Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 2.795
Filtrar
1.
Mol Cell ; 79(5): 846-856.e8, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32755594

RESUMEN

Resveratrol is a natural product associated with wide-ranging effects in animal and cellular models, including lifespan extension. To identify the genetic target of resveratrol in human cells, we conducted genome-wide CRISPR-Cas9 screens to pinpoint genes that confer sensitivity or resistance to resveratrol. An extensive network of DNA damage response and replicative stress genes exhibited genetic interactions with resveratrol and its analog pterostilbene. These genetic profiles showed similarity to the response to hydroxyurea, an inhibitor of ribonucleotide reductase that causes replicative stress. Resveratrol, pterostilbene, and hydroxyurea caused similar depletion of nucleotide pools, inhibition of replication fork progression, and induction of replicative stress. The ability of resveratrol to inhibit cell proliferation and S phase transit was independent of the histone deacetylase sirtuin 1, which has been implicated in lifespan extension by resveratrol. These results establish that a primary impact of resveratrol on human cell proliferation is the induction of low-level replicative stress.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Resveratrol/farmacología , Sistemas CRISPR-Cas , Línea Celular , Resistencia a Medicamentos/genética , Humanos , Hidroxiurea/farmacología , Células Jurkat , Nucleótidos/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Sirtuina 1/metabolismo , Estilbenos/farmacología
2.
Cancer Metastasis Rev ; 43(1): 55-85, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37507626

RESUMEN

Despite tremendous medical treatment successes, colorectal cancer (CRC) remains a leading cause of cancer deaths worldwide. Chemotherapy as monotherapy can lead to significant side effects and chemoresistance that can be linked to several resistance-activating biological processes, including an increase in inflammation, cellular plasticity, multidrug resistance (MDR), inhibition of the sentinel gene p53, and apoptosis. As a consequence, tumor cells can escape the effectiveness of chemotherapeutic agents. This underscores the need for cross-target therapeutic approaches that are not only pharmacologically safe but also modulate multiple potent signaling pathways and sensitize cancer cells to overcome resistance to standard drugs. In recent years, scientists have been searching for natural compounds that can be used as chemosensitizers in addition to conventional medications for the synergistic treatment of CRC. Resveratrol, a natural polyphenolic phytoalexin found in various fruits and vegetables such as peanuts, berries, and red grapes, is one of the most effective natural chemopreventive agents. Abundant in vitro and in vivo studies have shown that resveratrol, in interaction with standard drugs, is an effective chemosensitizer for CRC cells to chemotherapeutic agents and thus prevents drug resistance by modulating multiple pathways, including transcription factors, epithelial-to-mesenchymal transition-plasticity, proliferation, metastasis, angiogenesis, cell cycle, and apoptosis. The ability of resveratrol to modify multiple subcellular pathways that may suppress cancer cell plasticity and reversal of chemoresistance are critical parameters for understanding its anti-cancer effects. In this review, we focus on the chemosensitizing properties of resveratrol in CRC and, thus, its potential importance as an additive to ongoing treatments.


Asunto(s)
Anticarcinógenos , Neoplasias Colorrectales , Estilbenos , Humanos , Resveratrol/farmacología , Resveratrol/uso terapéutico , Transducción de Señal , Factores de Transcripción , Anticarcinógenos/farmacología , Neoplasias Colorrectales/patología , Estilbenos/farmacología , Estilbenos/uso terapéutico
3.
J Physiol ; 602(8): 1835-1852, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38529522

RESUMEN

Acute kidney injury (AKI) often triggers physiological processes aimed at restoring renal function and architecture. However, this response can become maladaptive, leading to nephron loss and fibrosis. Although the therapeutic effects of resveratrol (RSV) are well established, its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. This study assessed whether transient administration of RSV following ischaemia-reperfusion injury (IRI) could prevent the progression to CKD. Forty-one male Wistar rats were assigned randomly to sham surgery, bilateral renal ischaemia for 30 min (IR) or IR+RSV. The RSV treatment commenced 24 h after IRI and continued for 10 days. The rats were studied for either 10 days or 5 months, after which kidney function and structure were evaluated. Mitochondrial homeostasis, oxidant defence and renal inflammation state were also evaluated. Despite having the same severity of AKI, rats receiving RSV for 10 days after IRI exhibited significant improvement in kidney histological injury and reduced inflammation, although renal haemodynamic recovery was less pronounced. Resveratrol effectively prevented the elevation of tubular injury-related molecules and profibrotic signalling with reduced myofibroblast proliferation. Furthermore, RSV substantially improved the antioxidant response and mitochondrial homeostasis. After 5 months, RSV prevented the transition to CKD, as evidenced by the prevention of progressive proteinuria, renal dysfunction and tubulointerstitial fibrosis. This study demonstrates that a brief treatment with RSV following IRI is enough to prevent maladaptive repair and the development of CKD. Our findings highlight the importance of the early days of reperfusion, indicating that maladaptive responses can be reduced effectively following severe AKI. KEY POINTS: Physiological processes activated after acute kidney injury (AKI) can lead to maladaptive responses, causing nephron loss and fibrosis. Prophylactic renoprotection with resveratrol (RSV) has been described in experimental AKI, but its impact after AKI and for subsequent chronic kidney disease (CKD) remains unclear. In this study, we found that histological tubular injury persists 10 days after ischaemia-reperfusion injury and contributes to a failed repair phenotype in proximal tubular cells. Short-term RSV intervention influenced the post-ischaemic repair response and accelerated tubular recovery by reducing oxidative stress and mitochondrial damage. Furthermore, RSV targeted inflammation and profibrotic signalling during the maladaptive response, normalizing both processes. Resveratrol effectively prevented AKI-to-CKD transition even 5 months after the intervention. The study serves as a proof of concept, proposing RSV as a valuable candidate for further translational clinical studies to mitigate AKI-to-CKD transition.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Daño por Reperfusión , Ratas , Masculino , Animales , Resveratrol/farmacología , Resveratrol/uso terapéutico , Ratas Wistar , Riñón/patología , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/patología , Inflamación/complicaciones , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/complicaciones , Fibrosis
4.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534100

RESUMEN

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Asunto(s)
Infecciones por Escherichia coli , Quinasa 1 de Adhesión Focal , Fenoles , Extractos Vegetales , Infecciones Urinarias , Escherichia coli Uropatógena , Animales , Femenino , Humanos , Ratones , Adhesión Bacteriana/efectos de los fármacos , Ácidos Cafeicos/farmacología , Catequina/farmacología , Catequina/análogos & derivados , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Fenoles/farmacología , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/farmacología , Resveratrol/farmacología , Vejiga Urinaria/microbiología , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/patología , Infecciones Urinarias/microbiología , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos
5.
BMC Genomics ; 25(1): 514, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789922

RESUMEN

BACKGROUND: In aquaculture, sturgeons are generally maintained in the confined spaces, which not only hinders sturgeon movement, but also threatens their flesh quality that seriously concerned by aquaculture industry. As a typical antioxidant, resveratrol can improve the flesh quality of livestock and poultry. However, the mechanism of resveratrol's effect on the muscle of Siberian sturgeon is still unclear. RESULTS: In this study, the dietary resveratrol increased the myofiber diameter, the content of the amino acids, antioxidant capacity markers (CAT, LDH and SOD) levels and the expression levels of mTORC1 and MYH9 in muscle of Siberian sturgeon. Further transcriptome analysis displayed that ROS production-related pathways ("Oxidative phosphorylation" and "Chemical carcinogenes-reactive oxygen species") were enriched in KEGG analysis, and the expression levels of genes related to the production of ROS (COX4, COX6A, ATPeF1A, etc.) in mitochondria were significantly down-regulated, while the expression levels of genes related to scavenging ROS (SOD1) were up-regulated. CONCLUSIONS: In summary, this study reveals that resveratrol may promote the flesh quality of Siberian sturgeon probably by enhancing myofiber growth, nutritional value and the antioxidant capacity of muscle, which has certain reference significance for the development of a new type of feed for Siberian sturgeon.


Asunto(s)
Antioxidantes , Peces , Resveratrol , Animales , Resveratrol/farmacología , Peces/metabolismo , Peces/crecimiento & desarrollo , Peces/genética , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nutrientes/metabolismo , Alimentación Animal/análisis , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/citología , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Dieta/veterinaria , Perfilación de la Expresión Génica
6.
Am J Physiol Endocrinol Metab ; 326(3): E398-E406, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324260

RESUMEN

Resveratrol, a natural polyphenol compound contained in numerous plants, has been proposed as a treatment for obesity-related disease processes such as insulin resistance. However, in humans there are conflicting results concerning the efficacy of resveratrol in improving insulin action; the purpose of the present study was to determine whether obesity status (lean, severely obese) affects the response to resveratrol in human skeletal muscle. Primary skeletal muscle cells were derived from biopsies obtained from age-matched lean and insulin-resistant women with severe obesity and incubated with resveratrol (1 µM) for 24 h. Insulin-stimulated glucose oxidation and incorporation into glycogen, insulin signal transduction, and energy-sensitive protein targets [AMP-activated protein kinase (AMPK), Sirt1, and PGC1α] were analyzed. Insulin-stimulated glycogen synthesis, glucose oxidation, and AMPK phosphorylation increased with resveratrol incubation compared with the nonresveratrol conditions (main treatment effect for resveratrol). Resveratrol further increased IRS1, Akt, and TBC1D4 insulin-stimulated phosphorylation and SIRT1 content in myotubes from lean women, but not in women with severe obesity. Resveratrol improves insulin action in primary human skeletal myotubes derived from lean women and women with severe obesity. In women with obesity, these improvements may be associated with enhanced AMPK phosphorylation with resveratrol treatment.NEW & NOTEWORTHY A physiologically relevant dose of resveratrol increases insulin-stimulated glucose oxidation and glycogen synthesis in myotubes from individuals with severe obesity. Furthermore, resveratrol improved insulin signal transduction in myotubes from lean individuals but not from individuals with obesity. Activation of AMPK plays a role in resveratrol-induced improvements in glucose metabolism in individuals with severe obesity.


Asunto(s)
Resistencia a la Insulina , Obesidad Mórbida , Humanos , Femenino , Obesidad Mórbida/metabolismo , Resveratrol/farmacología , Sirtuina 1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Obesidad/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Insulina/farmacología , Insulina/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Glucógeno/metabolismo
7.
Biochem Biophys Res Commun ; 692: 149338, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043156

RESUMEN

Resveratrol is involved in regulating ferroptosis, but its role in Endometriosis (EMS) is not clear. In this study, we aim to investigate the effect of ferroptosis and resveratrol intervention in the pathogenesis of EMS cyst. Cell proliferation, migration, and oxidative stress level were analyzed. The interaction of miR-21-3p and p53 was analyzed by dual luciferase assay. The interaction between p53 and SLC7A11 were analyzed by chromatin immunoprecipitation (CHIP). The miR-21-3p, GPX4, ACSL4, FTH1, p53, SLC7A11, Ptgs2 and Chac1 expression were analyzed by RT-qPCR or Western blot. The Fe3+ deposition and miR-21-3p, GPX4, FTH1 and SLC7A11 expressions were increased, and ACSL4, p53, Ptgs2 and Chac1 expression were decreased in EMS patients. Resveratrol inhibited migration, induced Ptgs2 and Chac1 expression in EESCs. Overexpression of miR-21-3p inhibited p53, Ptgs2 and Chac1 expression, and promoted SLC7A11 expression, which was reversed by resveratrol. miR-21-3p bound to p53, which interacted with SLC7A11. Resveratrol promoted Ptgs2 and Chac1 expression in the sh-p53 EESCs. Resveratrol reduced miR-21-3p and SLC7A11 expressions, and increased p53, Ptgs2 and Chac1 expressions, and Fe3+ deposition in the lesion tissues of EMS mice, which were reversed by miR-21-3p mimics. Resveratrol activated p53/SLC7A11 pathway by down-regulating miR-21-3p to promote ferroptosis and prevent the development of EMS.


Asunto(s)
Endometriosis , Ferroptosis , MicroARNs , Femenino , Humanos , Animales , Ratones , Ciclooxigenasa 2/genética , Endometriosis/genética , Resveratrol/farmacología , Proteína p53 Supresora de Tumor/genética , Transducción de Señal , MicroARNs/genética , Sistema de Transporte de Aminoácidos y+/genética
8.
Biochem Biophys Res Commun ; 705: 149756, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38460440

RESUMEN

Exacerbated expression of TLR4 protein (foremost pattern recognition receptor) during obesity could trigger NF-κB/iNOS signaling through linker protein (MyD88), predisposed to an indispensable inflammatory response. The induction of this detrimental cascade leads to myocardial and vascular abnormalities. Molecular docking was studied for protein-ligand interaction between these potential targets and resveratrol. The pre-treatment of resveratrol (20 mg/kg/p.o/per day for ten weeks) was given to investigate the therapeutic effect against HFD-induced obesity and associated vascular endothelial dysfunction (VED) and myocardial infarction (MI) in Wistar rats. In addition to accessing the levels of serum biomarkers for VED and MI, oxidative stress, inflammatory cytokines, and histopathology of these tissues were investigated. Lipopolysaccharide (for receptor activation) and protein expression analysis were introduced to explore the mechanistic involvement of TLR4/MyD88/NF-κB/iNOS signaling. Assessment of in-silico analysis showed significant interaction between protein and ligand. The involvement of this proposed signaling (TLR4/MyD88/NF-κB/iNOS) was further endorsed by the impact of lipopolysaccharide and protein expression analysis in obese and treated rats. Moreover, resveratrol pre-treated rats showed significantly lowered cardio and vascular damage measured by the distinct down expression of the TLR4/MyD88/NF-κB/iNOS pathway by resveratrol treatment endorses its ameliorative effect against VED and MI.


Asunto(s)
Infarto del Miocardio , Estilbenos , Ratas , Animales , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Resveratrol/farmacología , Estilbenos/farmacología , Estilbenos/uso terapéutico , Lipopolisacáridos/farmacología , Ligandos , Simulación del Acoplamiento Molecular , Ratas Wistar , Infarto del Miocardio/tratamiento farmacológico , Dieta
9.
Biochem Biophys Res Commun ; 723: 150186, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830298

RESUMEN

The aim of this study was to investigate the anti-cancer effects of resveratrol (RES) against gastric cancer (GC) and explore the potential mechanisms. We first measured the anti-cancer effects of RES on GC cell lines (i.e. AGS and HGC-27). Then protein-protein interaction (PPI) network was constructed, followed by GO and KEGG analysis to screen the possible targets. Molecular docking analysis was given to visualize the pharmacological effects of RES on GC cell lines. For the in vivo experiments, xenograft tumor model was established, and Western blot analysis was performed to determine the expression of protein screened by network pharmacology. Our results showed that RES could promote the apoptosis of GC cells. Five hub targets were identified by network pharmacology, including AKT1, TP53, JUN, ESR1 and MAPK14. GO and KEGG analyses revealed the PI3K/Akt/P53 signaling pathway was the most related signaling pathway. Molecular docking analysis indicated that RES could form 3 hydrogen bonds with AKT1 and 3 hydrogen bonds with TP53. The inhibitory effects of RES on the proliferation and promoting effects of RES on the apoptosis of AGS and HGC-27 cells were significantly reversed when blocking the PI3K-Akt signaling pathway using the LY294002. In vivo results showed that RES induced significant decrease of tumor volume and tumor weight without changing the body weight, or inducing significant cytotoxicities. Western blot analysis proved that RES could induce down-regulation of p-Akt and up-regulation of P53 in vivo. In conclusion, RES showed anti-cancer effects in GC by regulating the PI3K/Akt/P53 signaling pathway.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Resveratrol , Neoplasias Gástricas , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol/farmacología , Transducción de Señal , Estilbenos/farmacología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/tratamiento farmacológico , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biochem Biophys Res Commun ; 730: 150337, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38986220

RESUMEN

The recent study delves into the role of both liraglutide and/or resveratrol on the nephropathic affection in rats treated with cyclosporine A (CsA). Rats were intoxicated with CsA (25 mg/kg) orally for 21 days and were supplemented with liraglutide (30 µg/kg) s/c daily and 20 mg/kg of resveratrol (20 mg/kg) orally. At the end of the experiment, serum samples and renal tissues were collected to determine renal damage markers, apoptotic markers, proinflammatory markers, and antioxidant status markers. Kidney function tests and antioxidant activity notably improved in the treated rats (CsA + Lir/CsA + Res/CsA + Lir + Res). Moreover, both Lir and/or Res enhanced Bcl-2 levels while down-regulating the Bax levels in rats treated with CsA. Interestingly, the immune-staining for tumor necrosis factor (TNF-α) was tested negative and mild positive in renal tissue of rats given Lir and/or Res while being treated with Cs A which indicated their anti-inflammatory effect that reduced the renal damage. The findings of this investigation revealed the ameliorative anti-inflammatory in addition to the antioxidant role of both liraglutide and resveratrol against the kidney damage caused due to CsA administration.


Asunto(s)
Antioxidantes , Apoptosis , Ciclosporina , Riñón , Liraglutida , Resveratrol , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Resveratrol/farmacología , Resveratrol/uso terapéutico , Ciclosporina/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Masculino , Ratas , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Biomarcadores/metabolismo , Biomarcadores/sangre , Ratas Wistar , Enfermedades Renales/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/patología , Enfermedades Renales/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
11.
Small ; 20(12): e2304433, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948437

RESUMEN

Age-related bone defects are a leading cause of disability and mortality in elderly individuals, and targeted therapy to delay the senescence of bone marrow-derived mesenchymal stem cells (MSCs) has emerged as a promising strategy to rejuvenate bone regeneration in aged scenarios. More specifically, activating the nicotinamide adenine dinucleotide (NAD+)-dependent sirtuin 1 (SIRT1) pathway is demonstrated to effectively counteract MSC senescence and thus promote osteogenesis. Herein, based on an inventively identified senescent MSC-specific surface marker Kremen1, a senescence-targeted and NAD+ dependent SIRT1 activated nanoplatform is fabricated with a dual delivery of resveratrol (RSV) (SIRT1 promoter) and nicotinamide riboside (NR, NAD+ precursor). This targeting nanoplatform exhibits a strong affinity for senescent MSCs through conjugation with anti-Kremen1 antibodies and enables specifically responsive release of NR and RSV in lysosomes via senescence-associated ß-galactosidase-stimulated enzymatic hydrolysis of the hydrophilic chain. Furthermore, this nanoplatform performs well in promoting aged bone formation both in vitro and in vivo by boosting NAD+, activating SIRT1, and delaying MSC senescence. For the first time, a novel senescent MSC-specific surface marker is identified and aged bone repair is rejuvenated by delaying senescence of MSCs using an active targeting platform. This discovery opens up new insights for nanotherapeutics aimed at age-related diseases.


Asunto(s)
NAD , Sirtuina 1 , Anciano , Humanos , Sirtuina 1/metabolismo , NAD/metabolismo , Senescencia Celular , Osteogénesis , Resveratrol/farmacología , Regeneración Ósea
12.
Mol Carcinog ; 63(5): 991-1008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38376345

RESUMEN

The worldwide incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have increased over the last decade. Moreover, molecular targets that may benefit the therapeutics of patients with ESCC have not been fully characterized. Our study discovered that thousand and one amino-acid protein kinase 1 (TAOK1) is highly expressed in ESCC tumor tissues and cell lines. Knock-down of TAOK1 suppresses ESCC cell proliferation in vitro and patient-derived xenograft or cell-derived xenograft tumors growth in vivo. Moreover, TAOK1 overexpression promotes ESCC growth in vitro and in vivo. Additionally, we identified that the natural small molecular compound resveratrol binds to TAOK1 directly and diminishes the kinase activity of TAOK1. Targeting TAOK1 directly with resveratrol significantly inhibits cell proliferation, induces cell cycle arrest and apoptosis, and suppresses tumor growth in ESCC. Furthermore, the silencing of TAOK1 or the application of resveratrol attenuated the activation of TAOK1 downstream signaling effectors. Interestingly, combining resveratrol with paclitaxel, cisplatin, or 5-fluorouracil synergistically enhanced their therapeutic effects against ESCC. In conclusion, this work illustrates the underlying oncogenic function of TAOK1 and provides a theoretical basis for the application of targeting TAOK1 therapy to the clinical treatment of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas Serina-Treonina Quinasas , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico
13.
J Transl Med ; 22(1): 457, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745204

RESUMEN

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Asunto(s)
Artritis Reumatoide , Fibrosis , Inflamación , Enfermedades Pulmonares Intersticiales , Canales de Potasio , Proteínas Proto-Oncogénicas c-akt , Resveratrol , Transducción de Señal , Animales , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Autofagia/efectos de los fármacos , Línea Celular , Inflamación/patología , Inflamación/tratamiento farmacológico , Pulmón/patología , Pulmón/efectos de los fármacos , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/complicaciones , Enfermedades Pulmonares Intersticiales/patología , Enfermedades Pulmonares Intersticiales/metabolismo , Proteínas de la Membrana/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resveratrol/farmacología , Resveratrol/uso terapéutico , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Ratones , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo
14.
Cytokine ; 179: 156626, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38678810

RESUMEN

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Asunto(s)
Antiinflamatorios , Aspergillus fumigatus , Queratitis , Lectinas Tipo C , Fármacos Neuroprotectores , Resveratrol , Proteínas Quinasas p38 Activadas por Mitógenos , Aspergillus fumigatus/efectos de los fármacos , Lectinas Tipo C/metabolismo , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Resveratrol/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Antiinflamatorios/farmacología , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/metabolismo , Antifúngicos/farmacología , Masculino , Transducción de Señal/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo
15.
Toxicol Appl Pharmacol ; 482: 116794, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142782

RESUMEN

Doxorubicin (Dox) is a widely used antitumor agent with dose-dependent and cumulative cardiotoxic effects. Resveratrol (Res) is a natural non-flavonoid polyphenol that can potentially provide cardiovascular benefits. We aimed to estimate the protective effect of Res on Dox-induced cardiotoxicity (DIC) and explore whether it was related to attenuating ferroptosis. We established DIC models in C57BL/6 J mice, H9C2 cardiomyoblasts, and neonatal rat cardiomyocytes (NRCMs). We further treated H9C2 cells with RSL3, a ferroptosis agonist, to investigate whether Res exerted protective effects through inhibiting ferroptosis. Ferrostatin-1 (Fer-1) was applied to suppress ferroptosis. Dox treatment caused cardiac dysfunction and resulted in apparent ferroptotic damage in cardiac tissue, involving increased iron accumulation, glutathione depletion, increased expression of ferroptosis-related proteins, and decreased expression of glutathione peroxidase 4, which were alleviated by Fer-1 and Res administration. These findings were also confirmed in Dox-treated H9C2 cells and NRCMs, with Fer-1 and Res effectively attenuating Dox-induced cytotoxicity and ferroptosis. Furthermore, Res protected H9C2 cells from RSL3-induced ferroptotic cell death, and the protective effect was similar to that of Fer-1. Both Dox and RSL3 treatment increased the phosphorylation levels of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinases; however, these changes were hindered by Res. This study demonstrates that Res effectively alleviates DIC by suppressing ferroptosis possibly through modulating the MAPK signaling pathway. Our results highlight that targeting ferroptosis can be a potential cardioprotective strategy for DIC.


Asunto(s)
Cardiotoxicidad , Ferroptosis , Ratones , Ratas , Animales , Resveratrol/farmacología , Cardiotoxicidad/patología , Apoptosis , Línea Celular , Ratones Endogámicos C57BL , Transducción de Señal , Doxorrubicina/farmacología , Miocitos Cardíacos , Estrés Oxidativo
16.
Toxicol Appl Pharmacol ; 484: 116882, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437956

RESUMEN

The role of O-linked N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) in the pathogenesis of inflammatory bowel disease (IBD) has been increasingly highlighted in recent studies. It's been reported that signal transducer and activator of transcription 3 (STAT3) O-GlcNAcylation can affect the activity of the Janus kinase2 (JAK2)/STAT3 pathway.Our recent study showed that resveratrol repairsIBDin mice.On this basis,the present study aimed to explore whether the mechanism of IBD repair by resveratrol is associated with STAT3 O-GlcNAcylation. Pretreatment of colitis mice and intestinal epithelial cells with an O-GlcNAcylation promoter (Thiamet G, or Glucosamine) and an O-GlcNAcylation inhibitor (OSMI-1) showed that increased O-GlcNAcylation promoted colitis in mice.The pro-inflammatory cytokines interleukin (IL) -6, IL-1ß, and tumor necrosis factor-α (TNF-α) were increased, while the anti-inflammatory cytokine IL-10 was decreased. Moreover, the downstream target proteins of JAK2/STAT3, cyclooxygenase-2 and nitric oxide synthase 2 were up-regulated, Resveratrol treatment mitigated the inflammation by decreasing JAK2/STAT3 activity, as well as STAT3 O-GlcNAcylation. Finally, the correlation between STAT3 glycosylation and phosphorylation in intestinal epithelial cells under the effect of resveratrol was investigated by Immunofluorescence co-localization and immunoprecipitation.The results showed that resveratrol inhibited STAT3 O-GlcNAcylation, thereby inhibiting its phosphorylation, reducing JAK2/STAT3 pathway activity, and alleviating IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Factor de Transcripción STAT3/metabolismo , Resveratrol/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/patología , Citocinas/metabolismo , Células Epiteliales/metabolismo , Janus Quinasa 2/metabolismo
17.
BMC Cancer ; 24(1): 566, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711004

RESUMEN

BACKGROUND: Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS: Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS: The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS: In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.


Asunto(s)
Proteína BRCA1 , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Regiones Promotoras Genéticas , Resveratrol , Neoplasias de la Mama Triple Negativas , Resveratrol/farmacología , Resveratrol/uso terapéutico , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico
18.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647675

RESUMEN

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Asunto(s)
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacología , Humanos , Resveratrol/farmacología , Resveratrol/química , Hongos/efectos de los fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Medicina Tradicional , Plantas/química
19.
J Neural Transm (Vienna) ; 131(8): 971-986, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874765

RESUMEN

Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phenol commonly found in grapes and wine, has been associated as protective in experimental models involving alterations in different neurotransmitter systems. However, studies are reporting that resveratrol could have adverse effects. This study evaluated if the association of a low dose of ketamine and resveratrol could induce behavioral manifestations associated with biochemical alterations. Moreover, the effects of treatment with resveratrol and/or ketamine on monoamine oxidase (MAO) activity, oxidative stress markers, and IL-6 levels in the brain were also investigated. Male Swiss mice received a low dose of ketamine (20 mg/kg) for 14 consecutive days, and resveratrol (10, 30, or 100 mg/kg) from day 8 up to day 14 of the experimental period, intraperitoneally. Locomotor, stereotyped behavior, Y-maze, novel recognition object test (NORT), and social interaction were quantified as well as ex vivo analysis of MAO activity, IL-6 levels, and oxidative stress markers (TBARS and total thiol levels) in brain tissues. Ketamine per se reduced the number of bouts of stereotyped behavior on day 8 of the experimental period. Resveratrol per se reduced the locomotor and exploratory activity in the open field, the time of exploration of new objects in the NORT, MAO-A activity in the striatum and increased the IL-6 levels in the cortex. These effects were attenuated when the mice were co-treated with ketamine and resveratrol. There was a decrease in MAO-A activity in the cortex of mice treated with ketamine + resveratrol 100 mg/kg. No significant alterations were found in oxidative stress markers. Resveratrol does not appear to cause summative effects with ketamine on behavioral alterations. However, the effect of resveratrol per se, mainly on locomotor and exploratory activity, should be better investigated.


Asunto(s)
Ketamina , Monoaminooxidasa , Estrés Oxidativo , Resveratrol , Animales , Resveratrol/farmacología , Resveratrol/administración & dosificación , Ketamina/farmacología , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Monoaminooxidasa/metabolismo , Monoaminooxidasa/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Conducta Exploratoria/efectos de los fármacos , Interleucina-6/metabolismo , Conducta Estereotipada/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/administración & dosificación , Interacción Social/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Actividad Motora/efectos de los fármacos
20.
Nutr Cancer ; 76(3): 236-251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38263604

RESUMEN

Leukemia is a heterogeneous clonal cancer that affects millions of individuals around the world. Despite substantial breakthroughs in cancer treatment, traditional chemotherapy and radiotherapy remain ineffective, and therapeutic resistance still stands as a big obstacle. As a result, there is an increasing attention being paid currently toward the potency of natural compounds as a complementary or alternative therapy for leukemia. Autophagy, a conserved cellular process where damaged or defective cytosolic components and macromolecules are destroyed and recycled, plays a dual role in promoting or suppressing the continuance of cancer at different junctures of its development. Current studies have reported that autophagy has a cardinal function in the genesis and progression of leukemia, making it a promising target for novel treatments. In this review, we have explored the effectiveness of certain natural compounds, such as curcumin, resveratrol, tanshinone IIA, quercetin, tetrandrine, parthenolide, berberine, pristimerin, and alantolactone, that modulate autophagy and regulate its associated signaling cascades at a molecular level in different types of leukemia. They have been shown to have synergistic effects with conventional chemotherapy, emphasizing their potential as supplementary medicines. However, additional research is required to fully comprehend their mechanisms of action and to maximize their role in clinical perspectives.


Asunto(s)
Leucemia , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Leucemia/tratamiento farmacológico , Transducción de Señal , Resveratrol/farmacología , Autofagia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda