Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 5.564
Filtrar
Más filtros

Colección SES
Publication year range
1.
Nature ; 600(7889): 456-461, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34912090

RESUMEN

Commercial chemicals are used extensively across urban centres worldwide1, posing a potential exposure risk to 4.2 billion people2. Harmful chemicals are often assessed on the basis of their environmental persistence, accumulation in biological organisms and toxic properties, under international and national initiatives such as the Stockholm Convention3. However, existing regulatory frameworks rely largely upon knowledge of the properties of the parent chemicals, with minimal consideration given to the products of their transformation in the atmosphere. This is mainly due to a dearth of experimental data, as identifying transformation products in complex mixtures of airborne chemicals is an immense analytical challenge4. Here we develop a new framework-combining laboratory and field experiments, advanced techniques for screening suspect chemicals, and in silico modelling-to assess the risks of airborne chemicals, while accounting for atmospheric chemical reactions. By applying this framework to organophosphate flame retardants, as representative chemicals of emerging concern5, we find that their transformation products are globally distributed across 18 megacities, representing a previously unrecognized exposure risk for the world's urban populations. More importantly, individual transformation products can be more toxic and up to an order-of-magnitude more persistent than the parent chemicals, such that the overall risks associated with the mixture of transformation products are also higher than those of the parent flame retardants. Together our results highlight the need to consider atmospheric transformations when assessing the risks of commercial chemicals.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente , Retardadores de Llama/efectos adversos , Sustancias Peligrosas/análisis , Internacionalidad , Organofosfatos/efectos adversos , Aire/análisis , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/envenenamiento , Animales , Bioacumulación , Ciudades/estadística & datos numéricos , Simulación por Computador , Ecosistema , Retardadores de Llama/análisis , Retardadores de Llama/envenenamiento , Sustancias Peligrosas/efectos adversos , Sustancias Peligrosas/química , Sustancias Peligrosas/envenenamiento , Humanos , Intoxicación por Organofosfatos , Organofosfatos/análisis , Organofosfatos/química , Medición de Riesgo
2.
Anal Chem ; 96(12): 4942-4951, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478960

RESUMEN

Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Humanos , Monitoreo del Ambiente , Organofosfatos/análisis , Polvo/análisis , Retardadores de Llama/análisis , Contaminación del Aire Interior/análisis , Halógenos , Dióxido de Silicio/análisis
3.
Langmuir ; 40(20): 10600-10614, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38721840

RESUMEN

Brominated flame retardants (BFRs) are small organic molecules containing several bromine substituents added to plastics to limit their flammability. BFRs can constitute up to 30% of the weight of some plastics, which is why they are produced in large quantities. Along with plastic waste and microplastic particles, BFRs end up in the soil and can easily leach causing contamination. As polyhalogenated molecules, multiple BFRs were classified as persistent organic pollutants (POPs), meaning that their biodegradation in the soils is especially challenging. However, some anaerobic bacteria as Dehaloccocoides can dehalogenate BFRs, which is important in the bioremediation of contaminated soils. BFRs are hydrophobic, can accumulate in plasma membranes, and disturb their function. On the other hand, limited membrane accumulation is necessary for BFR dehalogenation. To study the BFR-membrane interaction, we created membrane models of soil dehalogenating bacteria and tested their interactions with seven legacy and novel BFRs most common in soils. Phospholipid Langmuir monolayers with appropriate composition were used as membrane models. These membranes were doped in the selected BFRs, and the incorporation of BFR molecules into the phospholipid matrix and also the effects of BFR presence on membrane physical properties and morphology were studied. It turned out that the seven BFRs differed significantly in their membrane affinity. For some, the incorporation was very limited, and others incorporated effectively and could affect membrane properties, while one of the tested molecules induced the formation of bilayer domains in the membranes. Thus, Langmuir monolayers can be effectively used for pretesting BFR membrane activity.


Asunto(s)
Retardadores de Llama , Difracción de Rayos X , Retardadores de Llama/metabolismo , Halogenación , Membrana Celular/metabolismo , Membrana Celular/química
4.
Environ Sci Technol ; 58(20): 8825-8834, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712863

RESUMEN

Flame retardants (FRs) are added to vehicles to meet flammability standards, such as US Federal Motor Vehicle Safety Standard FMVSS 302. However, an understanding of which FRs are being used, sources in the vehicle, and implications for human exposure is lacking. US participants (n = 101) owning a vehicle of model year 2015 or newer hung a silicone passive sampler on their rearview mirror for 7 days. Fifty-one of 101 participants collected a foam sample from a vehicle seat. Organophosphate esters (OPEs) were the most frequently detected FR class in the passive samplers. Among these, tris(1-chloro-isopropyl) phosphate (TCIPP) had a 99% detection frequency and was measured at levels ranging from 0.2 to 11,600 ng/g of sampler. TCIPP was also the dominant FR detected in the vehicle seat foam. Sampler FR concentrations were significantly correlated with average ambient temperature and were 2-5 times higher in the summer compared to winter. The presence of TCIPP in foam resulted in ∼4 times higher median air sampler concentrations in winter and ∼9 times higher in summer. These results suggest that FRs used in vehicle interiors, such as in seat foam, are a source of OPE exposure, which is increased in warmer temperatures.


Asunto(s)
Retardadores de Llama , Retardadores de Llama/análisis , Humanos , Temperatura , Exposición a Riesgos Ambientales , Vehículos a Motor
5.
Environ Sci Technol ; 58(11): 4937-4947, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38446036

RESUMEN

Bis(2-ethylhexyl)-tetrabromophthalate (TBPH), a typical novel brominated flame retardant, has been ubiquitously identified in various environmental and biotic media. Consequently, there is an urgent need for precise risk assessment based on a comprehensive understanding of internal exposure and the corresponding toxic effects on specific tissues. In this study, we first investigated the toxicokinetic characteristics of TBPH in different tissues using the classical pseudo-first-order toxicokinetic model. We found that TBPH was prone to accumulate in the liver rather than in the gonad, brain, and muscle of both female and male zebrafish, highlighting a higher internal exposure risk for the liver. Furthermore, long-term exposure to TBPH at environmentally relevant concentrations led to increased visceral fat accumulation, signaling potential abnormal liver function. Hepatic transcriptome analysis predominantly implicated glycolipid metabolism pathways. However, alterations in the profile of associated genes and biochemical indicators revealed gender-specific responses following TBPH exposure. Besides, histopathological observations as well as the inflammatory response in the liver confirmed the development of nonalcoholic fatty liver disease, particularly in male zebrafish. Altogether, our findings highlight a higher internal exposure risk for the liver, enhancing our understanding of the gender-specific metabolic-disrupting potential associated with TBPH exposure.


Asunto(s)
Retardadores de Llama , Pez Cebra , Animales , Masculino , Femenino , Hígado/metabolismo , Metabolismo de los Lípidos , Retardadores de Llama/toxicidad , Retardadores de Llama/análisis
6.
Environ Sci Technol ; 58(9): 4381-4391, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38381810

RESUMEN

Organophosphate diesters (di-OPEs), as additives in industrial applications and/or transformation products of emerging environmental pollutants, such as organophosphate triesters (tri-OPEs), have been found in the environment and biological matrices. The metabolic fate of di-OPEs in biological media is of great significance for tracing the inherent and precursor toxicity variations. This is the first study to investigate the metabolism of a suite of di-OPEs by liver microsomes and to identify any metabolite of metabolizable di-OPEs in in vitro and in vivo samples. Of the 14 di-OPEs, 5 are significantly metabolizable, and their abundant metabolites with hydroxyl, carboxyl, dealkylated, carbonyl, and/or epoxide groups are tentatively identified. More than half of the di-OPEs are detectable in human serum and/or wild fish tissues, and dibenzyl phosphate (DBzP), bis(2,3-dibromopropyl) phosphate (BDBPP), and isopropyl diphenyl phosphate (ip-DPHP) are first reported at a detectable level in humans and wildlife. Using an in vitro assay and a known biotransformation rule-based integrated screening strategy, 2 and 10 suspected metabolite peaks of DEHP are found in human serum and wild fish samples, respectively, and are then identified as phase I and phase II metabolites of DEHP. This study provides a novel insight into fate and persistence of di-OPE and confirms the presence of di-OPE metabolites in humans and wildlife.


Asunto(s)
Dietilhexil Ftalato , Retardadores de Llama , Animales , Humanos , Organofosfatos , Retardadores de Llama/análisis , Ésteres , Biotransformación , Fosfatos , China , Monitoreo del Ambiente
7.
Environ Sci Technol ; 58(9): 4392-4403, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38362876

RESUMEN

Unraveling the mysterious pathways of pollutants to the deepest oceanic realms holds critical importance for assessing the integrity of remote marine ecosystems. This study tracks the transport of pollutants into the depths of the oceans, a key step in protecting the sanctity of these least explored ecosystems. By analyzing hadal trench samples from the Mariana, Mussau, and New Britain trenches, we found the widespread distribution of organophosphate ester (OPE) flame retardants but a complex transport pattern for the OPE in these regions. In the Mariana Trench seawater column, OPE concentrations range between 17.4 and 102 ng L-1, with peaks at depths of 500 and 4000 m, which may be linked to Equatorial Undercurrent and topographic Rossby waves, respectively. Sediments, particularly in Mariana (422 ng g-1 dw), showed high OPE affinity, likely due to organic matter serving as a transport medium, influenced by "solvent switching", "solvent depletion", and "filtering processes". Amphipods in the three trenches had consistent OPE levels (29.1-215 ng g-1 lipid weight), independent of the sediment pollution patterns. The OPEs in these amphipods appeared more linked to surface-dwelling organisms, suggesting the influence of "solvent depletion". This study highlights the need for an improved understanding of deep-sea pollutant sources and transport, urging the establishment of protective measures for these remote marine habitats.


Asunto(s)
Anfípodos , Contaminantes Ambientales , Retardadores de Llama , Animales , Ecosistema , Organofosfatos , Ésteres , Solventes
8.
Environ Sci Technol ; 58(9): 4127-4136, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38382014

RESUMEN

Tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) has come into use as an alternative to hexabromocyclododecane (HBCD), but it is unclear whether TBBPA-DBMPE has less hazard than HBCD. Here, we compared the bioaccumulation and male reproductive toxicity between TBBPA-DBMPE and HBCD in mice following long-term oral exposure after birth. We found that the concentrations of TBBPA-DBMPE in livers significantly increased with time, exhibiting a bioaccumulation potency not substantially different from HBCD. Lactational exposure to 1000 µg/kg/d TBBPA-DBMPE as well as 50 µg/kg/d HBCD inhibited testis development in suckling pups, and extended exposure up to adulthood resulted in significant molecular and cellular alterations in testes, with slighter effects of 50 µg/kg/d TBBPA-DBMPE. When exposure was extended to 8 month age, severe reproductive impairments including reduced sperm count, increased abnormal sperm, and subfertility occurred in all treated animals, although 50 µg/kg/d TBBPA-DBMPE exerted lower effects than 50 µg/kg/d HBCD. Altogether, all data led us to conclude that TBBPA-DBMPE exerted weaker male reproductive toxicity than HBCD at the same doses but exhibited bioaccumulation potential roughly equivalent to HBCD. Our study fills the data gap regarding the bioaccumulation and toxicity of TBBPA-DBMPE and raises concerns about its use as an alternative to HBCD.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Bifenilos Polibrominados , Masculino , Animales , Ratones , Retardadores de Llama/toxicidad , Éter , Bioacumulación , Semen , Hidrocarburos Bromados/toxicidad , Bifenilos Polibrominados/toxicidad , Éteres , Éteres de Etila
9.
Environ Sci Technol ; 58(19): 8417-8431, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701378

RESUMEN

This study evaluated workers' exposures to flame retardants, including polybrominated diphenyl ethers (PBDEs), organophosphate esters (OPEs), and other brominated flame retardants (BFRs), in various industries. The study aimed to characterize OPE metabolite urinary concentrations and PBDE serum concentrations among workers from different industries, compare these concentrations between industries and the general population, and evaluate the likely route of exposure (dermal or inhalation). The results showed that workers from chemical manufacturing had significantly higher (p <0.05) urinary concentrations of OPE metabolites compared to other industries. Spray polyurethane foam workers had significantly higher (p <0.05) urinary concentrations of bis(1-chloro-2-propyl) phosphate (BCPP) compared to other industries. Electronic scrap workers had higher serum concentrations of certain PBDE congeners compared to the general population. Correlations were observed between hand wipe samples and air samples containing specific flame-retardant parent chemicals and urinary metabolite concentrations for some industries, suggesting both dermal absorption and inhalation as primary routes of exposure for OPEs. Overall, this study provides insights into occupational exposure to flame retardants in different industries and highlights the need for further research on emerging flame retardants and exposure reduction interventions.


Asunto(s)
Biomarcadores , Retardadores de Llama , Éteres Difenilos Halogenados , Exposición Profesional , Organofosfatos , Retardadores de Llama/metabolismo , Humanos , Exposición por Inhalación , Adulto , Masculino , Piel/metabolismo , Estados Unidos , Femenino
10.
Environ Sci Technol ; 58(15): 6804-6813, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38512799

RESUMEN

The pervasive contamination of novel brominated flame retardants (NBFRs) in remote polar ecosystems has attracted great attention in recent research. However, understanding regarding the trophic transfer behavior of NBFRs in the Arctic and Antarctic marine food webs is limited. In this study, we examined the occurrence and trophodynamics of NBFRs in polar benthic marine sediment and food webs collected from areas around the Chinese Arctic Yellow River Station (n = 57) and Antarctic Great Wall Station (n = 94). ∑7NBFR concentrations were in the range of 1.27-7.47 ng/g lipid weight (lw) and 0.09-1.56 ng/g lw in the Arctic and Antarctic marine biota, respectively, among which decabromodiphenyl ethane (DBDPE) was the predominant compound in all sample types. The biota-sediment bioaccumulation factors (g total organic carbon/g lipid) of NBFRs in the Arctic (0.85-3.40) were 4-fold higher than those in the Antarctica (0.13-0.61). Trophic magnification factors (TMFs) and their 95% confidence interval (95% CI) of individual NBFRs ranged from 0.43 (95% CI: 0.32, 0.60) to 1.32 (0.92, 1.89) and from 0.34 (0.24, 0.49) to 0.92 (0.56, 1.51) in the Arctic and Antarctic marine food webs, respectively. The TMFs of most congeners were significantly lower than 1, indicating a trophic dilution potential. This is one of the very few investigations on the trophic transfer of NBFRs in remote Arctic and Antarctic marine ecosystems, which provides a basis for exploring the ecological risks of NBFRs in polar regions.


Asunto(s)
Retardadores de Llama , Regiones Antárticas , Retardadores de Llama/análisis , Cadena Alimentaria , Ecosistema , Bioacumulación , Regiones Árticas , Monitoreo del Ambiente , Lípidos , Éteres Difenilos Halogenados/análisis
11.
Environ Sci Technol ; 58(5): 2434-2445, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265760

RESUMEN

Source characteristics and health risks of indoor organophosphate esters (OPEs) are limited by the lack of knowledge on emission processes. This study attempted to integrate the contents and emissions of OPEs from indoor building materials to assess human health effects. Thirteen OPEs were investigated in 80 pieces of six categories of building materials. OPEs are ubiquitous in the building materials and ∑13OPE contents varied significantly (p < 0.05) from 72.8 ng/g (seam agent) to 109,900 ng/g (wallpaper). Emission characteristics of OPEs from the building materials were examined based on a microchamber method. Depending on the sample category, the observed initial area-specific emission rates of ∑13OPEs varied from 154 ng/m2/h (carpet) to 2760 ng/m2/h (wooden floorboard). Moreover, the emission rate model was developed to predict the release levels of individual OPEs, quantify source contributions, and assess associated exposure risks. Source apportionments of indoor OPEs exhibited heterogeneities in multiple environmental media. The joint OPE contribution of wallpaper and wooden floorboard to indoor dust was up to 94.8%, while latex paint and wooden floorboard were the main OPE contributors to indoor air (54.2%) and surface (76.1%), respectively. Risk assessment showed that the carcinogenic risks of tris(2-chloroethyl) phosphate (3.35 × 10-7) were close to the acceptable level (1 × 10-6) and deserved special attention.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Humanos , Ésteres/análisis , Retardadores de Llama/análisis , China , Organofosfatos/análisis , Polvo/análisis , Materiales de Construcción
12.
Environ Sci Technol ; 58(9): 4237-4246, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386008

RESUMEN

Concentrations of polybrominated diphenyl ethers, hexabromocyclododecane (HBCDD), and novel brominated flame retardants (NBFRs) were measured in indoor dust, indoor air, and outdoor air in Birmingham, UK. Concentrations of ΣBFRs ranged from 490 to 89,000 ng/g, 46-14,000 pg/m3, and 22-11,000 pg/m3, respectively, in UK indoor dust, indoor air, and outdoor air. BDE-209 and decabromodiphenyl ethane (DBDPE) were the main contributors. The maximum concentration of DBDPE (10,000 pg/m3) in outdoor air is the highest reported anywhere to date. In contrast with previous studies of outdoor air in Birmingham, we observed significant correlations between concentrations of tri- to hepta-BDEs and HBCDD and temperature. This may suggest that primary emissions from ongoing use of these BFRs have diminished and that secondary emissions (e.g., evaporation from soil) are now a potentially major source of these BFRs in outdoor air. Conversely, the lack of significant correlations between temperature and concentrations of BDE-209 and DBDPE may indicate that ongoing primary emissions from indoor sources remain important for these BFRs. Further research to clarify the relative importance of primary and secondary sources of BFRs to outdoor air is required. Comparison with earlier studies in Birmingham reveals significant (p < 0.05) declines in concentrations of legacy BFRs, but significant increases for NBFRs over the past decade. While there appear minimal health burdens from BFR exposure for UK adults, dust ingestion of BDE-209 may pose a significant risk for UK toddlers.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Hidrocarburos Bromados , Adulto , Humanos , Contaminación del Aire Interior/análisis , Polvo/análisis , Monitoreo del Ambiente , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis , Reino Unido , Bromo/análisis
13.
Environ Sci Technol ; 58(12): 5267-5278, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38478874

RESUMEN

Tetrabromobisphenol A (TBBPA), the most extensively utilized brominated flame retardant, has raised growing concerns regarding its environmental and health risks. Neurovascular formation is essential for metabolically supporting neuronal networks. However, previous studies primarily concerned the neuronal injuries of TBBPA, its impact on the neurovascularture, and molecular mechanism, which are yet to be elucidated. In this study, 5, 30, 100, 300 µg/L of TBBPA were administered to Tg (fli1a: eGFP) zebrafish larvae at 2-72 h postfertilization (hpf). The findings revealed that TBBPA impaired cerebral and ocular angiogenesis in zebrafish. Metabolomics analysis showed that TBBPA-treated neuroendothelial cells exhibited disruption of the TCA cycle and the Warburg effect pathway. TBBPA induced a significant reduction in glycolysis and mitochondrial ATP production rates, accompanied by mitochondrial fragmentation and an increase in mitochondrial reactive oxygen species (mitoROS) production in neuroendothelial cells. The supplementation of alpha-ketoglutaric acid, a key metabolite of the TCA cycle, mitigated TBBPA-induced mitochondrial damage, reduced mitoROS production, and restored angiogenesis in zebrafish larvae. Our results suggested that TBBPA exposure impeded neurovascular injury via mitochondrial metabolic perturbation mediated by mitoROS signaling, providing novel insight into the neurovascular toxicity and mode of action of TBBPA.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Animales , Humanos , Pez Cebra , Células Endoteliales/metabolismo , Bifenilos Polibrominados/toxicidad , Larva/metabolismo , Retardadores de Llama/toxicidad
14.
Environ Sci Technol ; 58(9): 4368-4380, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38386007

RESUMEN

Despite the increasing health risks shown by the continuous detection of organophosphate esters (OPEs) in biota in recent years, information on the occurrence and potential risks of OPEs in marine mammals remains limited. This study conducted the first investigation into the body burdens and potential risks of 10 traditional OPEs (tOPEs) and five emerging OPEs (eOPEs) in 10 cetacean species (n = 84) from the northern South China Sea (NSCS) during 2005-2021. All OPEs, except for 2-ethylhexyl diphenyl phosphate (EHDPHP), were detected in these cetaceans, indicating their widespread occurrence in the NSCS. Although the levels of the ∑10tOPEs in humpback dolphins remained stable from 2005 to 2021, the concentrations of the ∑5eOPEs showed a significant increase, suggesting a growing demand for these new-generation OPEs in South China. Dolphins in proximity to urban regions generally exhibited higher OPE concentrations than those from rural areas, mirroring the environmental trends of OPEs occurring in this area. All OPE congeners, except for EHDPHP, in humpback dolphins exhibited a maternal transfer ratio >1, indicating that the dolphin placenta may not be an efficient barrier for OPEs. The observed significant correlations between levels of OPEs and hormones (triiodothyronine, thyroxine, and testosterone) in humpback dolphins indicated that OPE exposures might have endocrine disruption effects on the dolphin population.


Asunto(s)
Delfines , Retardadores de Llama , Animales , Monitoreo del Ambiente , Bioacumulación , Ésteres , China , Organofosfatos , Fosfatos , Retardadores de Llama/análisis
15.
Environ Sci Technol ; 58(11): 4904-4913, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38437168

RESUMEN

The Yangtze River fishery resources have declined strongly over the past few decades. One suspected reason for the decline in fishery productivity, including silver carp (Hypophthalmichthys molitrix), has been linked to organophosphate esters (OPEs) contaminant exposure. In this study, the adverse effect of OPEs on lipid metabolism in silver carp captured from the Yangtze River was examined, and our results indicated that muscle concentrations of the OPEs were positively associated with serum cholesterol and total lipid levels. In vivo laboratory results revealed that exposure to environmental concentrations of OPEs significantly increased the concentrations of triglyceride, cholesterol, and total lipid levels. Lipidome analysis further confirmed the lipid metabolism dysfunction induced by OPEs, and glycerophospholipids and sphingolipids were the most affected lipids. Hepatic transcriptomic analysis found that OPEs caused significant alterations in the transcription of genes involved in lipid metabolism. Pathways associated with lipid homeostasis, including the peroxisome proliferator-activated receptor (PPAR) signal pathway, cholesterol metabolism, fatty acid biosynthesis, and steroid biosynthesis, were significantly changed. Furthermore, the affinities of OPEs were different, but the 11 OPEs tested could bind with PPARγ, suggesting that OPEs could disrupt lipid metabolism by interacting with PPARγ. Overall, this study highlighted the harmful effects of OPEs on wild fish and provided mechanistic insights into OPE-induced metabolic disorders.


Asunto(s)
Carpas , Retardadores de Llama , Enfermedades Metabólicas , Animales , Ríos , PPAR gamma , Ésteres/análisis , Organofosfatos/toxicidad , Organofosfatos/análisis , Colesterol/análisis , Lípidos , Retardadores de Llama/análisis , China , Monitoreo del Ambiente/métodos
16.
Environ Sci Technol ; 58(18): 7986-7997, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38657129

RESUMEN

The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 µg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.


Asunto(s)
Contaminación del Aire Interior , Polvo , Retardadores de Llama , Compuestos Organofosforados , Plastificantes , Retardadores de Llama/análisis , Plastificantes/análisis , Contaminación del Aire Interior/análisis , Polvo/análisis , China , Compuestos Organofosforados/análisis , Monitoreo del Ambiente , Humanos , Contaminantes Atmosféricos/análisis
17.
Environ Sci Technol ; 58(19): 8251-8263, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695612

RESUMEN

The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 µg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.


Asunto(s)
Reproducción , Pez Cebra , Animales , Masculino , Reproducción/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Retardadores de Llama/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Femenino
18.
Anal Bioanal Chem ; 416(6): 1493-1504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280016

RESUMEN

Organophosphate flame retardants (OPFRs) are high-production volume chemicals widely present in environmental compartments. The presence of water-soluble OPFRs (tri-n-butyl phosphate (TnBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP), and triethyl phosphate (TEP)) in water compartments evidences the struggle of conventional wastewater treatment plants (WWTPs) to effectively eliminate these toxic compounds. This study reports for the first time the use of white-rot fungi as a promising alternative for the removal of these OPFRs. To accomplish this, a simple and cost-efficient quantification method for rapid monitoring of these contaminants' concentrations by GC-MS while accounting for matrix effects was developed. The method proved to be valid and reliable for all the tested parameters. Sample stability was examined under various storage conditions, showing the original samples to be stable after 60 days of freezing, while post-extraction storage techniques were also effective. Finally, a screening of fungal degraders while assessing the influence of the glucose regime on OPFR removal was performed. Longer chain organophosphate flame retardants, TBP and TBEP, could be easily and completely removed by the fungus Ganoderma lucidum after only 4 days. This fungus also stood out as the sole organism capable of partially degrading TCEP (35% removal). The other chlorinated compound, TCPP, was more easily degraded and 70% of its main isomer was removed by T. versicolor. However, chlorinated compounds were only partially degraded under nutrient-limiting conditions. TEP was either not degraded or poorly degraded, and it is likely that it is a transformation product from another OPFR's degradation. These results suggest that degradation of chlorinated compounds is dependent on the concentration of the main carbon source and that more polar OPFRs are less susceptible to degradation, given that they are less accessible to radical removal by fungi. Overall, the findings of the present study pave the way for further planned research and a potential application for the degradation of these contaminants in real wastewaters.


Asunto(s)
Retardadores de Llama , Compuestos Organofosforados , Fosfinas , Compuestos Organofosforados/análisis , Retardadores de Llama/análisis , Cromatografía de Gases y Espectrometría de Masas , Organofosfatos/análisis , Aguas Residuales , Agua , Fosfatos
19.
Nature ; 613(7945): 614, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653620
20.
Environ Res ; 248: 118308, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38281563

RESUMEN

Despite numerous data on organophosphate tri-esters (tri-OPEs) in the environment, literatures on organophosphate di-esters (di-OPEs) in field environment, especially marine sediments remain scarce. This study addresses this gap by analyzing 35 abyssal sediment samples from the middle Okinawa Trough in the East China Sea. A total of 25 tri-OPEs and 10 di-OPEs were determined, but 13 tri-OPEs and 2 di-OPEs were nondetectable in any of these sediment samples. The concentrations of ∑12tri-OPE and ∑8di-OPE were 0.108-32.2 ng/g (median 1.11 ng/g) and 0.548-15.0 ng/g (median 2.74 ng/g). Chlorinated (Cl) tri-OPEs were the dominant tri-esters, accounting for 47.5 % of total tri-OPEs on average, whereas chlorinated di-OPEs represented only 19.2 % of total di-OPEs. This discrepancy between the relatively higher percentage of Cl-tri-OPEs and lower abundance of Cl-di-OPEs may be ascribed to the stronger environmental persistence of chlorinated tri-OPEs. Source assessment suggested that di-OPEs were primarily originated from the degradation of tri-OPEs rather than industrial production. Long range waterborne transport facilitated by oceanic currents was an important input pathway for OPEs in sediments from the Okinawa Trough. These findings enhance the understanding of the sources and transport of OPEs in marine sediments, particularly in the Okinawa Trough.


Asunto(s)
Monitoreo del Ambiente , Retardadores de Llama , Ésteres , Retardadores de Llama/análisis , China , Organofosfatos , Sedimentos Geológicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda