Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Mol Cell ; 71(6): 1012-1026.e3, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30174293

RESUMEN

Pre-mRNA splicing is an essential step in the expression of most human genes. Mutations at the 5' splice site (5'ss) frequently cause defective splicing and disease due to interference with the initial recognition of the exon-intron boundary by U1 small nuclear ribonucleoprotein (snRNP), a component of the spliceosome. Here, we use a massively parallel splicing assay (MPSA) in human cells to quantify the activity of all 32,768 unique 5'ss sequences (NNN/GYNNNN) in three different gene contexts. Our results reveal that although splicing efficiency is mostly governed by the 5'ss sequence, there are substantial differences in this efficiency across gene contexts. Among other uses, these MPSA measurements facilitate the prediction of 5'ss sequence variants that are likely to cause aberrant splicing. This approach provides a framework to assess potential pathogenic variants in the human genome and streamline the development of splicing-corrective therapies.


Asunto(s)
Empalme Alternativo/genética , Sitios de Empalme de ARN/genética , Sitios de Empalme de ARN/fisiología , Empalme Alternativo/fisiología , Proteínas Portadoras/genética , Secuencia Conservada/genética , Exones , Genes BRCA2 , Células HeLa , Humanos , Intrones , Mutación , Empalme del ARN/genética , Empalme del ARN/fisiología , ARN Nuclear Pequeño/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Empalmosomas , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Factores de Elongación Transcripcional
2.
Mol Cell ; 43(6): 927-39, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21925381

RESUMEN

Alternative intronic polyadenylation (IPA) can generate truncated protein isoforms with significantly altered functions. Here, we describe 31 dominant-negative, secreted variant isoforms of receptor tyrosine kinases (RTKs) that are produced by activation of intronic poly(A) sites. We show that blocking U1-snRNP can activate IPA, indicating a larger role for U1-snRNP in RNA surveillance. Moreover, we report the development of an antisense-based method to effectively and specifically activate expression of individual soluble decoy RTKs (sdRTKs) to alter signaling, with potential therapeutic implications. In particular, a quantitative switch from signal transducing full-length vascular endothelial growth factor receptor-2 (VEGFR2/KDR) to a dominant-negative sKDR results in a strong antiangiogenic effect both on directly targeted cells and on naive cells exposed to conditioned media, suggesting a role for this approach in interfering with angiogenic paracrine and autocrine loops.


Asunto(s)
Intrones , Poliadenilación , Proteínas Tirosina Quinasas Receptoras/biosíntesis , Humanos , Neovascularización Fisiológica/fisiología , Poli A/química , Poli A/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología , Empalme del ARN , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/biosíntesis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología
3.
Proc Natl Acad Sci U S A ; 113(19): 5269-74, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27114556

RESUMEN

Alternative pre-mRNA splicing (AS) is a critical regulatory mechanism that operates extensively in the nervous system to produce diverse protein isoforms. Fruitless AS isoforms have been shown to influence male courtship behavior, but the underlying mechanisms are unknown. Using genome-wide approaches and quantitative behavioral assays, we show that the P-element somatic inhibitor (PSI) and its interaction with the U1 small nuclear ribonucleoprotein complex (snRNP) control male courtship behavior. PSI mutants lacking the U1 snRNP-interacting domain (PSIΔAB mutant) exhibit extended but futile mating attempts. The PSIΔAB mutant results in significant changes in the AS patterns of ∼1,200 genes in the Drosophila brain, many of which have been implicated in the regulation of male courtship behavior. PSI directly regulates the AS of at least one-third of these transcripts, suggesting that PSI-U1 snRNP interactions coordinate the behavioral network underlying courtship behavior. Importantly, one of these direct targets is fruitless, the master regulator of courtship. Thus, PSI imposes a specific mode of regulatory control within the neuronal circuit controlling courtship, even though it is broadly expressed in the fly nervous system. This study reinforces the importance of AS in the control of gene activity in neurons and integrated neuronal circuits, and provides a surprising link between a pleiotropic pre-mRNA splicing pathway and the precise control of successful male mating behavior.


Asunto(s)
Empalme Alternativo/fisiología , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Genes de Insecto/fisiología , Proteínas Nucleares/fisiología , Proteínas de Unión al ARN/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Conducta Sexual Animal/fisiología , Animales , Cortejo , Femenino , Masculino , Proteínas del Tejido Nervioso/fisiología , Caracteres Sexuales
4.
Adv Exp Med Biol ; 848: 51-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25757615

RESUMEN

U1 snRNP (U1 small nuclear ribonucleoprotein) is an essential component of the splicing machinery. U1 snRNP also plays an additional role in 3'-end mRNA processing when it binds close to polyadenylation sites (PAS). Cotranscriptionally, U1 snRNP binding close to putative PAS prevents premature cleavage and polyadenylation and consequently safeguards pre-mRNA transcripts and defines promoter directionality. At the 3'-end of mRNAs, U1 snRNP binding to putative PAS may regulate mRNA length or inhibit polyadenylation and, therefore, gene expression. U1 interference (U1i) is a technique to inhibit gene expression based on the property of U1 snRNP to inhibit polyadenylation. It requires the expression of a modified U1 snRNP, which interacts with a target gene upstream of its PAS and inhibits target gene expression. U1i has been used to inhibit the expression of reporter or endogenous genes both in tissue culture and in animal models. In addition, U1i combination with RNA interference (RNAi), another RNA-based gene silencing technology, results in a synergistic increased inhibition. This is of special interest for antiviral therapy, where strong inhibitions may be required to decrease the expression of replicative viral RNAs and impact the replication cycle. Furthermore, the combination of U1i and RNAi-based inhibitors should prevent the appearance of viral variants resistant to the treatment and allows the dose of inhibitors to be decreased and a functional inhibition to be obtained with fewer off target effects. In fact, U1i has been used to inhibit the expression of HIV-1 and HBV, whose viral genomes express mRNAs that must be polyadenylated by the nuclear polyadenylation machinery. In the case of HBV, antiviral U1i has been combined with RNAi to demonstrate a strong inhibition of expression from HBV sequences in vivo. This shows that, although several aspects of U1i technology remain to be addressed, U1i and U1i combined with RNAi have great potential as antivirals.


Asunto(s)
Antivirales/uso terapéutico , Terapia Molecular Dirigida/métodos , Interferencia de ARN , Ribonucleoproteína Nuclear Pequeña U1/genética , Virosis/terapia , Animales , Humanos , Conformación Molecular , Interferencia de ARN/fisiología , Ribonucleoproteína Nuclear Pequeña U1/antagonistas & inhibidores , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Relación Estructura-Actividad
5.
J Immunol ; 188(10): 4769-75, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22490866

RESUMEN

The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is a caspase-1-containing cytosolic protein complex that is essential for processing and secretion of IL-1ß. The U1-small nuclear ribonucleoprotein (U1-snRNP) that includes U1-small nuclear RNA is a highly conserved intranuclear molecular complex involved in splicing pre-mRNA. Abs against this self nuclear molecule are characteristically found in autoimmune diseases like systemic lupus erythematosus, suggesting a potential role of U1-snRNP in autoimmunity. Although endogenous DNA and microbial nucleic acids are known to activate the inflammasomes, it is unknown whether endogenous RNA-containing U1-snRNP could activate this molecular complex. In this study, we show that U1-snRNP activates the NLRP3 inflammasome in CD14(+) human monocytes dependently of anti-U1-snRNP Abs, leading to IL-1ß production. Reactive oxygen species and K(+) efflux were responsible for this activation. Knocking down the NLRP3 or inhibiting caspase-1 or TLR7/8 pathway decreased IL-1ß production from monocytes treated with U1-snRNP in the presence of anti-U1-snRNP Abs. Our findings indicate that endogenous RNA-containing U1-snRNP could be a signal that activates the NLRP3 inflammasome in autoimmune diseases like systemic lupus erythematosus where anti-U1-snRNP Abs are present.


Asunto(s)
Proteínas Portadoras/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Adulto , Anticuerpos/fisiología , Proteínas Portadoras/fisiología , Humanos , Interleucina-1beta/biosíntesis , Receptores de Lipopolisacáridos/biosíntesis , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/inmunología
6.
Dev Biol ; 350(2): 534-47, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21146519

RESUMEN

The conserved SWI/SNF chromatin remodeling complex uses the energy from ATP hydrolysis to alter local chromatin environments through disrupting DNA-histone contacts. These alterations influence transcription activation, as well as repression. The Drosophila SWI/SNF counterpart, known as the Brahma or Brm complex, has been shown to have an essential role in regulating the proper expression of many developmentally important genes, including those required for eye and wing tissue morphogenesis. A temperature sensitive mutation in one of the core complex subunits, SNR1 (SNF5/INI1/SMARCB1), results in reproducible wing patterning phenotypes that can be dominantly enhanced and suppressed by extragenic mutations. SNR1 functions as a regulatory subunit to modulate chromatin remodeling activities of the Brahma complex on target genes, including both activation and repression. To help identify gene targets and cofactors of the Brahma complex, we took advantage of the weak dominant nature of the snr1(E1) mutation to carry out an unbiased genetic modifier screen. Using a set of overlapping chromosomal deficiencies that removed the majority of the Drosophila genome, we looked for genes that when heterozygous would function to either enhance or suppress the snr1(E1) wing pattern phenotype. Among potential targets of the Brahma complex, we identified components of the Notch, EGFR and DPP signaling pathways important for wing development. Mutations in genes encoding histone demethylase enzymes were identified as cofactors of Brahma complex function. In addition, we found that the Lysine Specific Demethylase 1 gene (lsd1) was important for the proper cell type-specific development of wing patterning.


Asunto(s)
Proteínas Co-Represoras/fisiología , Proteínas de Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Oxidorreductasas N-Desmetilantes/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Alas de Animales/crecimiento & desarrollo , Animales , Proteínas de Ciclo Celular/fisiología , Células Cultivadas , Factores de Transcripción/fisiología
7.
Mol Biol Cell ; 31(12): 1289-1301, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267207

RESUMEN

The multi-component cytoplasmic dynein transports cellular cargoes with the help of another multi-component complex dynactin, but we do not know enough about factors that may affect the assembly and functions of these proteins. From a genetic screen for mutations affecting early-endosome distribution in Aspergillus nidulans, we identified the prp40AL438* mutation in Prp40A, a homologue of Prp40, an essential RNA-splicing factor in the budding yeast. Prp40A is not essential for splicing, although it associates with the nuclear splicing machinery. The prp40AL438* mutant is much healthier than the ∆prp40A mutant, but both mutants exhibit similar defects in dynein-mediated early-endosome transport and nuclear distribution. In the prp40AL438* mutant, the frequency but not the speed of dynein-mediated early-endosome transport is decreased, which correlates with a decrease in the microtubule plus-end accumulations of dynein and dynactin. Within the dynactin complex, the actin-related protein Arp1 forms a mini-filament. In a pull-down assay, the amount of Arp1 pulled down with its pointed-end protein Arp11 is lowered in the prp40AL438* mutant. In addition, we found from published interactome data that a mammalian Prp40 homologue PRPF40A interacts with Arp1. Thus, Prp40 homologues may regulate the assembly or function of dynein-dynactin and their mechanisms deserve to be further studied.


Asunto(s)
Complejo Dinactina/metabolismo , Dineínas/metabolismo , Factores de Empalme de ARN/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Citoesqueleto/metabolismo , Complejo Dinactina/genética , Dineínas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutación/genética , Unión Proteica/genética , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/fisiología , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/fisiología
8.
Nucleic Acids Res ; 35(5): 1391-401, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17264129

RESUMEN

Characterization of spliceosomal complexes in the fission yeast Schizosaccharomyces pombe revealed particles sedimenting in the range of 30-60S, exclusively containing U1 snRNA. Here, we report the tandem affinity purification (TAP) of U1-specific protein complexes. The components of the complexes were identified using (LC-MS/MS) mass spectrometry. The fission yeast U1 snRNP contains 16 proteins, including the 7 Sm snRNP core proteins. In both fission and budding yeast, the U1 snRNP contains 9 and 10 U1 specific proteins, respectively, whereas the U1 particle found in mammalian cells contains only 3. Among the U1-specific proteins in S. pombe, three are homolog to the mammalian and six to the budding yeast Saccharomyces cerevisiae U1-specific proteins, whereas three, called U1H, U1J and U1L, are proteins specific to S. pombe. Furthermore, we demonstrate that the homolog of U1-70K and the three proteins specific to S. pombe are essential for growth. We will discuss the differences between the U1 snRNPs with respect to the organism-specific proteins found in the two yeasts and the resulting effect it has on pre-mRNA splicing.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U1/fisiología , Ribonucleoproteínas Nucleares Pequeñas/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Cromatografía de Afinidad , Proteómica , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/aislamiento & purificación , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/aislamiento & purificación , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/aislamiento & purificación , Empalmosomas/química , Espectrometría de Masas en Tándem
9.
Biochim Biophys Acta Gene Regul Mech ; 1862(6): 634-642, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31042550

RESUMEN

Removal of introns by pre-mRNA splicing is fundamental to gene function in eukaryotes. However, understanding the mechanism by which exon-intron boundaries are defined remains a challenging endeavor. Published reports support that the recruitment of U1 snRNP at the 5'ss marked by GU dinucleotides defines the 5'ss as well as facilitates 3'ss recognition through cross-exon interactions. However, exceptions to this rule exist as U1 snRNP recruited away from the 5'ss retains the capability to define the splice site, where the cleavage takes place. Independent reports employing exon 7 of Survival Motor Neuron (SMN) genes suggest a long-distance effect of U1 snRNP on splice site selection upon U1 snRNP recruitment at target sequences with or without GU dinucleotides. These findings underscore that sequences distinct from the 5'ss may also impact exon definition if U1 snRNP is recruited to them through partial complementarity with the U1 snRNA. In this review we discuss the expanded role of U1 snRNP in splice-site selection due to U1 ability to be recruited at more sites than predicted solely based on GU dinucleotides.


Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Empalme Alternativo , Exones/genética , Humanos , Intrones/genética , Mutación , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Proteínas del Complejo SMN , Proteína 1 para la Supervivencia de la Neurona Motora
10.
Curr Biol ; 9(16): R606-9, 1999 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-10469586

RESUMEN

Mammalian counterparts of the yeast SRB/MED transcriptional 'mediator' complex have recently been identified. These complexes define a common cofactor requirement for diverse transcriptional activators and underscore the conserved nature of the transcriptional machinery among eukaryotic organisms.


Asunto(s)
Proteínas de Drosophila , Proteínas de Unión al ARN , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción/fisiología , Activación Transcripcional , Animales , Quinasa 8 Dependiente de Ciclina , Quinasas Ciclina-Dependientes/fisiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiología , Humanos , Complejo Mediador , ARN Polimerasa II/fisiología , Proteínas Represoras/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Transactivadores/fisiología , Factor de Transcripción TFIID , Factores de Transcripción TFII/fisiología
11.
Curr Biol ; 9(6): R221-4, 1999 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-10209086
12.
Trends Genet ; 10(3): 100-6, 1994 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-8178363

RESUMEN

Identification of 5' splice sites requires that limited and dispersed sequence information be interpreted precisely. Both snRNAs and proteins are required for this process. The selection of 5' splice sites in alternative splicing is closely related to that in constitutive splicing, and uses the same components in somewhat different ways.


Asunto(s)
Precursores del ARN/genética , Empalme del ARN/fisiología , Animales , Secuencia de Bases , Secuencia de Consenso , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Ribonucleoproteínas/fisiología
13.
Mol Cell Biol ; 13(4): 2126-33, 1993 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-8455601

RESUMEN

Two highly conserved regions of the 586-nucleotide yeast (Saccharomyces cerevisiae) U1 small nuclear RNA (snRNA) can be mutated or deleted with little or no effect on growth rate: the universally conserved loop II (corresponding to the metazoan A loop) and the yeast core region (X. Liao, L. Kretzner, B. Séraphin, and M. Rosbash, Genes Dev. 4:1766-1774, 1990). To examine the contribution of these regions to U1 small nuclear ribonucleoprotein particle (snRNP) activity, a competitor U1 gene, encoding a nonfunctional U1 snRNA molecule, was introduced into a number of strains carrying a U1 snRNA gene with loop II or yeast core mutations. The presence of the nonfunctional U1 gene lowered the growth rate of these mutant strains but not wild-type strains, consistent with the notion that mutant U1 RNAs are less active than wild-type U1 snRNAs. A detailed analysis of the U1 snRNA levels and half-lives in a number of merodiploid strains suggests that these mutant U1 snRNAs interact with U1 snRNP proteins less well than do their wild-type counterparts. Competition for protein factors during snRNP assembly could account for a number of previous observations in both yeast and mammalian cells.


Asunto(s)
ARN Nuclear Pequeño/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Saccharomyces cerevisiae/genética , Secuencia de Bases , Enlace de Hidrógeno , Sustancias Macromoleculares , Datos de Secuencia Molecular , ARN de Hongos/química , ARN Nuclear Pequeño/química , Ribonucleoproteína Nuclear Pequeña U1/química
14.
Mol Cell Biol ; 16(9): 5036-47, 1996 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8756662

RESUMEN

The Drosophila sex determination gene Sex-lethal controls its own expression and the expression of downstream target genes such as transformer by regulating RNA splicing. Genetic and molecular studies have established that Sxl requires the product of another gene, snf, to autoregulate the splicing of its own transcripts. snf has recently been shown to encode a Drosophila U1 and U2 small nuclear ribonucleoprotein particle protein. In the work reported here, we demonstrate that the Sxl and Snf proteins can interact directly in vitro and that these two proteins are part of an RNase-sensitive complex in vivo which can be immunoprecipitated with the Sxl antibody. Unlike bulk Snf protein, which sediments slowly in sucrose gradients, the Snf protein associated with Sxl is in a large, rapidly sedimenting complex. Detailed characterization of the Sxl-Snf complexes from cross-linked extracts indicates that these complexes contain additional small nuclear ribonucleoprotein particle proteins and the U1 and U2 small nuclear RNAs. Finally, consistent with the RNase sensitivity of the Sxl-Snf complexes, Sxl transcripts can also be immunoprecipitated by Sxl antibodies. On the basis of the physical interactions between Sxl and Snf, we present a model for Sxl splicing regulation. This model helps explain how the Sxl protein is able to promote the sex-specific splicing of Sxl transcripts, utilizing target sequences that are distant from the regulated splice sites.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Empalme del ARN/fisiología , Proteínas de Unión al ARN/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Análisis para Determinación del Sexo , Animales , Anticuerpos Monoclonales/inmunología , Secuencia de Bases , Sustancias Macromoleculares , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas de Unión al ARN/inmunología
15.
Mol Cell Biol ; 21(7): 2413-22, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11259590

RESUMEN

Recruitment of modifiers and remodelers to specific DNA sites within chromatin plays a critical role in controlling gene expression. The study of globin gene regulation provides a convergence point within which to address these issues in the context of tissue-specific and developmentally regulated expression. In this regard, erythroid Krüppel-like factor (EKLF) is critical. EKLF is a red cell-specific activator whose presence is crucial for establishment of the correct chromatin structure and high-level transcriptional induction of adult beta-globin. We now find, by metabolic labeling-immunoprecipitation experiments, that EKLF is acetylated in the erythroid cell. EKLF residues acetylated by CREB binding protein (CBP) in vitro map to Lys-288 in its transactivation domain and Lys-302 in its zinc finger domain. Although site-specific DNA binding by EKLF is unaffected by the acetylation status of either of these lysines, directed mutagenesis of Lys-288 (but not Lys-302) decreases the ability of EKLF to transactivate the beta-globin promoter in vivo and renders it unable to be superactivated by coexpressed p300 or CBP. In addition, the acetyltransferase function of CBP or p300 is required for superactivation of wild-type EKLF. Finally, acetylated EKLF has a higher affinity for the SWI-SNF chromatin remodeling complex and is a more potent transcriptional activator of chromatin-assembled templates in vitro. These results demonstrate that the acetylation status of EKLF is critical for its optimal activity and suggest a mechanism by which EKLF acts as an integrator of remodeling and transcriptional components to alter chromatin structure and induce adult beta-globin expression within the beta-like globin cluster.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila , Proteínas Nucleares/fisiología , Proteínas de Unión al ARN , Transactivadores/fisiología , Factores de Transcripción/fisiología , Acetilación , Adulto , Animales , Células COS , Proteína de Unión a CREB , Eritrocitos/fisiología , Histona Acetiltransferasas , Humanos , Células K562 , Factores de Transcripción de Tipo Kruppel , Ratones , Coactivador 3 de Receptor Nuclear , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Activación Transcripcional
17.
Oncogene ; 21(20): 3112-20, 2002 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-12082626

RESUMEN

Ini1/hsnf5 gene encodes INI1 protein, a chromatin remodeling factor associated with the SWI/SNF complex. In yeast, this complex modifies chromatin condensation to coactivate various transcriptional factors. However, in human, little is known about the SWI/SNF complex and INI1. To elucidate cellular functions of ini1, we constructed a recombinant adenovirus (AdexHA-INI1) capable of overexpressing INI1 in ini1-deficient cells. AdexHA-INI1 produced intranuclear INI1 in three ini1-deficient cell lines, changed their morphology, and decreased the proportion of viable cells. Flow cytometry and a BrdU incorporation assay showed that after the infection, growth of these cells was partially arrested at G1. In two of the three ini1-deficient cell lines, apoptosis was found to occur after the infection, as detected by the presence of cleaved poly (ADP-ribose) polymerase. To determine functional domains of INI1, we constructed plasmids expressing INI1 and its deletion mutants, which were used for a colony formation assay. Repeats 1 and 2 of INI1 were found to be required to suppress the growth of the three ini1-deficient cell lines. The results support the hypothesis that ini1 is a tumor suppressor gene and suggest a novel link between human SWI/SNF chromatin remodeling complex and apoptosis.


Asunto(s)
Apoptosis/fisiología , Cromatina/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila , Fase G1/fisiología , Genes Supresores de Tumor , Proteínas de Unión al ARN , Adenoviridae/genética , Apoptosis/genética , Niño , Proteínas Cromosómicas no Histona , Ensayo de Unidades Formadoras de Colonias , Replicación del ADN , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Citometría de Flujo , Fase G1/genética , Vectores Genéticos/genética , Células HeLa/metabolismo , Células HeLa/ultraestructura , Humanos , Plásmidos/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Recombinantes de Fusión/fisiología , Tumor Rabdoide/patología , Rabdomiosarcoma/patología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Proteína SMARCB1 , Eliminación de Secuencia , Factores de Transcripción/fisiología , Células Tumorales Cultivadas/metabolismo , Células Tumorales Cultivadas/ultraestructura
18.
J Invest Dermatol ; 102(6): 963-6, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8006461

RESUMEN

The most common manifestations of neonatal lupus erythematosus (NLE) are cutaneous lupus and congenital heart block. Autoantibodies to Ro/SSA occur in almost all cases of NLE. The autoantibody response to Ro/SSA is complex, and antibodies may be detected to 60-kD Ro/SSA, 52-kD Ro/SSA, La/SSB, and U1 ribonuclear protein in anti-Ro/SSA-positive sera. Which of these anti-Ro/SSA-related autoantibody specificities are important in the clinical expression of NLE is not conclusively established. We examined the autoantibody specificities in 20 maternal NLE sera to determine whether autoantibody specificities correlate with the clinical findings and to evaluate the relative importance of autoantibodies to the different Ro/SSA-associated proteins. Autoantibodies were examined using immunodiffusion, immunoblotting, and enzyme-linked immunosorbent assay. Eleven babies had NLE skin disease, 11 had heart block, and two had both skin disease and heart block. All 20 maternal sera had antibodies to 60-kD Ro/SSA. Eighteen of the 20 had antibodies to 52-kD Ro/SSA, nine had antibodies to La/SSB, and one had antibodies to U1 ribonuclear protein. The prevalence of anti-La/SSB was the same in the skin-disease and heart-block subsets of NLE. Titers of anti-60-kD Ro/SSA were significantly (p < 0.02) lower in NLE skin disease maternal sera than in the NLE heart-block maternal sera. These results point out the importance of 60-kD Ro/SSA as a potential target in NLE. We speculate that the lower titers of anti-60-kD Ro/SSA in the sera from mothers of babies with skin disease may be due to substantial deposition of antibodies in the mothers' and babies' skin, leading to lower circulating titers, or may reflect a lower threshold for development of skin disease than for heart block.


Asunto(s)
Autoanticuerpos/análisis , Enfermedades del Recién Nacido/inmunología , Lupus Eritematoso Cutáneo/inmunología , Anticuerpos Antinucleares/análisis , Anticuerpos Antinucleares/inmunología , Anticuerpos Antinucleares/fisiología , Autoanticuerpos/inmunología , Autoanticuerpos/fisiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Immunoblotting , Inmunodifusión , Recién Nacido , Enfermedades del Recién Nacido/etiología , Enfermedades del Recién Nacido/fisiopatología , Lupus Eritematoso Cutáneo/etiología , Lupus Eritematoso Cutáneo/fisiopatología , Ribonucleoproteína Nuclear Pequeña U1/análisis , Ribonucleoproteína Nuclear Pequeña U1/inmunología , Ribonucleoproteína Nuclear Pequeña U1/fisiología
19.
Lupus ; 15(3): 132-7, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16634365

RESUMEN

Mixed connective tissue disease (MCTD) was first described in 1972 as a disease syndrome with overlapping features of systemic sclerosis, systemic lupus erythematosus (SLE) and polymyositis associated with antibodies to RNAse sensitive extractable nuclear antigen. When the antigen was subsequently characterized as polypeptides on the U1 ribonuclear protein component of the splicesosome (U1RNP), MCTD became the first rheumatic disease syndrome to be defined by a serologic test. Clinical features include a high frequency of Raynaud's syndrome, swollen hands, sclerodactyly, arthritis, polymyositis and interstitial lung disease. Over the last 30 years there has been a continuing debate as to whether MCTD constitutes a 'distinct clinical entity'. Here, I will review the pathological, immunogenetic and clinical features of MCTD and conclude that the debate remains unresolved. The early misconception that it has a relatively good prognosis has not stood the test of time with long-term follow-up studies. These have identified a tendency for MCTD to evolve into SLE or systemic sclerosis and highlighted pulmonary hypertension and scleroderma renal crisis as important causes of death. Providing it is realized that our appreciation of the clinical features associated with anti-U1RNP have evolved over time, MCTD remains a useful concept in clinical practice. Whether it can be credited with the term 'disease' awaits the demonstration of common etiopathological events underlying the development of antibodies to U1 RNP and their associated clinical features.


Asunto(s)
Enfermedad Mixta del Tejido Conjuntivo/terapia , Humanos , Enfermedad Mixta del Tejido Conjuntivo/diagnóstico , Enfermedad Mixta del Tejido Conjuntivo/etiología , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/fisiología
20.
Genes Dev ; 19(22): 2695-704, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16291644

RESUMEN

Recent studies have revealed that transcription of noncoding, intergenic DNA is abundant among eukaryotes. However, the functions of this transcription are poorly understood. We have previously shown that in Saccharomyces cerevisiae, expression of an intergenic transcript, SRG1, represses the transcription of the adjacent gene, SER3, by transcription interference. We now show that SRG1 transcription is regulated by serine, thereby conferring regulation of SER3, a serine biosynthetic gene. This regulation requires Cha4, a serine-dependent activator that binds to the SRG1 promoter and is required for SRG1 induction in the presence of serine. Furthermore, two coactivator complexes, SAGA and Swi/Snf, are also directly required for activation of SRG1 and transcription interference of SER3. Taken together, our results elucidate a physiological role for intergenic transcription in the regulation of SER3. Moreover, our results demonstrate a mechanism by which intergenic transcription allows activators to act indirectly as repressors.


Asunto(s)
ADN Intergénico/genética , Regulación Fúngica de la Expresión Génica/fisiología , Saccharomyces cerevisiae/genética , Transcripción Genética/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/fisiología , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/biosíntesis , Fosfoglicerato-Deshidrogenasa/genética , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/fisiología , Proteínas Represoras/fisiología , Ribonucleoproteína Nuclear Pequeña U1/fisiología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Serina/fisiología , Supresión Genética/genética , Transactivadores/metabolismo , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda