Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Protein Expr Purif ; 104: 65-70, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-25201698

RESUMEN

The autoantigen U1-68/70K is the dominant diagnostic marker in Mixed Connective Tissue Disease (MCTD) that until recently could not be expressed in its full-length form (Northemann et al., 1995, [16]). Using cell-free expression screening, we successfully produced the snRNP protein U1-68/70K in a soluble full-length form in Escherichia coli cells. The protein length and identity was determined by Western Blot and MS/MS analysis. Additionally, its reactivity in the autoimmune diagnostic was confirmed. Establishment of a cell-free expression system for this protein was important for further elucidation of protein expression properties such as the cDNA construct, expression temperature and folding properties; these parameters can now be determined in a fast and resource-conserving manner.


Asunto(s)
Autoantígenos/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Autoantígenos/biosíntesis , Escherichia coli , Humanos , Conformación Proteica , Ribonucleoproteína Nuclear Pequeña U1/biosíntesis , Espectrometría de Masas en Tándem
2.
Curr Protoc ; 4(6): e1059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38896106

RESUMEN

U1-70K (snRNP70) serves as an indispensable protein component within the U1 complex, assuming a pivotal role in both constitutive and alternative RNA splicing processes. Notably, U1-70K engages in interactions with SR proteins, instigating the assembly of the spliceosome. This protein undergoes regulation through phosphorylation at multiple sites. Of significant interest, U1-70K has been implicated in Alzheimer's disease, in which it tends to form detergent-insoluble aggregates. Even though it was identified more than three decades ago, our understanding of U1-70K remains notably constrained, primarily due to challenges such as low levels of recombinant expression, susceptibility to protein degradation, and insolubility. In endeavoring to address these limitations, we devised a multifaceted approach encompassing codon optimization, strategic purification, and a solubilization protocol. This methodology has enabled us to achieve a high yield of full-length, soluble U1-70K, paving the way for its comprehensive biophysical and biochemical characterization. Furthermore, we provide a detailed protocol for the preparation of phosphorylated U1-70K. This set of protocols promises to be a valuable resource for scientists exploring the intricate web of U1-70K-related mechanisms in the context of RNA splicing and its implications in neurodegenerative disorders and other disorders and biological processes. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression and purification of full-length U1-70K from E. coli Support Protocol 1: Making chemically competent BL21 Star pRARE/pBB535 cells Basic Protocol 2: Phosphorylation of full-length U1-70K using SRPK1 Support Protocol 2: Purification of SRPK1 Basic Protocol 3: Expression and purification of U1-70K BAD1 from E. coli Basic Protocol 4: Phosphorylation of U1-70K BAD1 using SRPK1 Basic Protocol 5: Expression and purification of U1-70K BAD2 from E. coli.


Asunto(s)
Escherichia coli , Ribonucleoproteína Nuclear Pequeña U1 , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Fosforilación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Expresión Génica , Dominios Proteicos
3.
Nucleic Acids Res ; 39(15): 6715-28, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21558325

RESUMEN

Small nuclear and nucleolar RNAs that program pre-mRNA splicing and rRNA processing have a signature 5'-trimethylguanosine (TMG) cap. Whereas the mechanism of TMG synthesis by Tgs1 methyltransferase has been elucidated, we know little about whether or how RNP biogenesis, structure and function are perturbed when TMG caps are missing. Here, we analyzed RNPs isolated by tandem-affinity purification from TGS1 and tgs1Δ yeast strains. The protein and U-RNA contents of total SmB-containing RNPs were similar. Finer analysis revealed stoichiometric association of the nuclear cap-binding protein (CBP) subunits Sto1 and Cbc2 with otherwise intact Mud1- and Nam8-containing U1 snRNPs from tgs1Δ cells. CBP was not comparably enriched in Lea1-containing U2 snRNPs from tgs1Δ cells. Moreover, CBP was not associated with mature Nop58-containing C/D snoRNPs or mature Cbf5- and Gar1-containing H/ACA snoRNPs from tgs1Δ cells. The protein composition and association of C/D snoRNPs with the small subunit (SSU) processosome were not grossly affected by absence of TMG caps, nor was the composition of H/ACA snoRNPs. The cold-sensitive (cs) growth defect of tgs1Δ yeast cells could be suppressed by mutating the cap-binding pocket of Cbc2, suggesting that ectopic CBP binding to the exposed U1 m(7)G cap in tgs1Δ cells (not lack of TMG caps per se) underlies the cs phenotype.


Asunto(s)
Metiltransferasas/genética , Complejo Proteico Nuclear de Unión a la Caperuza/análisis , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/química , Saccharomyces cerevisiae/genética , Autoantígenos/aislamiento & purificación , Frío , Eliminación de Gen , Complejo Proteico Nuclear de Unión a la Caperuza/química , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Complejo Proteico Nuclear de Unión a la Caperuza/aislamiento & purificación , Fenotipo , Caperuzas de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Ribonucleoproteínas Nucleolares Pequeñas/aislamiento & purificación , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Supresión Genética
4.
J Exp Med ; 180(6): 2341-6, 1994 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-7964507

RESUMEN

Intraperitoneal injection of pristane (2,6,10,14 tetramethylpentadecane) is a standard technique for obtaining monoclonal antibody-enriched ascitic fluid. However, pristane also induces plasmacytomas and an erosive arthritis resembling rheumatoid arthritis in BALB/c mice, probably as a consequence of enhanced interleukin 6 production. We report here that the production of autoantibodies characteristic of systemic lupus erythematosus (SLE) is a further consequence of injecting pristane in BALB/c mice. Anti-Su antibodies appeared as early as 1-2 mo after a single injection of 0.5 ml pristane, followed by anti-U1RNP and anti-Sm antibodies after 2-4 mo. Within 6 mo of pristane injection, 9 of 11 BALB/c mice had developed anti-Su, anti-U1RNP, anti-U2RNP, anti-Sm, and possibly anti-U5RNP antibodies. Autoantibodies were not produced by 20 BALB/c mice of the same age and sex that were not injected with pristane. Thus, autoantibodies characteristic of lupus were induced in mice that are not usually considered to be genetically susceptible to the disease. The induction of autoantibodies associated with SLE by pristane may be relevant to understanding the role of abnormal cytokine production in autoantibody production and the pathogenesis of autoimmune disease. Furthermore, the induction of high titer autoantibodies by pristane dictates caution in the use of ascitic fluid as a source of monoclonal antibodies, since the polyclonal antibodies induced by pristane may copurify with the monoclonal antibody secreted by an injected hybridoma.


Asunto(s)
Autoanticuerpos/biosíntesis , Carcinógenos/farmacología , Lupus Eritematoso Sistémico/inmunología , Terpenos/farmacología , Animales , Anticuerpos Monoclonales , Formación de Anticuerpos/efectos de los fármacos , Especificidad de Anticuerpos , Autoanticuerpos/aislamiento & purificación , Western Blotting , Línea Celular , Cromatografía de Afinidad , Cisteína/metabolismo , Humanos , Células L , Leucemia Eritroblástica Aguda , Metionina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ribonucleoproteína Nuclear Pequeña U1/biosíntesis , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U5/biosíntesis , Ribonucleoproteína Nuclear Pequeña U5/aislamiento & purificación , Radioisótopos de Azufre , Células Tumorales Cultivadas
5.
J Cell Biol ; 148(2): 239-47, 2000 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-10648556

RESUMEN

The eukaryotic initiation factor 4E (eIF4E) plays a pivotal role in the control of protein synthesis. eIF4E binds to the mRNA 5' cap structure, m(7)GpppN (where N is any nucleotide) and promotes ribosome binding to the mRNA. It was previously shown that a fraction of eIF4E localizes to the nucleus (Lejbkowicz, F., C. Goyer, A. Darveau, S. Neron, R. Lemieux, and N. Sonenberg. 1992. Proc. Natl. Acad. Sci. USA. 89:9612-9616). Here, we show that the nuclear eIF4E is present throughout the nucleoplasm, but is concentrated in speckled regions. Double label immunofluorescence confocal microscopy shows that eIF4E colocalizes with Sm and U1snRNP. We also demonstrate that eIF4E is specifically released from the speckles by the cap analogue m(7)GpppG in a cell permeabilization assay. However, eIF4E is not released from the speckles by RNase A treatment, suggesting that retention of eIF4E in the speckles is not RNA-mediated. 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) treatment of cells causes the condensation of eIF4E nuclear speckles. In addition, overexpression of the dual specificity kinase, Clk/Sty, but not of the catalytically inactive form, results in the dispersion of eIF4E nuclear speckles.


Asunto(s)
Núcleo Celular/ultraestructura , Factores de Iniciación de Péptidos/aislamiento & purificación , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Autoantígenos/aislamiento & purificación , Diclororribofuranosil Benzoimidazol/farmacología , Fosfatos de Dinucleósidos/farmacología , Factor 4E Eucariótico de Iniciación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Caperuzas de ARN/metabolismo , ARN Polimerasa II/antagonistas & inhibidores , Proteínas de Unión al ARN/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Proteínas Nucleares snRNP
6.
J Cell Biol ; 119(5): 1037-46, 1992 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1447287

RESUMEN

To study the intranuclear localization of the U1-specific snRNP C protein and its assembly into U1 snRNPs, we injected transcripts encoding a myc-tagged C protein into amphibian oocytes. The distribution of protein translated from the injected RNA was essentially the same in continuous and pulse-label experiments. In both cases the C protein localized within the germinal vesicle in those structures known to contain U1 snRNPs, namely the lampbrush chromosome loops and hundreds of extrachromosomal granules called snurposomes. Oocytes were also injected with an antisense oligodeoxynucleotide that caused truncation of U1 snRNA at the 5' end. In these oocytes, myc-tagged C protein localized normally in the germinal vesicle and could be immunoprecipitated together with truncated U1 snRNA. These experiments suggest that the C protein can enter the germinal vesicle on its own and there associate with previously assembled U1 snRNPs. In transfected tissue culture cells, the myc-tagged C protein localized within the nucleus in a speckled pattern similar to that of endogenous U1 snRNPs.


Asunto(s)
Anfibios/metabolismo , Oocitos/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Secuencia de Aminoácidos , Anfibios/genética , Animales , Secuencia de Bases , Transporte Biológico/efectos de los fármacos , Compartimento Celular , Núcleo Celular/química , Cicloheximida/farmacología , Técnica del Anticuerpo Fluorescente , Genes myc/genética , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Salamandridae/metabolismo , Distribución Tisular , Xenopus/genética
7.
J Cell Biol ; 126(1): 11-23, 1994 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8027171

RESUMEN

In the interphase nucleus of mammalian cells the U1, U2, U4/U6, and U5 small nuclear ribonucleoproteins (snRNPs), which are subunits of spliceosomes, associate with specific subnuclear domains including interchromatin granules and coiled bodies. Here, we analyze the association of splicing snRNPs with these structures during mitosis and reassembly of daughter nuclei. At the onset of mitosis snRNPs are predominantly diffuse in the cytoplasm, although a subset remain associated with remnants of coiled bodies and clusters of mitotic interchromatin granules, respectively. The number and size of mitotic coiled bodies remain approximately unchanged from metaphase to early telophase while snRNP-containing clusters of mitotic interchromatin granules increase in size and number as cells progress from anaphase to telophase. During telophase snRNPs are transported into daughter nuclei while the clusters of mitotic interchromatin granules remain in the cytoplasm. The timing of nuclear import of splicing snRNPs closely correlates with the onset of transcriptional activity in daughter nuclei. When transcription restarts in telophase cells snRNPs have a diffuse nucleoplasmic distribution. As cells progress to G1 snRNP-containing clusters of interchromatin granules reappear in the nucleus. Coiled bodies appear later in G1, although the coiled body antigen, p80 coilin, enters early into telophase nuclei. After inhibition of transcription we still observe nuclear import of snRNPs and the subsequent appearance of snRNP-containing clusters of interchromatin granules, but not coiled body formation. These data demonstrate that snRNP associations with coiled bodies and interchromatin granules are differentially regulated during the cell division cycle and suggest that these structures play distinct roles connected with snRNP structure, transport, and/or function.


Asunto(s)
Compartimento Celular , Núcleo Celular/fisiología , Cromatina/fisiología , Mitosis/fisiología , Empalme del ARN , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Transporte Biológico/efectos de los fármacos , Núcleo Celular/ultraestructura , Células Cultivadas , Cromatina/ultraestructura , Citoplasma/metabolismo , Citoplasma/ultraestructura , Dactinomicina/farmacología , Técnica del Anticuerpo Fluorescente , Humanos , Hibridación in Situ , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Empalmosomas/metabolismo , Telofase/fisiología , Transcripción Genética
8.
Science ; 284(5422): 2003-5, 1999 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-10373121

RESUMEN

In metazoans, two distinct spliceosomes catalyzing pre-messenger RNA splicing have been identified. Here, the human U11/U12 small nuclear ribonucleoprotein (snRNP), a subunit of the minor (U12-dependent) spliceosome, was isolated. Twenty U11/U12 proteins were identified, including subsets unique to the minor spliceosome or common to both spliceosomes. Common proteins include four U2 snRNP polypeptides that constitute the essential splicing factor SF3b. A 35-kilodalton U11-associated protein homologous to the U1 snRNP 70K protein was also identified. These data provide fundamental information about proteins of the minor spliceosome and shed light on its evolutionary relationship to the major spliceosome.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/análisis , Ribonucleoproteína Nuclear Pequeña U2/análisis , Ribonucleoproteínas Nucleares Pequeñas/análisis , Empalmosomas/química , Secuencia de Aminoácidos , Cromatografía de Afinidad , Evolución Molecular , Células HeLa , Humanos , Intrones , Datos de Secuencia Molecular , Peso Molecular , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación
9.
Science ; 264(5156): 261-5, 1994 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-8146658

RESUMEN

Small nuclear ribonucleoprotein (snRNP) particles are essential for pre-messenger RNA splicing. In human HeLa cells, 40 proteins associated with snRNPs have been identified. Yet, the function of many of these proteins remains unknown. Here, the immunoaffinity purification of the spliceosomal snRNPs U1, U2, U4/U6.U5, and several nucleolar snRNP species from the yeast Saccharomyces cerevisiae is presented. The U1 and U4/U6.U5 snRNPs were purified extensively and their protein composition and ultrastructure analyzed. The yeast U1 snRNP is larger and contains three times more specific proteins than its human counterpart. In contrast, the size, protein composition, and morphology of the yeast and the human U4/U6.U5 snRNPs are significantly similar. The preparative isolation of yeast snRNPs will allow the cloning as well as genetic and phylogenetic analysis of snRNP proteins which will accelerate our understanding of their function.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Saccharomyces cerevisiae/química , Empalmosomas/química , Western Blotting , Centrifugación por Gradiente de Densidad , Cromatografía de Afinidad , Células HeLa , Humanos , Microscopía Electrónica , Peso Molecular , ARN de Hongos/análisis , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/química
10.
Nucleic Acids Res ; 35(5): 1391-401, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17264129

RESUMEN

Characterization of spliceosomal complexes in the fission yeast Schizosaccharomyces pombe revealed particles sedimenting in the range of 30-60S, exclusively containing U1 snRNA. Here, we report the tandem affinity purification (TAP) of U1-specific protein complexes. The components of the complexes were identified using (LC-MS/MS) mass spectrometry. The fission yeast U1 snRNP contains 16 proteins, including the 7 Sm snRNP core proteins. In both fission and budding yeast, the U1 snRNP contains 9 and 10 U1 specific proteins, respectively, whereas the U1 particle found in mammalian cells contains only 3. Among the U1-specific proteins in S. pombe, three are homolog to the mammalian and six to the budding yeast Saccharomyces cerevisiae U1-specific proteins, whereas three, called U1H, U1J and U1L, are proteins specific to S. pombe. Furthermore, we demonstrate that the homolog of U1-70K and the three proteins specific to S. pombe are essential for growth. We will discuss the differences between the U1 snRNPs with respect to the organism-specific proteins found in the two yeasts and the resulting effect it has on pre-mRNA splicing.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/fisiología , Ribonucleoproteínas Nucleares Pequeñas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Cromatografía de Afinidad , Proteómica , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Empalmosomas/química , Espectrometría de Masas en Tándem
11.
Nucleic Acids Res ; 35(17): 5874-85, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17726058

RESUMEN

yLuc7p is an essential subunit of the yeast U1 snRNP and contains two putative zinc fingers. Using RNA-protein cross-linking and directed site-specific proteolysis (DSSP), we have established that the N-terminal zinc finger of yLuc7p contacts the pre-mRNA in the 5' exon in a region close to the cap. Modifying the pre-mRNA sequence in the region contacted by yLuc7p affects splicing in a yLuc7p-dependent manner indicating that yLuc7p stabilizes U1 snRNP-pre-mRNA interaction, thus reminding of the mode of action of another U1 snRNP component, Nam8p. Database searches identified three putative human yLuc7p homologs (hLuc7A, hLuc7B1 and hLuc7B2). These proteins have an extended C-terminal tail rich in RS and RE residues, a feature characteristic of splicing factors. Consistent with a role in pre-mRNA splicing, hLuc7A localizes in the nucleus and antibodies raised against hLuc7A specifically co-precipitate U1 snRNA from human cell extracts. Interestingly, hLuc7A overexpression affects splicing of a reporter in vivo. Taken together, our data suggest that the formation of a wide network of protein-RNA interactions around the 5' splice site by U1 snRNP-associated factors contributes to alternative splicing regulation.


Asunto(s)
Empalme Alternativo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/fisiología , Sitios de Empalme de ARN , Proteínas de Unión al ARN/fisiología , Secuencia de Aminoácidos , Sitios de Unión , Exones , Proteínas Fúngicas/química , Células HeLa , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Dedos de Zinc
12.
Nat Commun ; 9(1): 2220, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880797

RESUMEN

The first RNA recognition motif of the Drosophila SNF protein is an example of an RNA binding protein with multi-specificity. It binds different RNA hairpin loops in spliceosomal U1 or U2 small nuclear RNAs, and only in the latter case requires the auxiliary U2A' protein. Here we investigate its functions by crystal structures of SNF alone and bound to U1 stem-loop II, U2A' or U2 stem-loop IV and U2A', SNF dynamics from NMR spectroscopy, and structure-guided mutagenesis in binding studies. We find that different loop-closing base pairs and a nucleotide exchange at the tips of the loops contribute to differential SNF affinity for the RNAs. U2A' immobilizes SNF and RNA residues to restore U2 stem-loop IV binding affinity, while U1 stem-loop II binding does not require such adjustments. Our findings show how U2A' can modulate RNA specificity of SNF without changing SNF conformation or relying on direct RNA contacts.


Asunto(s)
Proteínas de Drosophila/metabolismo , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/fisiología , Sitios de Unión/genética , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/fisiología , Dominios Proteicos/fisiología , ARN Nuclear Pequeño/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U2/química , Especificidad por Sustrato/fisiología
13.
J Clin Invest ; 97(11): 2619-26, 1996 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-8647956

RESUMEN

The Ul small nuclear ribonucleoprotein (snRNP), a complex of nine proteins with Ul RNA, is a frequent target of autoantibodies in human and murine systemic lupus erythematosus (SLE). Anti-Sm antibodies recognizing the B'/B, D, E, F, and G proteins of Ul snRNPs are highly specific for SLE, and are nearly always accompanied by anti-nRNP antibodies recognizing the Ul snRNP-specific 70K, A, and/or C proteins. Previous studies suggest that human anti-nRNP antibodies recognize primarily the U1-70K and Ul-A proteins, whereas recognition of Ul-C is less frequent. We report here that autoantibodies to U1-C are more common in human autoimmune sera than believed previously. Using a novel immunoprecipitation technique to detect autoantibodies to native Ul-C, 75/78 human sera with anti-nRNP/ Sm antibodies were anti-Ul-C (+). In striking contrast, only 1/65 anti-nRNP/Sm (+) MRL mouse sera of various Igh allotypes was positive. Two of ten anti-nRNP/Sm (+) sera from BALB/c mice with a lupus-like syndrome induced by pristane recognized Ul-C. Thus, lupus in MRL mice was characterized by a markedly lower frequency of anti-U1-C antibodies than seen in human SLE or pristane-induced lupus. The results may indicate different pathways of intermolecular-intrastructural diversification of autoantibody responses to the components of Ul snRNPs in human and murine lupus, possibly mediated by alterations in antigen processing induced by the autoantibodies themselves.


Asunto(s)
Autoanticuerpos/sangre , Enfermedades Autoinmunes/sangre , Enfermedades Autoinmunes/inmunología , Lupus Eritematoso Sistémico/inmunología , Ribonucleoproteína Nuclear Pequeña U1/inmunología , Animales , Anticuerpos Monoclonales , Complejo Antígeno-Anticuerpo , Autoanticuerpos/aislamiento & purificación , Línea Celular , Humanos , Immunoblotting , Alotipos de Inmunoglobulinas , Lupus Eritematoso Sistémico/sangre , Ratones , Ratones Endogámicos BALB C , Ratones Mutantes , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Células Tumorales Cultivadas
14.
Mol Cell Biol ; 14(6): 4160-72, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8196654

RESUMEN

The RNA components of small nuclear ribonucleoproteins (U snRNPs) possess a characteristic 5'-terminal trimethylguanosine cap structure (m3G cap). This cap is an important component of the nuclear localization signal of U snRNPs. It arises by hypermethylation of a cotranscriptionally added m7G cap. Here we describe an in vitro assay for the hypermethylation, which employs U snRNP particles reconstituted in vitro from purified components and subsequent analysis by m3G cap-specific immunoprecipitation. Complementation studies in vitro revealed that both cytosol and S-adenosylmethionine are required for the hypermethylation of an m7G-capped U1 snRNP reconstituted in vitro, indicating that the U1 snRNA-(guanosine-N2)-methyltransferase is a trans-active non-snRNP protein. Chemical modification revealed one cytoplasmic component required for hypermethylation and one located on the snRNP: these components have different patterns of sensitivity to modification by N-ethylmaleimide and iodoacetic acid (IAA). In the presence of cytosol and S-adenosylmethionine, an intact Sm core domain is a necessary and sufficient substrate for cap hypermethylation. These data, together with our observation that isolated native U1 snRNPs but not naked U1 RNA inhibit the trimethylation of in vitro-reconstituted U1 snRNP, indicate that the Sm core binds the methyltransferase specifically. Moreover, isolated native U2 snRNP also inhibits trimethylation of U1 snRNP, suggesting that other Sm-class U snRNPs might share the same methyltransferase. IAA modification of m7G-capped U1 snRNPs inhibited hypermethylation when they were microinjected into Xenopus oocytes and consequently also inhibited nuclear import. In contrast, modification with IAA of m3G-capped U1 snRNPs reconstituted in vitro did not interfere with their nuclear transport in oocytes. These data suggest that m3G cap formation and nuclear transport of U1 snRNPs are mediated by distinct factors, which require distinct binding sites on the Sm core of U1 snRNP.


Asunto(s)
Metiltransferasas/metabolismo , Caperuzas de ARN/metabolismo , ARN Nuclear Pequeño/biosíntesis , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Unión Competitiva , Núcleo Celular/metabolismo , Citosol/metabolismo , Ditiotreitol/farmacología , Etilmaleimida/farmacología , Femenino , Yodoacetatos/farmacología , Ácido Yodoacético , Metilación , Datos de Secuencia Molecular , Oocitos/metabolismo , Caperuzas de ARN/aislamiento & purificación , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , S-Adenosilmetionina/metabolismo , Transcripción Genética , Xenopus
15.
Mol Cell Biol ; 14(7): 4662-70, 1994 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-7516470

RESUMEN

Expression of the recombinant human U1-70K protein in COS cells resulted in its rapid transport to the nucleus, even when binding to U1 RNA was debilitated. Deletion analysis of the U1-70K protein revealed the existence of two segments of the protein which were independently capable of nuclear localization. One nuclear localization signal (NLS) was mapped within the U1 RNA-binding domain and consists of two typically separated but interdependent elements. The major element of this NLS resides in structural loop 5 between the beta 4 strand and the alpha 2 helix of the folded RNA recognition motif. The C-terminal half of the U1-70K protein which was capable of nuclear entry contains two arginine-rich regions, which suggests the existence of a second NLS. Site-directed mutagenesis of the RNA recognition motif NLS demonstrated that the U1-70K protein can be transported independently of U1 RNA and that its association with the U1 small nuclear ribonucleoprotein particle can occur in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Chlorocebus aethiops , Clonación Molecular , Epítopos/análisis , Humanos , Peso Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/análisis , Mutación Puntual , Estructura Terciaria de Proteína , ARN Mensajero/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Homología de Secuencia de Aminoácido , Transfección
16.
J Mol Biol ; 249(2): 409-23, 1995 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-7783201

RESUMEN

The hairpin is one of the most commonly found structural motifs of RNA and is often a binding site for proteins. Crystallisation of U1A spliceosomal protein bound to a RNA hairpin, its natural binding site on U1snRNA, is described. RNA oligonucleotides were synthesised either chemically or by in vitro transcription using T7 RNA polymerase and purified to homogeneity by gel electrophoresis. Crystallisation trials with the wild-type protein sequence and RNA hairpins containing various stem sequences and overhanging nucleotides only resulted in a cubic crystal form which diffracted to 7-8 A resolution. A new crystal form was grown by using a protein variant containing mutations of two surface residues. The N-terminal sequence of the protein was also varied to reduce heterogeneity which was detected by protein mass spectrometry. A further crystallisation search using the double mutant protein and varying the RNA hairpins resulted in crystals diffracting to beyond 1.7 A. The methods and strategy described in this paper may be applicable to crystallisation of other RNA-protein complexes.


Asunto(s)
Cristalografía por Rayos X , Conformación de Ácido Nucleico , Ingeniería de Proteínas/métodos , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/aislamiento & purificación , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/aislamiento & purificación , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Secuencia de Aminoácidos , Secuencia de Bases , Gráficos por Computador , Simulación por Computador , Cristalización , Cisteína , ARN Polimerasas Dirigidas por ADN , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , ARN Nuclear Pequeño/síntesis química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transcripción Genética , Proteínas Virales
17.
Gene ; 189(2): 245-54, 1997 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-9168134

RESUMEN

The Sm core proteins of U1, U2, U4/U6 and U5 snRNPs include B(B1), B'(B2), N(B3), D1, D2, D3, E, F and G polypeptides. We have isolated genomic clones encoding the Sm-D1 protein using the Sm-D1 cDNA as probe. Southern blotting and DNA sequencing analysis of these clones revealed the presence of an Sm-D1 multigene family in the human genome. Three gene members have been identified. Two of the genes are without introns and contain mutations compared to the cDNA sequence. They appear to be processed pseudogenes. The third gene, termed SNRPD1, shares 100% identity to the cDNA sequence including both 5'- and 3'-untranslated regions (UTR); it contains three introns. Analysis of the 5'-flanking region of the SNRPD1 gene revealed promoter activity, suggesting this is the functional gene that encodes the Sm-D1 protein. The promoter activity was localized in a 0.38 kb PstI fragment using CAT reporter gene fusion assays. Addition of an SV40 enhancer element did not enhance the transcription directed by that fragment. Sequence comparison of the 0.38 kb promoter sequence with the promoters of the Sm-E gene and U1 snRNA genes revealed several homologous motifs, suggesting that genes encoding the snRNP components may be coordinately regulated.


Asunto(s)
Autoantígenos/genética , Genes , Regiones Promotoras Genéticas , ARN Nuclear Pequeño/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteínas Nucleares Pequeñas , Secuencia de Aminoácidos , Autoantígenos/química , Autoantígenos/aislamiento & purificación , Secuencia de Bases , Clonación Molecular , Humanos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Proteínas Nucleares snRNP
19.
RNA ; 9(11): 1400-9, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14561889

RESUMEN

Splicing and polyadenylation factors interact for the control of polyadenylation and the coupling of splicing and polyadenylation. We document an interaction between the U1 snRNP and mammalian polyadenylation cleavage factor I (CF Im), one of several polyadenylation factors needed for the cleavage of the pre-mRNA at the polyadenylation site. Sucrose density gradient centrifugation demonstrated that CF Im separated into two fractions, a light fraction which contained the known CF Im subunits (72, 68, 59, and 25 kD), and a heavy fraction, rich in snRNPs, which contained predominately the 68- and 25-kD CF Im subunits. Using specific antibodies we found that the heavy fraction contains U1 snRNP/CF Im coprecipitable complexes. These complexes were insensitive to RNase treatment, suggesting that the coprecipitation is not due to RNA tethering. In vitro binding experiments show that both the 68- and 25-kD subunits bind to and comigrate with U1 snRNP. In addition, the 25-kD CF Im subunit binds specifically to the 70K protein of U1 snRNP (U1 70K). This binding may account for the CF Im/U1 snRNP interaction. During these studies we found that mAb 2.73 (mAb 2.73), an established U1 70K antibody, efficiently precipitates the bulk of the CF Im from cellular extracts. Because mAb 2.73 has been used in a number of previous studies related to the U1 snRNP and the U1 70K protein, the precipitation of CF Im must be considered in evaluating past and future data based on the use of mAb 2.73.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Hidrólisis , Pruebas de Precipitina , Unión Proteica , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Factores de Escisión y Poliadenilación de ARNm/aislamiento & purificación
20.
Biochemistry ; 36(7): 1782-9, 1997 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-9048562

RESUMEN

The structure of the conserved region of the U1A pre-mRNA (AgRNA) and its complex with U1A protein was investigated. The previously proposed secondary structure of Ag RNA, derived from enzymatic probing and analysis of the structure and function of mutant mRNAs, is now confirmed by chemical probing data and further refined in the regions where the enzymatic data were not conclusive. The two unpaired nucleotides in the internal loops opposite of the Box sequences as well as the tetraloop could not be cleaved by ribonucleases, but are accessible to chemical probes. Concerning the RNA-protein complex, the protection experiments showed that the Box regions are largely protected when the U1A protein is present. All stem regions in the 5' part of the structure seem protected against ribonucleases. Unexpectedly, the nucleotides of the tetraloop become accessible to ribonucleases in the RNA-protein complex. This result indicates that the tetraloop undergoes a conformational change upon U1A protein binding. The 3' part of the Ag RNA sequence, containing the polyadenylation signal in a hairpin structure, showed hardly any protection, a finding that agrees with the fact that U1A does not interfere with the binding of the cleavage polyadenylation specificity factor (CPSF) to the polyadenylation signal.


Asunto(s)
Huella de ADN , Conformación de Ácido Nucleico , ARN Mensajero/química , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Composición de Base , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Precursores del ARN/química , Proteínas de Unión al ARN/química , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda