Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.251
Filtrar
Más filtros

Publication year range
1.
Nature ; 623(7987): 562-570, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880372

RESUMEN

Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.


Asunto(s)
Ritmo Circadiano , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados , Percepción Visual , Animales , Acetilcolina/metabolismo , Relojes Biológicos/fisiología , Relojes Biológicos/efectos de la radiación , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Drosophila melanogaster/efectos de la radiación , Retroalimentación Fisiológica , Histamina/metabolismo , Neurotransmisores/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Receptores Colinérgicos/metabolismo , Receptores Histamínicos/metabolismo , Percepción Visual/fisiología , Percepción Visual/efectos de la radiación
2.
Nature ; 617(7959): 194-199, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100907

RESUMEN

Circadian rhythms influence many behaviours and diseases1,2. They arise from oscillations in gene expression caused by repressor proteins that directly inhibit transcription of their own genes. The fly circadian clock offers a valuable model for studying these processes, wherein Timeless (Tim) plays a critical role in mediating nuclear entry of the transcriptional repressor Period (Per) and the photoreceptor Cryptochrome (Cry) entrains the clock by triggering Tim degradation in light2,3. Here, through cryogenic electron microscopy of the Cry-Tim complex, we show how a light-sensing cryptochrome recognizes its target. Cry engages a continuous core of amino-terminal Tim armadillo repeats, resembling how photolyases recognize damaged DNA, and binds a C-terminal Tim helix, reminiscent of the interactions between light-insensitive cryptochromes and their partners in mammals. The structure highlights how the Cry flavin cofactor undergoes conformational changes that couple to large-scale rearrangements at the molecular interface, and how a phosphorylated segment in Tim may impact clock period by regulating the binding of Importin-α and the nuclear import of Tim-Per4,5. Moreover, the structure reveals that the N terminus of Tim inserts into the restructured Cry pocket to replace the autoinhibitory C-terminal tail released by light, thereby providing a possible explanation for how the long-short Tim polymorphism adapts flies to different climates6,7.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Criptocromos , Proteínas de Drosophila , Drosophila melanogaster , Animales , Relojes Circadianos/fisiología , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Criptocromos/química , Criptocromos/metabolismo , Criptocromos/ultraestructura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efectos de la radiación , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Luz , Mamíferos/metabolismo , Microscopía por Crioelectrón , Transporte Activo de Núcleo Celular/efectos de la radiación , alfa Carioferinas/metabolismo
3.
Nature ; 598(7880): 353-358, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588695

RESUMEN

Time-restricted feeding (TRF) has recently gained interest as a potential anti-ageing treatment for organisms from Drosophila to humans1-5. TRF restricts food intake to specific hours of the day. Because TRF controls the timing of feeding, rather than nutrient or caloric content, TRF has been hypothesized to depend on circadian-regulated functions; the underlying molecular mechanisms of its effects remain unclear. Here, to exploit the genetic tools and well-characterized ageing markers of Drosophila, we developed an intermittent TRF (iTRF) dietary regimen that robustly extended fly lifespan and delayed the onset of ageing markers in the muscles and gut. We found that iTRF enhanced circadian-regulated transcription and that iTRF-mediated lifespan extension required both circadian regulation and autophagy, a conserved longevity pathway. Night-specific induction of autophagy was both necessary and sufficient to extend lifespan on an ad libitum diet and also prevented further iTRF-mediated lifespan extension. By contrast, day-specific induction of autophagy did not extend lifespan. Thus, these results identify circadian-regulated autophagy as a critical contributor to iTRF-mediated health benefits in Drosophila. Because both circadian regulation and autophagy are highly conserved processes in human ageing, this work highlights the possibility that behavioural or pharmaceutical interventions that stimulate circadian-regulated autophagy might provide people with similar health benefits, such as delayed ageing and lifespan extension.


Asunto(s)
Autofagia/fisiología , Ritmo Circadiano/fisiología , Drosophila melanogaster/fisiología , Conducta Alimentaria/fisiología , Longevidad/fisiología , Envejecimiento/genética , Envejecimiento/efectos de la radiación , Animales , Autofagia/genética , Biomarcadores , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Oscuridad , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de la radiación , Conducta Alimentaria/efectos de la radiación , Femenino , Longevidad/genética , Longevidad/efectos de la radiación , Masculino , Factores de Tiempo
4.
Nature ; 581(7807): 194-198, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32404998

RESUMEN

Daily changes in light and food availability are major time cues that influence circadian timing1. However, little is known about the circuits that integrate these time cues to drive a coherent circadian output1-3. Here we investigate whether retinal inputs modulate entrainment to nonphotic cues such as time-restricted feeding. Photic information is relayed to the suprachiasmatic nucleus (SCN)-the central circadian pacemaker-and the intergeniculate leaflet (IGL) through intrinsically photosensitive retinal ganglion cells (ipRGCs)4. We show that adult mice that lack ipRGCs from the early postnatal stages have impaired entrainment to time-restricted feeding, whereas ablation of ipRGCs at later stages had no effect. Innervation of ipRGCs at early postnatal stages influences IGL neurons that express neuropeptide Y (NPY) (hereafter, IGLNPY neurons), guiding the assembly of a functional IGLNPY-SCN circuit. Moreover, silencing IGLNPY neurons in adult mice mimicked the deficits that were induced by ablation of ipRGCs in the early postnatal stages, and acute inhibition of IGLNPY terminals in the SCN decreased food-anticipatory activity. Thus, innervation of ipRGCs in the early postnatal period tunes the IGLNPY-SCN circuit to allow entrainment to time-restricted feeding.


Asunto(s)
Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Luz , Vías Nerviosas , Retina/fisiología , Animales , Axones/fisiología , Axones/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Señales (Psicología) , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/efectos de la radiación , Conducta Alimentaria/efectos de la radiación , Femenino , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/efectos de la radiación , Masculino , Ratones , Vías Nerviosas/efectos de la radiación , Neuropéptido Y/metabolismo , Retina/citología , Retina/efectos de la radiación , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Transducción de Señal/efectos de la radiación , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/fisiología , Núcleo Supraquiasmático/efectos de la radiación , Factores de Tiempo
5.
Nature ; 574(7777): 254-258, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31534216

RESUMEN

Group 3 innate lymphoid cells (ILC3s) are major regulators of inflammation, infection, microbiota composition and metabolism1. ILC3s and neuronal cells have been shown to interact at discrete mucosal locations to steer mucosal defence2,3. Nevertheless, it is unclear whether neuroimmune circuits operate at an organismal level, integrating extrinsic environmental signals to orchestrate ILC3 responses. Here we show that light-entrained and brain-tuned circadian circuits regulate enteric ILC3s, intestinal homeostasis, gut defence and host lipid metabolism in mice. We found that enteric ILC3s display circadian expression of clock genes and ILC3-related transcription factors. ILC3-autonomous ablation of the circadian regulator Arntl led to disrupted gut ILC3 homeostasis, impaired epithelial reactivity, a deregulated microbiome, increased susceptibility to bowel infection and disrupted lipid metabolism. Loss of ILC3-intrinsic Arntl shaped the gut 'postcode receptors' of ILC3s. Strikingly, light-dark cycles, feeding rhythms and microbial cues differentially regulated ILC3 clocks, with light signals being the major entraining cues of ILC3s. Accordingly, surgically or genetically induced deregulation of brain rhythmicity led to disrupted circadian ILC3 oscillations, a deregulated microbiome and altered lipid metabolism. Our work reveals a circadian circuitry that translates environmental light cues into enteric ILC3s, shaping intestinal health, metabolism and organismal homeostasis.


Asunto(s)
Encéfalo/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Homeostasis/efectos de la radiación , Intestinos/inmunología , Intestinos/efectos de la radiación , Luz , Linfocitos/inmunología , Linfocitos/efectos de la radiación , Factores de Transcripción ARNTL/deficiencia , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Relojes Biológicos/genética , Relojes Biológicos/efectos de la radiación , Encéfalo/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/inmunología , Ritmo Circadiano/fisiología , Señales (Psicología) , Conducta Alimentaria/efectos de la radiación , Femenino , Microbioma Gastrointestinal/efectos de la radiación , Inmunidad Innata/efectos de la radiación , Intestinos/citología , Metabolismo de los Lípidos , Linfocitos/metabolismo , Masculino , Ratones , Fotoperiodo
6.
Plant Cell ; 33(5): 1828-1844, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33624811

RESUMEN

Plants are subjected to fluctuations in light intensity, and this might cause unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate-glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2) in chloroplasts. This was carried out over several days under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in non-photochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.


Asunto(s)
Arabidopsis/fisiología , Cloroplastos/metabolismo , Ritmo Circadiano/fisiología , Glutatión/metabolismo , Fotosíntesis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Luz , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
7.
PLoS Biol ; 19(10): e3001413, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34665816

RESUMEN

Light plays a fundamental role in the ecology of organisms in nearly all habitats on Earth and is central for processes such as vision and the entrainment of the circadian clock. The poles represent extreme light regimes with an annual light cycle including periods of Midnight Sun and Polar Night. The Arctic Ocean extends to the North Pole, and marine light extremes reach their maximum extent in this habitat. During the Polar Night, traditional definitions of day and night and seasonal photoperiod become irrelevant since there are only "twilight" periods defined by the sun's elevation below the horizon at midday; we term this "midday twilight." Here, we characterize light across a latitudinal gradient (76.5° N to 81° N) during Polar Night in January. Our light measurements demonstrate that the classical solar diel light cycle dominant at lower latitudes is modulated during Arctic Polar Night by lunar and auroral components. We therefore question whether this particular ambient light environment is relevant to behavioral and visual processes. We reveal from acoustic field observations that the zooplankton community is undergoing diel vertical migration (DVM) behavior. Furthermore, using electroretinogram (ERG) recording under constant darkness, we show that the main migratory species, Arctic krill (Thysanoessa inermis) show endogenous increases in visual sensitivity during the subjective night. This change in sensitivity is comparable to that under exogenous dim light acclimations, although differences in speed of vision suggest separate mechanisms. We conclude that the extremely weak midday twilight experienced by krill at high latitudes during the darkest parts of the year has physiological and ecological relevance.


Asunto(s)
Ritmo Circadiano/efectos de la radiación , Euphausiacea/fisiología , Euphausiacea/efectos de la radiación , Luz , Acústica , Animales , Organismos Acuáticos/fisiología , Atmósfera , Modelos Biológicos , Visión Ocular/fisiología , Zooplancton/fisiología
8.
J Exp Biol ; 227(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38873751

RESUMEN

The influence of light spectral properties on circadian rhythms is of substantial interest to laboratory-based investigation of the circadian system and to field-based understanding of the effects of artificial light at night. The trade-offs between intensity and spectrum regarding masking behaviors are largely unknown, even for well-studied organisms. We used a custom LED illumination system to document the response of wild-type house mice (Mus musculus) to 1-h nocturnal exposure of all combinations of four intensity levels (0.01, 0.5, 5 and 50 lx) and three correlated color temperatures (CCT; 1750, 1950 and 3000 K). Higher intensities of light (50 lx) suppressed cage activity substantially, and consistently more for the higher CCT light (91% for 3000 K, 53% for 1750 K). At the lowest intensity (0.01 lx), mean activity was increased, with the greatest increases for the lowest CCT (12.3% increase at 1750 K, 3% increase at 3000 K). Multiple linear regression confirmed the influence of both CCT and intensity on changes in activity, with the scaled effect size of intensity 3.6 times greater than that of CCT. Activity suppression was significantly lower for male than for female mice. Assessment of light-evoked cFos expression in the suprachiasmatic nucleus at 50 lx showed no significant difference between high and low CCT exposure. The significant differences by spectral composition illustrate a need to account for light spectrum in circadian studies of behavior, and confirm that spectral controls can mitigate some, but certainly not all, of the effects of light pollution on species in the wild.


Asunto(s)
Ritmo Circadiano , Luz , Iluminación , Animales , Ratones/fisiología , Masculino , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Femenino , Conducta Animal/efectos de la radiación , Conducta Animal/fisiología , Actividad Motora/efectos de la radiación , Temperatura
9.
Physiol Plant ; 176(4): e14410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945685

RESUMEN

Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 µmol m-2 s-1) while DC stayed constant at 300 µmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.


Asunto(s)
Ritmo Circadiano , Luz , Solanum lycopersicum , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Fotosíntesis/efectos de la radiación , Fotosíntesis/fisiología , Fotoperiodo , Xantófilas/metabolismo , Luz Solar , Clorofila/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Cinética , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo
10.
Physiol Plant ; 176(4): e14504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39191700

RESUMEN

Plant infections caused by fungi lead to significant crop losses worldwide every year. This study aims to better understand the plant defence mechanisms regulated by red light, in particular, the effects of red light at night when most phytopathogens are highly infectious. Our results showed that superoxide production significantly increased immediately after red light exposure and, together with hydrogen peroxide levels, was highest at dawn after 30 min of nocturnal red-light treatment. In parallel, red-light-induced expression and increased the activities of several antioxidant enzymes. The nocturnal red light did not affect salicylic acid but increased jasmonic acid levels immediately after illumination, whereas abscisic acid levels increased 3 h after nocturnal red-light exposure at dawn. Based on the RNAseq data, red light immediately increased the transcription of several chloroplastic chlorophyll a-b binding protein and circadian rhythm-related genes, such as Constans 1, CONSTANS interacting protein 1 and zinc finger protein CONSTANS-LIKE 10. In addition, the levels of several transcription factors were also increased after red light exposure, such as the DOF zinc finger protein and a MYB transcription factor involved in the regulation of circadian rhythms and defence responses in tomato. In addition to identifying these key transcription factors in tomato, the application of red light at night for one week not only reactivated key antioxidant enzymes at the gene and enzyme activity level at dawn but also contributed to a more efficient and successful defence against Botrytis cinerea infection.


Asunto(s)
Botrytis , Regulación de la Expresión Génica de las Plantas , Luz , Enfermedades de las Plantas , Solanum lycopersicum , Botrytis/fisiología , Solanum lycopersicum/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ácido Abscísico/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácido Salicílico/metabolismo , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Luz Roja
11.
Nature ; 563(7732): 493-500, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464269

RESUMEN

Lighting based on light-emitting diodes (LEDs) not only is more energy efficient than traditional lighting, but also enables improved performance and control. The colour, intensity and distribution of light can now be controlled with unprecedented precision, enabling light to be used both as a signal for specific physiological responses in humans and plants, and as an efficient fuel for fresh food production. Here we show how a broad and improved understanding of the physiological responses to light will facilitate greater energy savings and provide health and productivity benefits that have not previously been associated with lighting.


Asunto(s)
Agricultura/instrumentación , Alimentos , Salud , Iluminación/instrumentación , Iluminación/métodos , Fotones , Agricultura/métodos , Animales , Encéfalo/fisiología , Encéfalo/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Conservación de los Recursos Energéticos , Eficiencia/fisiología , Eficiencia/efectos de la radiación , Ojo/efectos de la radiación , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Iluminación/economía , Iluminación/historia , Células Fotorreceptoras de Vertebrados/fisiología , Células Fotorreceptoras de Vertebrados/efectos de la radiación , Fototerapia
12.
Arch Insect Biochem Physiol ; 117(2): e70001, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39449366

RESUMEN

Short-wavelength blue light is ubiquitous in daily life and has a lasting destructive influence. Its potential harm to biological health is significant. This study used Drosophila as a model organism to investigate the protective effects of kaempferol, a flavonoid, against the toxicity of blue light. It also examined its physiological effects on Drosophila under blue light irradiation. In this experiment, fruit flies were fed with three different concentrations of kaempferol solutions (0.1, 0.01, and 0.001 mol/L) dissolved in food. The survival rate and physiological indexes of Drosophila were investigated under blue light irradiation of 2500 lux. The results showed that 0.1 mol/L kaempferol increased the activity of male flies during the day and significantly extended the male survival time under blue light irradiation. However, the study found that kaempferol did not significantly prolong the survival time of Drosophila in the oxidative stress experiment, and no significant difference was observed in the feeding experiment. In summary, our research found that kaempferol, at the concentration of 0.1 mol/L, has a protective effect on Drosophila under blue light irradiation, potentially achieved through alterations in circadian rhythm.


Asunto(s)
Quempferoles , Luz , Longevidad , Animales , Quempferoles/farmacología , Masculino , Longevidad/efectos de los fármacos , Longevidad/efectos de la radiación , Luz/efectos adversos , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/efectos de la radiación , Drosophila melanogaster/fisiología , Drosophila/efectos de los fármacos , Drosophila/efectos de la radiación , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Luz Azul
13.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34187900

RESUMEN

Shade-avoiding plants can detect the presence of neighboring vegetation and evoke escape responses before canopy cover limits photosynthesis. Rapid stem elongation facilitates light foraging and enables plants to overtop competitors. A major regulator of this response is the phytochrome B photoreceptor, which becomes inactivated in light environments with a low ratio of red to far-red light (low R:FR), characteristic of vegetational shade. Although shade avoidance can provide plants with a competitive advantage in fast-growing stands, excessive stem elongation can be detrimental to plant survival. As such, plants have evolved multiple feedback mechanisms to attenuate shade-avoidance signaling. The very low R:FR and reduced levels of photosynthetically active radiation (PAR) present in deep canopy shade can, together, trigger phytochrome A (phyA) signaling, inhibiting shade avoidance and promoting plant survival when resources are severely limited. The molecular mechanisms underlying this response have not been fully elucidated. Here, we show that Arabidopsis thaliana phyA elevates early-evening expression of the central circadian-clock components TIMING OF CAB EXPRESSION 1 (TOC1), PSEUDO RESPONSE REGULATOR 7 (PRR7), EARLY FLOWERING 3 (ELF3), and ELF4 in photocycles of low R:FR and low PAR. These collectively suppress stem elongation, antagonizing shade avoidance in deep canopy shade.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos , Fitocromo A/metabolismo , Hojas de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica de las Plantas , Luz , Hojas de la Planta/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33547239

RESUMEN

The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.


Asunto(s)
Ritmo Circadiano/genética , Células Eucariotas/efectos de la radiación , Luz , Océanos y Mares , Plancton/crecimiento & desarrollo , Plancton/efectos de la radiación , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transcripción Genética/efectos de la radiación , Chlamydomonas/genética , Chlamydomonas/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Células Eucariotas/metabolismo , Células Fotorreceptoras/metabolismo , Filogenia , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo
15.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443164

RESUMEN

The regulatory mechanisms of circadian rhythms have been studied primarily at the level of the transcription-translation feedback loops of protein-coding genes. Regulatory modules involving noncoding RNAs are less thoroughly understood. In particular, emerging evidence has revealed the important role of microRNAs (miRNAs) in maintaining the robustness of the circadian system. To identify miRNAs that have the potential to modulate circadian rhythms, we conducted a genome-wide miRNA screen using U2OS luciferase reporter cells. Among 989 miRNAs in the library, 120 changed the period length in a dose-dependent manner. We further validated the circadian regulatory function of an miRNA cluster, miR-183/96/182, both in vitro and in vivo. We found that all three members of this miRNA cluster can modulate circadian rhythms. Particularly, miR-96 directly targeted a core circadian clock gene, PER2. The knockout of the miR-183/96/182 cluster in mice showed tissue-specific effects on circadian parameters and altered circadian rhythms at the behavioral level. This study identified a large number of miRNAs, including the miR-183/96/182 cluster, as circadian modulators. We provide a resource for further understanding the role of miRNAs in the circadian network and highlight the importance of miRNAs as a genome-wide layer of circadian clock regulation.


Asunto(s)
Ritmo Circadiano/genética , Regulación de la Expresión Génica/genética , MicroARNs/metabolismo , Proteínas Circadianas Period/metabolismo , Animales , Línea Celular Tumoral , Ritmo Circadiano/efectos de la radiación , Regulación de la Expresión Génica/efectos de la radiación , Técnicas de Sustitución del Gen , Técnicas de Inactivación de Genes , Genómica , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Pulmón/metabolismo , Pulmón/efectos de la radiación , Ratones , MicroARNs/genética , Familia de Multigenes , Especificidad de Órganos , Proteínas Circadianas Period/genética , Retina/metabolismo , Retina/efectos de la radiación , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/efectos de la radiación , Factores de Tiempo
16.
Nature ; 545(7654): 340-344, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28489826

RESUMEN

Animals partition their daily activity rhythms through their internal circadian clocks, which are synchronized by oscillating day-night cycles of light. The fruitfly Drosophila melanogaster senses day-night cycles in part through rhodopsin-dependent light reception in the compound eye and photoreceptor cells in the Hofbauer-Buchner eyelet. A more noteworthy light entrainment pathway is mediated by central pacemaker neurons in the brain. The Drosophila circadian clock is extremely sensitive to light. However, the only known light sensor in pacemaker neurons, the flavoprotein cryptochrome (Cry), responds only to high levels of light in vitro. These observations indicate that there is an additional light-sensing pathway in fly pacemaker neurons. Here we describe a previously uncharacterized rhodopsin, Rh7, which contributes to circadian light entrainment by circadian pacemaker neurons in the brain. The pacemaker neurons respond to violet light, and this response depends on Rh7. Loss of either cry or rh7 caused minor defects in photoentrainment, whereas loss of both caused profound impairment. The circadian photoresponse to constant light was impaired in rh7 mutant flies, especially under dim light. The demonstration that Rh7 functions in circadian pacemaker neurons represents, to our knowledge, the first role for an opsin in the central brain.


Asunto(s)
Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Drosophila melanogaster/fisiología , Rodopsina/metabolismo , Animales , Nivel de Alerta/fisiología , Nivel de Alerta/efectos de la radiación , Encéfalo/citología , Encéfalo/efectos de la radiación , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Color , Oscuridad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efectos de la radiación , Femenino , Luz , Masculino , Mutación , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/efectos de la radiación , Rodopsina/genética
17.
Am J Physiol Endocrinol Metab ; 322(1): E1-E9, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719945

RESUMEN

Circadian disruption induced by rotating light cycles has been linked to metabolic disorders. However, how the interaction of light intensity and light cycle affects metabolism under different diets remains to be explored. Eighty mice were first randomly stratified into the low-fat diet (LFD, n = 40) or high-fat diet (HFD, n = 40) groups. Each group was further randomly subdivided into four groups (n = 8-12 per group) in terms of different light intensities [lower (LI, 78 lx) or higher intensity (HI, 169 lx)] and light cycles [12-h light:12-h dark cycle or circadian-disrupting (CD) light cycle consisting of repeated 6-h light phase advancement]. Body weight was measured weekly. At the end of the 16-wk experiment, mice were euthanized for serum and pathological analysis. Glucose and insulin tolerance tests were performed during the last 2 wk. The CD cycle increased body weight gain, adipocyte area, glucose intolerance, and insulin resistance of LFD as well as HFD mice under HI but not LI condition. Moreover, the serum and hepatic triglyceride levels increased with LFD-HI treatment, regardless of light cycle. In addition, the CD cycle improved lipid and glucose metabolism under HFD-LI condition. In summary, the detrimental effects of the CD cycle on metabolism were alleviated under LI condition, especially in HFD mice. These results indicate that modulating light intensity is a potential strategy to prevent the negative metabolic consequences associated with jet lag or shift work.NEW & NOTEWORTHY Glucose and lipid homeostasis is altered by the CD cycles in a light-intensity-dependent manner. Lower-intensity light reverses the negative metabolic effects of the CD cycles, especially under HFD feeding. The interaction of light intensity and light cycle on metabolism is independent of energy intake and eating pattern. Glucose metabolic disorders caused by rotating light cycles occur along with compensatory ß-cell mass expansion.


Asunto(s)
Glucemia/metabolismo , Colesterol/sangre , Relojes Circadianos/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Luz , Transducción de Señal/efectos de la radiación , Triglicéridos/sangre , Animales , Glucemia/análisis , Ingestión de Alimentos/efectos de la radiación , Intolerancia a la Glucosa/sangre , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Resistencia a la Insulina/efectos de la radiación , Hígado/metabolismo , Locomoción/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Aumento de Peso/efectos de la radiación
18.
Biochem Biophys Res Commun ; 592: 93-98, 2022 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-35033872

RESUMEN

Intrinsically photosensitive retinal ganglion cells (ipRGCs) are able to synthesize the photosensitive protein melanopsin, which is involved in the regulation of circadian rhythms, the papillary light reflex and other nonimaging visual functions. To investigate whether ipRGCs are involved in mediating the light modulation of sleep-wakefulness in rodents, melanopsin knockout mice (MKO), melanopsin-only mice (MO) and coneless, rodless, melanopsin knockout mice (TKO) were used in this study to record electroencephalogram and electromyography variations in the normal 12:12 h light:dark cycle, and 1 h and 3 h light pulses were administered at 1 h after the light was turned off. In the normal 12:12 h light-dark cycle, the WT, MKO and MO mice had a regular day-night rhythm and no significant difference in wakefulness, rapid eye movement (REM) or nonrapid eye movement (NREM) sleep. However, TKO mice could not be entrained according to the light-dark cycle and exhibited a free-running rhythm. Extending the light pulse durations significantly changed the sleep and wakefulness activities of the WT and MO mice but did not have an effect on the MKO mice. These results indicate that melanopsin significantly affects REM and NREM sleep and that ipRGCs play an important role in light-induced sleep in mice.


Asunto(s)
Luz , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Sueño/fisiología , Sueño/efectos de la radiación , Vigilia/fisiología , Vigilia/efectos de la radiación , Animales , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Opsinas de Bastones/deficiencia , Opsinas de Bastones/metabolismo , Fases del Sueño/fisiología , Fases del Sueño/efectos de la radiación
19.
Proc Natl Acad Sci U S A ; 116(46): 23339-23344, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31659046

RESUMEN

Drosophila CRYPTOCHROME (dCRY) mediates electrophysiological depolarization and circadian clock resetting in response to blue or ultraviolet (UV) light. These light-evoked biological responses operate at different timescales and possibly through different mechanisms. Whether electron transfer down a conserved chain of tryptophan residues underlies biological responses following dCRY light activation has been controversial. To examine these issues in in vivo and in ex vivo whole-brain preparations, we generated transgenic flies expressing tryptophan mutant dCRYs in the conserved electron transfer chain and then measured neuronal electrophysiological phototransduction and behavioral responses to light. Electrophysiological-evoked potential analysis shows that dCRY mediates UV and blue-light-evoked depolarizations that are long lasting, persisting for nearly a minute. Surprisingly, dCRY appears to mediate red-light-evoked depolarization in wild-type flies, absent in both cry-null flies, and following acute treatment with the flavin-specific inhibitor diphenyleneiodonium in wild-type flies. This suggests a previously unsuspected functional signaling role for a neutral semiquinone flavin state (FADH•) for dCRY. The W420 tryptophan residue located closest to the FAD-dCRY interaction site is critical for blue- and UV-light-evoked electrophysiological responses, while other tryptophan residues within electron transfer distance to W420 do not appear to be required for light-evoked electrophysiological responses. Mutation of the dCRY tryptophan residue W342, more distant from the FAD interaction site, mimics the cry-null behavioral light response to constant light exposure. These data indicate that light-evoked dCRY electrical depolarization and clock resetting are mediated by distinct mechanisms.


Asunto(s)
Relojes Biológicos/efectos de la radiación , Criptocromos/efectos de la radiación , Proteínas de Drosophila/efectos de la radiación , Proteínas del Ojo/efectos de la radiación , Animales , Animales Modificados Genéticamente , Ritmo Circadiano/efectos de la radiación , Criptocromos/genética , Criptocromos/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Locomoción/efectos de la radiación , Mutación , Triptófano/genética
20.
Mol Psychiatry ; 25(5): 1080-1093, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31138889

RESUMEN

The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1ß mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.


Asunto(s)
Depresión/etiología , Hipocampo/efectos de la radiación , Luz/efectos adversos , Iluminación/efectos adversos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Femenino , Hipocampo/metabolismo , Interleucina-1beta/genética , Masculino , Ratones , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda