adenoviral vector have been reported, particularly at high viral titers. We evaluated the effects of adenovirus-mediated CFTR gene transfer to airway epithelium in 36 subjects with CF (34 individuals, 2 of whom received two separate doses of vector), 20 by lobar instillation and 16 by aerosol administration. Doses ranged from 8 x 10(6) to 2.5 x 10(10) infective units (IU), in 0.5-log increments. After lobar administration of low doses there were occasional reports of cough, low-grade temperature, and myalgias. At the highest lobar dose (2.5 x 10(9) IU) two of three patients had transient myalgias, fever, and increased sputum production with obvious infiltrates on CT scan. After aerosol administration there were no significant systemic symptoms until the 2.5 x 10(10) IU dose, when both patients experienced myalgias and fever that resolved within 24 hr. There were no infiltrates seen on chest CT scans in any of the patients in the aerosol administration group. There were no consistent changes in pulmonary function tests or any significant rise in serum IgG or neutralizing antibodies in patients from either group. Serum, sputum, and nasal cytokines, measured before and after vector administration, showed no correlation with adenoviral dose. Gene transfer to lung cells was inefficient and expression was transient. Cells infected with the vector included mononuclear inflammatory cells as well as cuboidal and columnar epithelial cells. In summary, we found no consistent immune response, no evidence of viral shedding, and no consistent change in pulmonary function in response to adenovirus-mediated CFTR gene transfer. At higher doses there was a mild, nonspecific inflammatory response, as evidenced by fevers and myalgias. Overall, vector administration was tolerated but transfer of CFTR cDNA was inefficient and transgene expression was transient for the doses and method of administration used here.


Asunto(s)
Adenoviridae/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/terapia , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Administración por Inhalación , Adolescente , Adulto , Broncoscopía , Fibrosis Quística/diagnóstico por imagen , Fibrosis Quística/virología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , ADN Recombinante/administración & dosificación , ADN Recombinante/genética , Femenino , Terapia Genética/efectos adversos , Humanos , Inflamación/etiología , Pulmón/inmunología , Pulmón/virología , Masculino , Mucosa Respiratoria/citología , Tomografía Computarizada por Rayos X
17.
Hum Gene Ther ; 9(4): 521-8, 1998 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-9525313

RESUMEN

Cystic Fibrosis (CF) is caused by mutations in the CF gene that lead, for the most part, to mislocalization of the protein product, the cystic fibrosis transmembrane conductance regulatory (CFTR). CFTR is a chloride channel normally situated in the apical membrane of epithelial cells where it contributes to transepithelial ion transport. In this study we demonstrated the feasibility of in vivo transfer of purified CFTR protein via phospholipid liposomes into the apical membrane of nasal epithelia of CFTR knockout mice. Membrane incorporation of immunogold-labeled CFTR could be visualized by electron microscopy and correction of CF-related defects in ion transport measured by nasal potential difference (PD) measurements in about one-third of the animals treated. Although these initial results are promising, effectiveness of this therapeutic approach appears to be limited by the inefficient incorporation of CFTR into the apical epithelial cell membrane.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Fibrosis Quística/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Amilorida/farmacología , Animales , Membrana Celular/química , Permeabilidad de la Membrana Celular , Cloruros/metabolismo , Fibrosis Quística/fisiopatología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/análisis , Regulador de Conductancia de Transmembrana de Fibrosis Quística/inmunología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Portadores de Fármacos , Epitelio/química , Epitelio/inmunología , Transporte Iónico , Liposomas , Potenciales de la Membrana , Ratones , Ratones Noqueados , Mucosa Nasal/química , Mucosa Nasal/fisiología , Neutrófilos , Fosfolípidos , Proteolípidos
18.
Hum Gene Ther ; 9(2): 249-69, 1998 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-9472784

RESUMEN

UNLABELLED: GTAB1001: A Double-Blind, Placebo Controlled, Dose Ranging Study to Evaluate the Safety and Biological Efficacy of the Lipid-DNA Complex GR213487B in the Nasal Epithelium of Adult Patients with Cystic Fibrosis. OBJECTIVES: To evaluate the effectiveness of various dosages of the lipid-DNA complex GR213487B (0.4375mg and either 4.0mg or 0.0625mg) for producing CFTR gene transfer and correcting the chloride ion transport defect in the nasal epithelium of patients with cystic fibrosis. To assess the safety and tolerability of the lipid-DNA complex GR213487B when applied to the nasal epithelium of patients with cystic fibrosis. DESIGN: Single-center, double-blind, placebo controlled, dose ranging study. DURATION: Pre-treatment evaluations will be performed during two outpatient study visits (ie. between Day -7 to -3 and at Day -2). Patients will be admitted to the Clinical Research Unit (CRU) at the University of North Carolina at Chapel Hill on Day -1 for additional pre-treatment evaluations performed the day prior to administration of double-blind treatment (ie. gene transfer) on Treatment Day 0. Patients will remain in the CRU for 7 days (Day -1 to Day 6) and will be discharged on Day 6. Patients will subsequently be followed on an outpatient basis but will return for another assessment between Days 9-11, and may also return to the CRU for two optional study visits on Days 14 and 21. All patients will return to the CRU on an out-patient basis for follow-up evaluations on Day 28 +/- 3. SETTING: Patients will receive in-patient treatment in the CRU at the University of North Carolina at Chapel Hill and will remain in the CRU for 7 days. PATIENTS: A target enrollment of 12 evaluable patients is planned. STUDY TREATMENTS: Patients who meet all entry criteria will complete pre-treatment assessments, which will take place between Day -7 to Day -1, and will serve as a baseline for specific evaluations and to ensure clinical stability. Patients will return on Day -1 for admission to the CRU the day prior to gene transfer. Each nostril of the patients will be randomly assigned in a double blind manner to receive either GR213487B liquid nasal spray or the lipid alone (ie. control administered as liposome), by topical application directed at the inferior turbinate. The first four patients will receive an initial dosage of GR213487B containing 0.4375 mg of DNA. The decision to proceed to administer a higher dose (ie. 4.0mg DNA) or a lower dose (ie. 0.0625mg DNA) in the subsequent eight patients will be determined by the Principal Investigator in association with an FDA officer serving as an independent Clinical Ombudsman, according to the study plan (see Section 5.5 and Appendix 3-Dosing Flow Chart). MEASUREMENTS: Efficacy Evaluations The primary variables to determine the efficacy of transgene expression will be: * Evidence of vector derived CFTR (cystic fibrosis transmembrane conductance regulator) mRNA, as measured by reverse transcriptase polymerase chain reaction (RT-PCR) in nasal epithelial cells obtained from nasal scrapes on Day 3 and, nasal biopsies on Day 5, if sufficient tissue is available. * Correction of chloride ion transport across the nasal epithelium as measured by the transepithelial electrical potential difference (TEPD). The baseline TEPD will initially be measured, and again subsequently following perfusion of: --zero chloride perfusion containing amiloride (to induce chloride secretion) --zero chloride perfusion containing amiloride and isoproterenol (to increase cAMP-mediated chloride secretion) Secondary measures to determine the efficacy of gene transfer will be: * Evidence of delivery of plasmid DNA in the nasal lavage (Day 1-5, Day 9-11 and Day 28) * Evidence of vector derived CFTR mRNA from nasal scrapes performed after the nasal biopsy (ie. Day 9-11 and/or Day 28) * Percentage of cells from nasal biopsies expressing vector derived CFTR mRNA as measured by in situ hybridization * Evidence of vector derived CFTR


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , ADN Recombinante/administración & dosificación , Técnicas de Transferencia de Gen , Liposomas/administración & dosificación , Mucosa Nasal/metabolismo , Adulto , Animales , Protocolos Clínicos , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos adversos , ADN Recombinante/efectos adversos , Método Doble Ciego , Esquema de Medicación , Epitelio/metabolismo , Femenino , Terapia Genética/métodos , Humanos , Liposomas/efectos adversos , Masculino , Selección de Paciente , Proyectos Piloto , Ratas
19.
Chest ; 125(2): 509-21, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14769732

RESUMEN

STUDY OBJECTIVES: The primary objective was to determine the safety and tolerability of repeated doses of aerosolized adeno-associated serotype 2 vector containing cystic fibrosis transmembrane conductance regulator (CFTR) complementary DNA (cDNA) [tgAAVCF], an adeno-associated virus (AAV) vector encoding the complete human CFTR cDNA. Secondary objectives included evaluation of pulmonary function assessed by spirometry, lung abnormalities by high-resolution CT (HRCT), airway cytokines, vector shedding, serum neutralizing antibody to AAV serotype 2 (AAV2), and gene transfer and expression in a subset of subjects undergoing bronchoscopy with bronchial brushings. DESIGN: Randomized, double-blind, placebo-controlled, phase II trial. SETTING: Eight cystic fibrosis (CF) centers in the United States. SUBJECTS: CF patients with mild lung disease, defined as FEV(1) > or =60% predicted. INTERVENTIONS: Subjects were randomized to inhale three aerosolized doses of 1 x 10(13) deoxyribonuclease-resistant particles of tgAAVCF or matching placebo at 30-day intervals using the Pari LC Plus nebulizer (PARI; Richmond, VA). MEASUREMENTS AND RESULTS: Of 42 subjects randomized, 20 subjects received at least one dose of tgAAVCF and 17 subjects received placebo. No difference in the pattern of adverse events or laboratory abnormalities was noted between the two treatment groups. Improvements in induced-sputum interleukin-8 (p = 0.03) and FEV(1) (p = 0.04) were observed at day 14 and day 30, respectively, in the group receiving tgAAVCF when compared to those receiving placebo. No significant differences in HRCT scans were noted. Vector shedding in sputum was observed at low levels up to 90 days after the third dose of vector. All subjects receiving tgAAVCF exhibited an increase (by at least fourfold) in serum AAV2-neutralizing antibodies and detectable levels in BAL fluid from five of six treated subjects undergoing BAL. Gene transfer but not gene expression was detected in a subset of six tgAAVCF subjects who underwent bronchoscopy. CONCLUSIONS: Repeat doses of aerosolized tgAAVCF were safe and well tolerated, and resulted in encouraging trends in improvement in pulmonary function in patients with CF and mild lung disease.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Fibrosis Quística/terapia , Terapia Genética/métodos , Administración por Inhalación , Adolescente , Adulto , Aerosoles/administración & dosificación , Análisis de Varianza , Broncoscopía , Niño , Fibrosis Quística/diagnóstico , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Esquema de Medicación , Femenino , Técnicas de Transferencia de Gen , Humanos , Masculino , Probabilidad , Pruebas de Función Respiratoria , Medición de Riesgo , Índice de Severidad de la Enfermedad , Estadísticas no Paramétricas , Resultado del Tratamiento
20.
J Aerosol Med ; 15(2): 229-35, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12184873

RESUMEN

Gene therapy by aerosol is an attractive approach for the treatment of cystic fibrosis (CF). Clinical trials with aerosols in CF patients have been conducted by five different groups, three using adenoviral vectors and two using cationic liposomes carrying the coding sequence for the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). These trials revealed that gene transfer from the lumen to the respiratory epithelium can currently be achieved in vivo, but only with low efficiency and for limited duration. Some of the many hurdles on the way to successful gene therapy for this disease will be discussed in this review. Innovative strategies need to be developed to reach this tantalizing goal.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/administración & dosificación , Fibrosis Quística/terapia , Terapia Genética/métodos , Adenoviridae , Aerosoles , Ensayos Clínicos como Asunto , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Liposomas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda