Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Planta ; 259(3): 66, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332379

RESUMEN

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Asunto(s)
Ácido Abscísico , Robinia , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Robinia/genética , Tetraploidía , Ácidos Indolacéticos/metabolismo , Perfilación de la Expresión Génica , Piruvatos/metabolismo , Raíces de Plantas/metabolismo
2.
Physiol Plant ; 176(2): e14205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439620

RESUMEN

Rhizobia and arbuscular mycorrhizal fungi (AMF) are symbiotic microorganisms important for plants grown in nutrient-deficient and heavy metal-contaminated soils. However, it remains unclear how plants respond to the coupled stress by heavy metal and nitrogen (N) deficiency under co-inoculation. Here, we investigated the synergistic effect of Mesorhizobium huakuii QD9 and Funneliformis mosseae on the response of black locust (Robinia pseudoacacia L.) grown in sand culture to cadmium (Cd) under N deficiency conditions. The results showed that single inoculation of AMF improved the growth and Cd resistance of black locust, co-inoculation improved the most. Compared to non-inoculated controls, co-inoculation mediated higher biomass and antioxidant enzyme activity, reduced oxidative stress, and promoted nodulation, mycorrhizal colonization, photosynthetic capacity, and N, P, Fe and Mg acquisition when exposed to Cd. This increase was significantly higher under N deficiency compared to N sufficiency. In addition, the uptake of Cd by co-inoculated black locust roots increased, but Cd translocation to the above-ground decreased under both N deficiency and sufficiency. Thus, in the tripartite symbiotic system, not merely metabolic processes but also Cd uptake increased under N deficiency. However, enhanced Cd detoxification in the roots and reduced allocation to the shoot likely prevent Cd toxicity and rather stimulated growth under these conditions.


Asunto(s)
Micorrizas , Rhizobium , Robinia , Cadmio/toxicidad , Arena , Antioxidantes
3.
Physiol Plant ; 176(2): e14235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38472162

RESUMEN

N2 -fixing legumes can strongly affect ecosystem functions by supplying nitrogen (N) and improving the carbon-fixing capacity of vegetation. Still, the question of how their leaf-level N status and carbon metabolism are coordinated along leaf ageing remains unexplored. Leaf tissue carbon isotopic composition (δ13 C) provides a useful indicator of time-integrated intrinsic water use efficiency (WUEi). Here, we quantified the seasonal changes of leaf δ13 C, N content on a mass and area basis (Nmass , Narea , respectively), Δ18 O (leaf 18 O enrichment above source water, a proxy of time-integrated stomatal conductance) and morphological traits in an emblematic N2 -fixing legume tree, the black locust (Robinia pseudoacacia L.), at a subtropical site in Southwest China. We also measured xylem, soil and rainwater isotopes (δ18 O, δ2 H) to characterize tree water uptake patterns. Xylem water isotopic data reveal that black locust primarily used shallow soil water in this humid habitat. Black locust exhibited a decreasing δ13 C along leaf ageing, which was largely driven by decreasing leaf Nmass , despite roughly constant Narea . In contrast, the decreasing δ13 C along leaf ageing was largely uncoupled from parallel increases in Δ18 O and leaf thickness. Leaf N content is used as a proxy of leaf photosynthetic capacity; thus, it plays a key role in determining the seasonality in δ13 C, whereas the roles of stomatal conductance and leaf morphology are minor. Black locust leaves can effectively adjust to changing environmental conditions along leaf ageing through LMA increases and moderate stomatal conductance reduction while maintaining constant Narea to optimize photosynthesis and carbon assimilation, despite declining leaf Nmass and δ13 C.


Asunto(s)
Fabaceae , Robinia , Árboles/metabolismo , Ecosistema , Fabaceae/metabolismo , Hojas de la Planta/metabolismo , Carbono/metabolismo , Suelo , Agua/metabolismo , Nitrógeno/metabolismo
4.
Environ Res ; 242: 117720, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37996008

RESUMEN

Vegetation restoration has significant impacts on ecosystems, and a comprehensive understanding of microbial environmental adaptability could facilitate coping with ecological challenges such as environmental change and biodiversity loss. Here, abundant and rare soil bacterial and fungal communities were characterized along a 15-45-year chronosequence of forest vegetation restoration in the Loess Plateau region. Phylogenetic-bin-based null model analysis (iCAMP), niche breadth index, and co-occurrence network analysis were used to assess microbial community assembly and environmental adaptation of a Robinia pseudoacacia plantation under long-term vegetation restoration. The drift process governed community assembly of abundant and rare soil fungi and bacteria. With increasing soil total phosphorus content, the relative importance of drift increased, while dispersal limitation and heterogeneous selection exhibited opposite trends for abundant and rare fungi. Rare soil fungal composition dissimilarities were dominated by species replacement processes. Abundant microbial taxa had higher ecological niche width and contribution to ecosystem multifunctionality than rare taxa. Node property values (e.g., degree and betweenness) of abundant microbial taxa were substantially higher than those of rare microbial taxa, indicating abundant species occupied a central position in the network. This study provides insights into the diversity and stability of microbial communities during vegetation restoration in Loess Plateau. The findings highlight that abundant soil fungi and bacteria have broad environmental adaptation and major implications for soil multifunctionality under long-term vegetation restoration.


Asunto(s)
Microbiota , Robinia , Ecosistema , Filogenia , Bosques , Bacterias , Suelo , Microbiología del Suelo , China
5.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279314

RESUMEN

Polyploid breeding techniques aid in the cultivation of new forestry cultivars, thus expanding the suite of strategies for the improvement of arboreal traits and innovation within the field of forestry. Compared to diploid Robinia pseudoacacia L. (black locust) 'D26-5①' (2×), its dwarfed homologous tetraploid 'D26-5②' (4×) variety has better application prospects in garden vegetation guardrails and urban landscape. However, the molecular mechanism of the generation and growth of this dwarf variety is still unclear. Here, plant growth and development as well as histological differences between the diploid and its autotetraploid were investigated. Levels of endogenous hormones at three different developmental stages (20, 40, and 70 days) of 2× and homologous 4× tissue culture plantlets were assessed, and it was found that the brassinosteroid (BR) contents of the former were significantly higher than the latter. Transcriptome sequencing data analysis of 2× and homologous 4× showed that differentially expressed genes (DEGs) were significantly enriched in plant hormone synthesis and signal transduction, sugar and starch metabolism, and the plant circadian rhythm pathway, which are closely related to plant growth and development. Therefore, these biological pathways may be important regulatory pathways leading to dwarfism and slow growth in tetraploids. Additionally, utilizing weighted gene coexpression network analysis (WGCNA), we identified three crucial differentially expressed genes (DEGs)-PRR5, CYP450, and SPA1-that potentially underlie the observed ploidy variation. This study provides a new reference for the molecular mechanism of dwarfism in dwarfed autotetraploid black locusts. Collectively, our results of metabolite analysis and comparative transcriptomics confirm that plant hormone signaling and the circadian rhythm pathway result in dwarfism in black locusts.


Asunto(s)
Enanismo , Robinia , Transcriptoma , Tetraploidía , Robinia/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
6.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791300

RESUMEN

The increase in atmospheric CO2 concentration is a significant factor in triggering global warming. CO2 is essential for plant photosynthesis, but excessive CO2 can negatively impact photosynthesis and its associated physiological and biochemical processes. The tetraploid Robinia pseudoacacia L., a superior and improved variety, exhibits high tolerance to abiotic stress. In this study, we investigated the physiological and proteomic response mechanisms of the tetraploid R. pseudoacacia under high CO2 treatment. The results of our physiological and biochemical analyses revealed that a 5% high concentration of CO2 hindered the growth and development of the tetraploid R. pseudoacacia and caused severe damage to the leaves. Additionally, it significantly reduced photosynthetic parameters such as Pn, Gs, Tr, and Ci, as well as respiration. The levels of chlorophyll (Chl a and b) and the fluorescent parameters of chlorophyll (Fm, Fv/Fm, qP, and ETR) also significantly decreased. Conversely, the levels of ROS (H2O2 and O2·-) were significantly increased, while the activities of antioxidant enzymes (SOD, CAT, GR, and APX) were significantly decreased. Furthermore, high CO2 induced stomatal closure by promoting the accumulation of ROS and NO in guard cells. Through a proteomic analysis, we identified a total of 1652 DAPs after high CO2 treatment. GO functional annotation revealed that these DAPs were mainly associated with redox activity, catalytic activity, and ion binding. KEGG analysis showed an enrichment of DAPs in metabolic pathways, secondary metabolite biosynthesis, amino acid biosynthesis, and photosynthetic pathways. Overall, our study provides valuable insights into the adaptation mechanisms of the tetraploid R. pseudoacacia to high CO2.


Asunto(s)
Dióxido de Carbono , Clorofila , Fotosíntesis , Proteínas de Plantas , Proteómica , Robinia , Tetraploidía , Dióxido de Carbono/metabolismo , Robinia/metabolismo , Robinia/genética , Robinia/fisiología , Proteómica/métodos , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Antioxidantes/metabolismo
7.
BMC Plant Biol ; 23(1): 19, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627562

RESUMEN

This study aims to provide insights into plant-insect interaction during the formation and development of open gall structure on the leaves of Robinia pseudoacacia during gall formation by Obolodiplosis robiniae. This was the first time such far-reaching studies were performed at a biochemical and anatomical level. The gall wall is created from a few thick cells covered with epidermis. This parenchymatous nutritive tissue is rich in starch. Sclerenchyma only occurs around the vascular bundles as a result of the lignification of the parenchyma of the bundle sheaths. The level of reactive oxygen species (ROS) in the new structure was reduced and catalase activity was inhibited, which suggests another pathway of ROS decomposition - e.g. by ascorbate or glutathione peroxidase. The gall structure was combined with an increasing level of protein and non-protein thiols. Phenols seems to be a good protective factor; whose level was lower in infected leaflets. Levels of MUFA (monosaturated fatty acids) and SFA (saturated fatty acids) rose, probably as source of food for insects. The amount of fatty acid is positively correlated with the plant response. We detected that non infected leaflets produced C6:0 (hexanoic acid) and C8:0 (octanoic acid) fatty acids connected with odor. Changes in gall color as they develop are connected with photosynthetic pigments degradation (mainly chlorophylls) where the pathway of astaxanthin transformation to fatty acid is considered to be the most important process during gall maturation. Nutritive tissue is composed mainly of octadecanoic acid (C18:0) - a main source of food for O. robiniae.


Asunto(s)
Dípteros , Robinia , Animales , Especies Reactivas de Oxígeno , Insectos , Plantas , Ácidos Grasos , Hojas de la Planta/fisiología , Tumores de Planta
8.
Planta ; 259(1): 6, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38001306

RESUMEN

MAIN CONCLUSION: Rpf107 is involved in the infection process of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The LURP-one related (LOR) protein family plays a pivotal role in mediating plant defense responses against both biotic and abiotic stresses. However, our understanding of its function in the symbiotic interaction between legumes and rhizobia remains limited. Here, Rpf107, a homolog of LOR, was identified in Robinia pseudoacacia (black locust). The subcellular localization of Rpf107 was analyzed, and its function was investigated using RNA interference (RNAi) and overexpression techniques. The subcellular localization assay revealed that Rpf107 was mainly distributed in the plasma membrane and nucleus. Rpf107 silencing prevented rhizobial infection and hampered plant growth. The number of infected cells in the nitrogen fixation zone of the Rpf107-RNAi nodules was also noticeably lower than that in the control nodules. Notably, Rpf107 silencing resulted in bacteroid degradation and the premature aging of nodules. In contrast, the overexpression of Rpf107 delayed the senescence of nodules and prolonged the nitrogen-fixing ability of nodules. These results demonstrate that Rpf107 was involved in the infection of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The findings reveal that a member of the LOR protein family plays a role in leguminous root nodule symbiosis, which is helpful to clarify the functions of plant LOR protein family and fully understand the molecular mechanisms underlying legume-rhizobium symbiosis.


Asunto(s)
Fabaceae , Rhizobium , Robinia , Robinia/genética , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética , Genes vif , Fijación del Nitrógeno/genética , Rhizobium/fisiología , Fabaceae/genética , Proteínas de Plantas/metabolismo
9.
Microb Ecol ; 86(2): 1189-1199, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36123554

RESUMEN

Litter decomposition is the main source of soil organic carbon (SOC) pool, regarding as an important part of terrestrial ecosystem C dynamics. The turnover of SOC is mainly regulated by extracellular enzymes secreted by microorganisms. However, the response mechanism of soil C-degrading enzymes and SOC in litter decomposition remains unclear. To clarify how SOC fraction dynamics respond to C-degrading enzymes in litter decomposition, we used field experiments to collect leaf litter and SOC fractions from the underlying layer in Robinia pseudoacacia plantations on the Loess Plateau. Our results showed that SOC, easily oxidizable organic C, dissolved organic C, and microbial biomass C increased significantly during the decomposition process. Litter decomposition significantly decreased soil hydrolase activity, but slightly increased oxidase activity. Correlation analysis results showed that SOC fractions were significantly positively correlated with the litter mass, lignin, soil moisture, and oxidase activity, but significantly negatively correlated with cellulose content and soil pH. Partial least squares path models revealed that soil C-degrading enzymes can directly or indirectly affect the changes of soil C fractions. The most direct factors affecting the SOC fractions of topsoil during litter decomposition were litter lignin and cellulose degradation, soil pH, and C-degrading enzymes. Furthermore, regression analysis showed that the decrease of SOC stability in litter decomposition was closely related to the decrease of soil hydrolase to oxidase ratio. These results highlighted that litter degradation-induced changes in C-degrading enzyme activity significantly affected SOC fractions. Furthermore, the distribution of soil hydrolases and oxidases affected the stability of SOC during litter decomposition. These findings provided a theoretical framework for a more comprehensive understanding of C turnover and stabilization mechanisms between plant and soil.


Asunto(s)
Robinia , Suelo , Suelo/química , Ecosistema , Carbono/metabolismo , Lignina/metabolismo , Celulosa/metabolismo , Hidrolasas/metabolismo , Microbiología del Suelo , Oxidorreductasas , Bosques , China
10.
Oecologia ; 201(2): 565-574, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36637524

RESUMEN

Symbiotic nitrogen fixation (SNF) is a critical mechanism of ecosystem recovery, and in forests of the eastern United States, the most common tree species that supports SNF is black locust (Robinia pseudoacacia L.). Despite its prevalence, black locust's fixation strategy-whether it maintains fixation at a constant rate (obligate fixation) or reduces its fixation rate (facultative fixation)-is unknown. Here, we examined how nitrogen and light control SNF by black locust, by growing seedlings under two nitrogen levels and across four levels of light. Seedlings were harvested after 12 weeks to determine biomass changes, nodule activity, and photosynthetic rates. Black locust seedlings increased biomass growth with increasing light, but only in the absence of nitrogen addition, while seedling root:shoot (biomass) modestly declined with increasing light regardless of nitrogen level. We found that black locust behaved like a facultative fixer, and regulated fixation by excising or maintaining nodules, and by controlling nodule biomass and activity. Specifically, nitrogen addition reduced seedling investment in nodule biomass (g g-1) by 63%, and reduced seedling allocation to nitrogen fixation (µmol C2H4 g-1 h-1) by 66%. In contrast, light affected nitrogen fixation through two indirect pathways. First, light increased plant growth, and hence nitrogen demands, which caused an increase in nitrogen fixation proportional to biomass. Second, light increasd photosynthetic activity, which was positively associated with nodule activity, but only in the absence of nitrogen addition. Our findings for how black locust regulates SNF can improve predictions of ecosystem SNF under the changing environmental conditions.


Asunto(s)
Robinia , Árboles , Árboles/fisiología , Ecosistema , Nitrógeno/metabolismo , Fijación del Nitrógeno , Bosques , Plantones , Robinia/metabolismo
11.
J Sep Sci ; 46(10): e2200958, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36929337

RESUMEN

Robinia pseudoacacia flowers have attracted much attention because of numerous bioactivities. In this study, its extract showed the potential scavenging ability for 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 1,1-diphenyl-2-picrylhydrazyl free radicals. Under the guidance of antioxidant activity, the antioxidant extract was enriched by liquid-liquid extraction. The partition coefficients of the two main components in antioxidant extracts differed greatly, so in this study, elution-extrusion counter-current chromatography with the solvent system of n-hexane-ethyl acetate-methanol-water (2.5:5:2.5:5, v/v) was used to enhance the separation efficiency, and the two main components were successfully obtained. Among them, kaempferol showed strong antioxidant activity, which can be responsible for the activity of the extract. In order to deeply understand the antioxidant mechanism of kaempferol, the thermodynamics, frontier molecular orbital, and kinetics of scavenging free radicals were investigated by density functional theory. The results showed that 4'-OH in kaempferol was the most active group, which can scavenge free radicals by hydrogen atom transfer in non-polar solvents and activate 3-OH to generate double hydrogen atom transfer in the gas phase. But in polar solvents, it was more inclined to clear radicals through single electron transfer and proton transfer. The kinetic result showed that kaempferol needed 9.17 kcal/mol of activation energy to scavenge free radicals.


Asunto(s)
Antioxidantes , Robinia , Antioxidantes/análisis , Quempferoles , Extractos Vegetales/química , Solventes/química , Distribución en Contracorriente/métodos , Flores/química
12.
Ecotoxicol Environ Saf ; 263: 115379, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597290

RESUMEN

As a key component in non-enzyme resistance system, flavonoids play a crucial role in the plant growth and defenses, which are significantly affected by biotic and abiotic factors such as fungi, bacteria, viruses, heavy metals, and atmospheric CO2. Arbuscular mycorrhizal fungi (AMF) play an important role in enhancing plant tolerance to adverse environments, which can significantly affect the synthesis of flavonoids by forming mycorrhizal symbionts with plant roots. However, few studies explored the combined effects of AMF, elevated CO2, and heavy metals on flavonoids in plants. Here, we investigated the adaptive response of flavonoids accumulation in Robinia pseudoacacia L. seedlings affected by the contamination of cadmium (Cd) and elevated CO2 to arbuscular mycorrhizal symbiosis. The results showed that G. mosseae decreased (p < 0.05) Cd content in leaves by 62.2% under elevated CO2. Moreover, G. mosseae colonization led to significant decreases in robinin, quercetin, kaempferol and acacetin by 17.4%, 11.1%, 15.5% and 23.1% under elevated CO2 + Cd, respectively. Additionally, G. mosseae down-regulated (p < 0.05) expression levels of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) genes under elevated CO2 + Cd, and CHS and uridine diphosphate flavonoid glucosyltransferase (UFGT) activities decreased (p < 0.05). Quercetin, kaempferol and acacetin showed positive (p < 0.05) correlation with PAL and CHS genes expression and PAL, CHS, and UFGT activities. Cadmium, C/N ratio, carotenoids, leaf biomass, total chlorophyll, P, and starch in leaves and G. mosseae colonization rate in roots influenced (p < 0.05) flavonoids content. Overall, G. mosseae reduced flavonoids synthesis by down-regulating gene expression levels and activities of key enzymes under elevated CO2 + Cd. The results improved our understanding of the regulation of AMF on non-enzymatic resistance of plants grown in heavy metal-contaminated soils under increasing atmospheric CO2 scenarios.


Asunto(s)
Micorrizas , Robinia , Cadmio/toxicidad , Quercetina , Dióxido de Carbono , Quempferoles , Simbiosis , Flavonoides
13.
Int J Phytoremediation ; 25(10): 1359-1370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36576064

RESUMEN

Ligno-cellulosic biomasses had been recognized for their potential use to produce chemicals and biomaterials. The current study focused on the use of a new cellulosic Robinia Pseudoacacia fiber and extracted lignin as adsorbents for methylene blue (a cationic dye). The biomaterials were analyzed using FT-IR spectroscopy, SEM, XRD, and TGA-DTA techniques. The surface of Robinia fibers was rough and porous. The crystallinity index (CrI) value for Robinia fibers was found to be 32%. The ability of the studied samples to remove methylene blue from water was assessed under the variation of time, pH, dye concentration, temperature, and NaCl concentration. The maximum adsorption capacity of methylene blue reached 191 mg/g for Robinia fibers and it achieved 22 mg/g for the extracted lignin (T = 20 °C, pH = 6, and time = 90 min). The adsorption data complied with the pseudo second-order kinetic model and both Langmuir and Freundlich isotherms. Based on these findings, the process suggested the occurrence of many physicochemical interactions between methylene blue molecules and the studied biomaterials. The adsorption mechanism was exothermic, non-spontaneous, and it was described by the decrease of the disorder. Adsorption results proved that Robinia fiber was an attractive candidate for the removal of cationic dyes from water.


A low-cost and abundant Robinia Pseudoacacia fiber and its extracted lignin are characterized and further studied as adsorbents for cationic dyes under the change of the experimental conditions.


Asunto(s)
Robinia , Contaminantes Químicos del Agua , Agua , Lignina/química , Azul de Metileno/análisis , Azul de Metileno/química , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Biodegradación Ambiental , Colorantes/química , Adsorción , Cinética
14.
J Environ Manage ; 328: 116998, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36516705

RESUMEN

Soil Phosphorous (P) availability is a limiting factor for plant growth and regulates biological metabolism in plantation ecosystems. The effect of variations in soil microbial P cycling potential on the availability of soil P during succession in plantation ecosystems is unclear. In this study, a metagenomics approach was used to explore variations in the composition and diversity of microbial P genes along a 45-year recovery sequence of Robinia pseudoacacia on the Loess Plateau, as well soil properties were measured. Our results showed that the diversity of P cycling genes (inorganic P solubilization and organic P mineralization genes) increased significantly after afforestation, and the community composition showed clear differences. The gcd and ppx genes were dominant in inorganic P transformation, whereas phnM gene dominated the transformation of organic P. The abundance of genes involved in inorganic P solubilization and organic P mineralization was significantly positively correlated with P availability, particularly for phnM, gcd, ppx, and phnI genes, corresponding to the phyla Gemmatimonadetes, Acidobacteria, Bacteroidetes, and Planctomycetes. The critical drivers of the microbial main genes of soil P cycling were available P (AP) and total N (TN) in soil. Overall, these findings highlight afforestation-induced increases in microbial P cycling genes enhanced soil P availability. and help to better understand how microbial growth metabolism caused by vegetation restoration in ecologically fragile areas affects the soil P cycling.


Asunto(s)
Ecosistema , Robinia , Suelo , Microbiología del Suelo , Bacterias/genética , China
15.
J Environ Manage ; 348: 119318, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37857219

RESUMEN

Changes in precipitation patterns in arid and semi-arid regions can reshape plant functional traits and significantly affect ecosystem functions. However, the synchronous responses of leaf economical, anatomical, photosynthetic, and biochemical traits to precipitation changes and their driving factors have rarely been investigated, which hinders our understanding of plants' ecological adaptation strategies to drought tolerance in arid areas. Therefore, the leaf traits of two typical plantations (Robinia pseudoacacia, RP and Pinus tabulaeformis, PT) along the precipitation gradient in the Loess Plateau, including economical, anatomical, photosynthetic, and biochemical traits, were investigated in this study. The results show that the leaf photosynthetic traits of RP and PT increase along the precipitation gradient, whereas leaf biochemical traits decrease. The anatomical traits of PT decrease with increasing precipitation, whereas no significant variation was observed for RP. Random Forest analysis show that LNC, LDMC, Chl, and PRO are leaf traits that significantly vary with the precipitation gradient in both plantations. Correlation analysis reveals that the traits coordination of RP is better than that of PT. The LMG model was used to determine driving factors. The results suggest that MAP explains the variation of PT leaf traits better (30.38%-36.78%), whereas SCH and SPH contribute more to the variation of RP leaf traits (20.88%-41.76%). In addition, the piecewise Structural Equation Model shows that the climate and soil physical and chemical properties directly affect the selected leaf functional traits of RP, whereas only the soil chemical properties directly affect the selected leaf functional traits of PT. The results of this study contribute to the understanding of the ecological adaptation of plants to environmental gradients and highlight that correlations among leaf traits should be considered when predicting plant adaptation strategies under future global change scenarios.


Asunto(s)
Pinus , Robinia , Ecosistema , Nitrógeno/análisis , Suelo/química , Plantas , China , Hojas de la Planta/química
16.
Prep Biochem Biotechnol ; 53(10): 1224-1236, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36880129

RESUMEN

Robinia pseudoacacia flower is a natural product with many biological activities, including antioxidation. To further develop its antioxidation, the extract was fermented by Aspergillus niger FFCC 3112 in the medium with carbon to nitrogen ratio of 1.4:1 and initial pH of 4.2 for 3.5 days to form the best antioxidant activity of the fermentation product by strain screening, single factor optimization, and response surface methodology. Further analysis, isolation and activity determination showed that a main chemical component, kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-ß-D-galactopyranosyl-7-O-α-L-rhamnopyranoside, in the extract was completely hydrolyzed to kaempferol-7-O-α-L-rhamnopyranoside and kaempferol with better antioxidant activity through biotransformation, which was the basis for improving the antioxidant activity of fermentation products. Moreover, the mechanism of antioxidant and the contribution of phenolic hydroxyl groups were investigated by density functional theory. The result indicated that the antioxidant capacity of kaempferol-7-O-α-L-rhamnopyranoside and kaempferol increased with the increase of solvent polarity. In high-polarity solvents, they mainly scavenge free radicals through single electron transfer followed by proton transfer.


Asunto(s)
Quempferoles , Robinia , Quempferoles/química , Antioxidantes/química , Fermentación , Solventes , Extractos Vegetales/química , Flores/química , Flavonoides
17.
Water Sci Technol ; 87(12): 3083-3094, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37387432

RESUMEN

Under various pyrolysis temperatures, the characteristics and heavy metal adsorption capabilities of biochar obtained from sheep manure (SMB) and Robinia pseudoacacia (RPB) were studied. The results indicated that SMB had higher yields, pH values, and ash contents than RPB. SMB3 and RPB3 have more oxygen-containing functional groups, whereas SMB8 and RPB8 have higher aromaticity and polarity. The maximum adsorption capacities of SMB for Pb2+ (20.2 mg·g-1), Cu2+ (13.9 mg·g-1), Cd2+ (3.2 mg·g-1), and total heavy metals (37.3 mg·g-1) were obtained by SMB3. However, the maximum adsorption capacities of RPB for Pb2+ (7.4 mg·g-1) and Cu2+ (10.5 mg·g-1) were obtained by RPB8. Furthermore, SMB and RPB had relatively higher adsorption capacities for Pb2+ and Cu2+ than for Cd2+. The pseudo-second-order model and the Freundlich Langmuir model provided a good fit to the adsorption kinetics and isotherms, indicating that chemical adsorption was dominant in the heavy metal adsorption by SMB and RPB. According to the contribution of various mechanisms, ion exchange and mineral precipitation were the primary mechanisms responsible for RPB8, while functional group complexation was the dominant mechanism for SMB3. This study provided important information on the comprehensive recycling utilization of SMB and RPB and promoted sustainable development.


Asunto(s)
Metales Pesados , Robinia , Animales , Ovinos , Aguas Residuales , Adsorción , Cadmio , Plomo , Estiércol
18.
Environ Monit Assess ; 195(8): 932, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432491

RESUMEN

Afforestation can improve soil erosion in the ecologically fragile areas of the Loess Plateau; however, the amount of water and phosphorus fertilizer that can promote vegetation survival is unclear, which hinders the improvement of the local ecological environment and the waste of water and fertilizer. In this study, based on field surveys, water and fertilizer control tests on Robinia pseudoacacia L. seedlings in experimental fields, and fitting CO2 response curves to R. pseudoacacia seedlings using a Li-6400 portable photosynthesizer, we measured their leaf nutrient contents and calculated resource use efficiency. The results showed that (1) under the same moisture gradient, except for photosynthetic phosphorus utilization efficiency (PPUE), light use efficiency (LUE), water use efficiency (WUE), carbon utilization efficiency (CUE), and photosynthetic nitrogen use efficiency (PNUE) all increased with increasing phosphorus fertilizer application. Under the same phosphorus fertilizer gradient, WUE increased with decreasing water application, and LUE, CUE, PNUE, and PPUE all reached the maximum at 55-60% of field water holding capacity. (2) Net photosynthetic rate (Pn) of R. pseudoacacia seedlings increased with increasing intercellular carbon dioxide concentration (Ci), and as Ci continued to increase, the increase in Pn became slower, but no maximal electron transport rate (TPU) occurred. Under the same CO2 concentration, Pn reached a maximum at 55-60% of field water holding capacity and phosphorus fertilizer at 30 gPm-2·a-1. (3) Leaf maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), daily respiration (Rd), stomatal conductance (Gs), and mesophyll conductance (Gm) reached their maximum at 30 gPm-2·a-1 of phosphorus fertilizer. Vcmax, Jmax, and Rd reached their maximum at 55-60% of field water holding capacity; Gs and Gm reached their maximum at 75-80% of field water holding capacity. (4) The higher the soil phosphorus content, the lower the biochemical (lb), stomatal (ls), and mesophyll (lm). With the increase of soil moisture, lb and ls are higher, and lm is lower. (5) Structural equation modeling showed that water-phosphorus coupling had a less direct effect on Rd and a more direct impact on Gs and Gm. Relative photosynthetic limitation directly affected the photosynthetic rate, indicating that water and phosphorus affected the photosynthetic rate through relative plant limitation. It was concluded that the resource use efficiency and photosynthetic capacity reached the maximum when 55-60% of field water holding capacity was maintained, and phosphorus fertilization was at 30 gP m-2·a-1. Therefore, maintaining suitable soil moisture and phosphorus fertilizer levels in the semi-arid zone of the Loess Plateau can improve the photosynthetic capacity of R. pseudoacacia seedlings.


Asunto(s)
Robinia , Suelo , Plantones , Dióxido de Carbono , Fertilizantes , Monitoreo del Ambiente , China , Nitrógeno , Fósforo
19.
Plant Cell Environ ; 45(7): 2191-2210, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35419804

RESUMEN

Nitrogen-fixing root nodules are formed by symbiotic association of legume hosts with rhizobia in nitrogen-deprived soils. Successful symbiosis is regulated by signals from both legume hosts and their rhizobial partners. HmuS is a heme degrading factor widely distributed in bacteria, but little is known about the role of rhizobial hmuS in symbiosis with legumes. Here, we found that inactivation of hmuSpSym in the symbiotic plasmid of Mesorhizobium amorphae CCNWGS0123 disrupted rhizobial infection, primordium formation, and nitrogen fixation in symbiosis with Robinia pseudoacacia. Although there was no difference in bacteroids differentiation, infected plant cells were shrunken and bacteroids were disintegrated in nodules of plants infected by the ΔhmuSpSym mutant strain. The balance of defence reaction was also impaired in ΔhmuSpSym strain-infected root nodules. hmuSpSym was strongly expressed in the nitrogen-fixation zone of mature nodules. Furthermore, the HmuSpSym protein could bind to heme but not degrade it. Inactivation of hmuSpSym led to significantly decreased expression levels of oxygen-sensing related genes in nodules. In summary, hmuSpSym of M. amorphae CCNWGS0123 plays an essential role in nodule development and maintenance of bacteroid survival within R. pseudoacacia cells, possibly through heme-binding in symbiosis.


Asunto(s)
Fabaceae , Mesorhizobium , Rhizobium , Robinia , Fabaceae/microbiología , Fibrinógeno/metabolismo , Hemo/metabolismo , Mesorhizobium/fisiología , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Rhizobium/genética , Robinia/fisiología , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-36136396

RESUMEN

Two bacterial strains, designated KIS38-8T and F39-2T, were isolated from a mountain soil sample and a black locust flower (Robinia pseudoacacia) in Republic of Korea, respectively. The phylogenetic tree based on 16S rRNA gene sequences showed that strain KIS38-8T was classified into the genus Ferruginibacter with the highest sequence similarity to Ferruginibacter lapsinanis HU1-HG42T (96.6 %), and strain F39-2T was grouped into the genus Mucilaginibacter with the highest sequence similarity to Mucilaginibacter daejeonensis Jip 10T (97.6 %). Orthologous average nucleotide identity and digital DNA-DNA hybridization values between strain KIS38-8T and closely related Ferruginibacter strains were less than 72 and 19 %, respectively, while those values between strain F39-2T and closely related Mucilaginibacter strains were less than 73 and 21 %, respectively. The DNA G+C contents of strain KIS38-8T and F39-2T were 36.4 and 41.4 mol%, respectively. On the basis of the phenotypic and genotypic evidence, strains KIS38-8T and F39-2T are considered to represent novel species of the genus Ferruginibacter and Mucilaginibacter, respectively, for which the names Ferruginibacter albus sp. nov. (type strain KIS38-8T=KACC 17328T=NBRC 113101T) and Mucilaginibacter robiniae sp. nov. (type strain F39-2T=KACC 19733T=JCM 33062T) have been proposed.


Asunto(s)
Robinia , Técnicas de Tipificación Bacteriana , Bacteroidetes , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flores , Nucleótidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda