RESUMEN
BACKGROUND: Natural products are considered effective sources for new therapeutic research and development. The numerous therapeutic properties of natural substances in traditional medicine compel us to investigate the anti-cancer properties of Nimbin (N1) and its semi-natural analog Nimbic acid (N3) from Azadirachta indica against MG-63 Osteosarcoma cells. MATERIALS AND METHODS: The therapeutic efficacy of N1 and N3 were screened for their toxicity and cytotoxic activity using L6 myotubes, zebrafish larvae and MG-63 osteosarcoma cells. The mitochondrial membrane potential was evaluated using the Rhodamine 123 stain. Further, the nuclear and cellular damage was distinguished using Hoechst and Acridine orange/EtBr stain. The mechanism of cell cycle progression, cellular proliferation and caspase cascade activation was screened using scratch assay, flow cytometry, and mRNA expression analysis. RESULTS: The Nimbin and analogue N3 were found to be non-toxic to normal L6 cells (Rat skeletal muscles), exhibited cytotoxicity in MG-63 cells, and were exposed to be an active inhibitor of cell proliferation and migration. Analogs N1 and N3 induced negative mitochondrial membrane potential when stained with Rhodamine 123, leading to nuclear damage and apoptosis stimulation using AO/EtBr and Hoechst. Further, N1 and N3 induced cell cycle arrest in G0/G1 phase in flow cytometry using PI staining and induced apoptosis by activating the caspase cascade and upregulated Caspase 3 and caspase 9. CONCLUSION: The study demonstrated cytotoxic activity against MG-63 osteosarcoma cells while being non-toxic to normal L6 cells. These compounds inhibited cell proliferation and migration, induced mitochondrial dysfunction, nuclear damage, and apoptosis stimulation. Furthermore, N1 and N3 caused cell cycle arrest and activated the caspase cascade, ultimately leading to apoptosis. These findings indicate that N1 and N3 hold promise as potential candidates used alone or combined with existing drugs for further investigation and development as anti-cancer agents.
Asunto(s)
Antineoplásicos , Azadirachta , Osteosarcoma , Animales , Ratas , Caspasas , Rodamina 123/farmacología , Rodamina 123/uso terapéutico , Pez Cebra , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología , Osteosarcoma/tratamiento farmacológico , SemillasRESUMEN
Forsythiaside, one of the main bioactive components of Chinese medicine Lian Qiao, exerts antioxidant, anti-bacterial, and anti-inflammatory effects. To date, the mechanism of Forsythiaside in cardiomyocyte injury remains unclear. However, the antioxidant effects of Forsythiaside on cardiac cells are currently unknown. This study investigated the effect and mechanism of Forsythiaside on oxidative stress in H9c2 cardiomyocytes. H9c2 cells were treated with H2O2 and Forsythiaside and then transfected with small-interfering RNA against nuclear factor erythroid 2-related factor 2 (siNrf2). Cell viability, apoptosis, accumulation of reactive oxygen species (ROS), and mitochondrial membrane potential were measured using methyl thiazolyl tetrazolium (MTT), terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay, fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), and rhodamine 123, respectively. The levels of oxidative stress-related markers were determined using their respective detection kits. Furthermore, the levels of apoptosis- and Nrf2 pathway-related molecules were determined via Western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Forsythiaside had no obvious toxicity on H9c2 cells. H2O2 suppressed the viability, and reduced the levels of mitochondrial membrane potential, B-cell lymphoma-2 (Bcl-2), glutathione peroxidase (GSH-Px) and catalase (CAT) and superoxide dismutase (SOD), while promoted apoptosis, ROS accumulation, and elevated the levels of cleaved caspase 3, BCL2-Associated X (Bax) and malondialdehyde (MDA) in H9c2 cells. Contrarily, Forsythiaside reversed the aforementioned effects. H2O2 advanced the levels of cytoplasm Nrf2, heme oxygenase-1 (HO-1), and nucleus Nrf2 in H9c2 cells, whereas Forsythiaside enhanced these effects. SiNrf2 reversed the functions of H2O2 or Forsythiaside in cell viability, MDA, SOD, GSH-Px, CAT, Nrf2, and HO-1 in H9c2 cells, whereas Forsythiaside reversed the aforementioned effects of siNrf2. In sum, Forsythiaside protected H9c2 cells from oxidative stress and apoptosis induced by H2O2 by activating the Nrf2/HO-1 pathway.
Asunto(s)
Hemo-Oxigenasa 1 , Factor 2 Relacionado con NF-E2 , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Caspasa 3/metabolismo , Catalasa/metabolismo , Catalasa/farmacología , ADN Nucleotidilexotransferasa/metabolismo , ADN Nucleotidilexotransferasa/farmacología , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/farmacología , Glutatión Peroxidasa/metabolismo , Glicósidos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/farmacología , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Malondialdehído/metabolismo , Miocitos Cardíacos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rodamina 123/metabolismo , Rodamina 123/farmacología , Transducción de Señal , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/metabolismoRESUMEN
The activity of the P-glycoprotein (P-gp) transporter encoded by the ABCB1 gene confers resistance to anticancer drugs and contributes to cancer-related mortality and morbidity. Recent studies revealed the cytotoxic effects of the endogenous dipeptide carnosine. The current study aimed to investigate the role of carnosine as a potential inhibitor of P-gp activity. We used molecular docking and molecular dynamic simulations to study the possible binding and stability of carnosine-P-gp interactions compared with verapamil. In vitro assays using doxorubicin-resistant NCI/ADR-RES cells were established to test the effects of carnosine (10-300 µM) on P-gp activity by the rhodamine-123 efflux assay and its effect on cell viability and doxorubicin-induced cytotoxicity. Verapamil (10 µM) was used as a positive control. The results showed that carnosine binding depends mainly on hydrogen bonding with GLU875, GLN946, and ALA871, with a higher average Hbond than verapamil. Carnosine showed significant but weaker than verapamil-induced rhodamine-123 accumulation. Carnosine and verapamil similarly inhibited cell viability. However, verapamil showed a more significant potentiating effect on doxorubicin-induced cytotoxicity than a weaker effect of carnosine at 300 µM. These results suggest that carnosine inhibits P-gp activity and potentiates doxorubicin-induced cytotoxicity at higher concentrations. Carnosine might be a helpful lead compound in the fight against multidrug-resistant cancers.
Asunto(s)
Antineoplásicos , Carnosina , Resistencia a Múltiples Medicamentos , Carnosina/farmacología , Carnosina/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Simulación del Acoplamiento Molecular , Resistencia a Antineoplásicos , Doxorrubicina/farmacología , Rodamina 123/farmacología , Verapamilo/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacologíaRESUMEN
Rhodamine derivatives have been widely investigated for their mitochondrial targeting and chemotherapeutic properties that result from their lipophilic cationic structures. In previous research, we have found that conversion of Rhodamine 6G into nanoGUMBOS, i.e., nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS), led to selective chemotherapeutic toxicity for cancer cells over normal cells. Herein, we investigate the chemotherapeutic activity of GUMBOS derived from four different rhodamine derivatives, two bearing an ester group, i.e., Rhodamine 123 (R123) and SNAFR-5, and two bearing a carboxylic acid group, i.e., rhodamine 110 (R110) and rhodamine B (RB). In this study, we evaluate (1) relative hydrophobicity via octanol-water partition coefficients, (2) cytotoxicity, and (3) cellular uptake in order to evaluate possible structure-activity relationships between these different compounds. Intriguingly, we found that while GUMBOS derived from R123 and SNAFR-5 formed nanoGUMBOS in aqueous medium, no distinct nanoparticles are observed for RB and R110 GUMBOS. Further investigation revealed that the relatively high water solubility of R110 and RB GUMBOS hinders nanoparticle formation. Subsequently, while R123 and SNAFR-5 displayed selective chemotherapeutic toxicity similar to that of previously investigated R6G nanoGUMBOS, the R110 and RB GUMBOS were lacking in this property. Additionally, the chemotherapeutic toxicities of R123 and SNAFR-5 nanoGUMBOS were also significantly greater than R110 and RB GUMBOS. Observed results were consistent with decreased cellular uptake of R110 and RB as compared to R123 and SNAFR-5 compounds. Moreover, these results are also consistent with previous observations that suggest that nanoparticle formation is critical to the observed selective chemotherapeutic properties as well as the chemotherapeutic efficacy of rhodamine nanoGUMBOS.
Asunto(s)
Nanopartículas/química , Neoplasias/tratamiento farmacológico , Rodaminas/química , Línea Celular Tumoral , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Neoplasias/patología , Compuestos Orgánicos/química , Compuestos Orgánicos/farmacología , Rodamina 123/química , Rodamina 123/farmacología , Rodaminas/farmacología , Solubilidad/efectos de los fármacos , Agua/químicaRESUMEN
Here, we report a microfluidic same-single-cell analysis to study the inhibition of multidrug resistance due to drug efflux on single leukemic cells. Drug efflux inhibition was investigated in the microfluidic chip using two different fluorescence detection systems, namely, a compact single-cell bioanalyzer and the conventional optical detection system constructed from an inverted microscope and a microphotometer. More importantly, a compact signal generator was used to conduct dielectrophoretic cell trapping together with the compact SCB. By using the DEP force, a single acute myeloid leukemia cell was trapped in the cell retention structure of the chip. This allowed us to detect dye accumulation in the MDR leukemic cells in the presence of cyclosporine A (CsA). CsA and rhodamine 123 were used as the P-glycoprotein inhibitor and fluorescent dye, respectively. The result showed that the Rh123 fluorescence signal in a single-cell increased dramatically over its same-cell control on both fluorescence detection systems due to the inhibition by CsA.
Asunto(s)
Separación Celular/métodos , Electroforesis/métodos , Leucemia Mieloide Aguda/patología , Análisis de la Célula Individual/métodos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Separación Celular/instrumentación , Forma de la Célula/efectos de los fármacos , Ciclosporina/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Electroforesis/instrumentación , Diseño de Equipo , Fluorescencia , Colorantes Fluorescentes/farmacología , Humanos , Dispositivos Laboratorio en un Chip , Leucemia Mieloide Aguda/tratamiento farmacológico , Microscopía Fluorescente/instrumentación , Rodamina 123/farmacología , Análisis de la Célula Individual/instrumentaciónRESUMEN
BACKGROUND: Overexpression of ATP-binding cassette (ABC) transporters, such as ABCB1 and ABCG2, has been proved to be a major trigger for multidrug resistance (MDR) in certain types of cancer. A promising approach to reverse MDR is the combined use of nontoxic and potent ABC transporters inhibitor with conventional anticancer drugs. We previously reported that FW-04-806 (conglobatin) as a novel Hsp90 inhibitor with low toxicity, capable of attenuating Hsp90/Cdc37 /clients interactions and producing antitumor action in vitro and in vivo. Our early activity screening found that FW-04-806 at non-cytotoxic concentration was able to enhance the cytotoxicity of chemotherapeutic agents on the ABCB1 overexpressing cells. Therefore, we speculated that FW-04-806 might be a promising MDR reversal agent. In the present study we further investigated its reversal effect of MDR induced by ABC transporters in vitro and in vivo. METHODS: MTT assay in vitro and xenograftes in vivo were used to investigate reversal effect of FW-04-806 on MDR in ABCB1 or ABCG2 overexpressing cancer cells. To understand the mechanisms for the MDR reversal, we examined the effects of FW-04-806 on intracellular accumulation of doxorubicin (DOX, adriamycin, adr)/Rhodamine 123 (Rho 123), efflux of doxorubicin, expression levels of gene and protein of ABCB1 or ABCG2 and ATPase activity of ABCB1, and carried out molecular docking between FW-04-806 and human ABCB1. RESULTS: The results indicated that FW-04-806 significantly enhanced the cytotoxicity of substrate chemotherapeutic agents on the ABCB1 or ABCG2 overexpressing cells in vitro and in vivo suggesting its reversal MDR effects. FW-04-806 increased the intracellular accumulation of DOX or Rho123 by inhibiting the efflux function of ABC transporters in MDR cells rather than in their parental sensitive cells. However, unlike other ABC transporter inhibitors, FW-04-806 had no effect on the ATPase activity nor on the expression of ABCB1 or ABCG2 on either mRNA or protein level. Molecular docking suggested that FW-04-806 may have lower affinity to the ATPase site, which was consistent with its no significant effect on the ATPase activity of ABCB1; However FW-04-806 may bind to substrate binding site in TMDs more stably than substrate anticancer drugs therefore obstruct the anticancer drugs pumped out of the cell. CONCLUSIONS: FW-04-806 is a compound that has both anti-tumor and reversal MDR effects, and its antitumor clinical application is worth further study.
Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Células K562 , Células KB , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Oxazoles/química , Oxazoles/farmacología , Rodamina 123/farmacología , Transducción de Señal/efectos de los fármacos , Relación Estructura-ActividadRESUMEN
Multidrug resistance (MDR) is one of the main obstacles of clinical chemotherapy. A great deal of research shows that the occurrence of drug resistance in various malignant tumors is closely related to the expression of P-glycoprotein (P-gp) on the surface of the cell membrane. In this paper, based on the structure-activity relationship of phenylethyl tetrahydroisoquinoline, we choose tariquidar as the lead compound for the design and synthesis of 17 novel tetrahydroisoquinoline P-gp inhibitors. Additionally, in vitro and in vivo cytotoxicity assays and reversed MDR activity assays were evaluated. Among them, compound 3 had a good reversal of MDR activity and the reversal mechanism study of it was carried out. All of these results demonstrated that compound 3 was considered to be a promising P-gp-mediated MDR reversal candidate.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Isoquinolinas/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/farmacología , Humanos , Isoquinolinas/síntesis química , Isoquinolinas/química , Isoquinolinas/toxicidad , Células K562 , Simulación del Acoplamiento Molecular , Quinolinas/química , Quinolinas/farmacología , Rodamina 123/metabolismo , Rodamina 123/farmacología , Relación Estructura-ActividadRESUMEN
P-glycoprotein affects the transport of numerous drugs including chemotherapeutic drugs vincristine sulfate (VCR) and docetaxel (DTX), and is one of the main causes for multidrug resistance. Our previous studies have shown that oxypeucedanin (OPD) can enhance the intestinal transit of puerarin and VCR. However, the underlying mechanism is unclear. This study investigated the potential mechanism by which OPD improves P-gp-mediated drug transport. Molecular docking was performed to predict the binding force between OPD and P-gp and the contribution of OPD on P-gp activity. We observed the effect of OPD on the transport of VCR in MDCK-MDR1 cell monolayer and also measured the plasma pharmacokinetic parameters of DTX in the presence and absence of OPD by LC-MS/MS. Moreover, we further investigated the reversal mechanism of OPD on P-gp-mediated drug transport by determining the intracellular accumulation of Rhodamine-123 (Rh123) and P-gp ATPase activity as well as protein expression and mRNA level of P-gp. Our molecular docking results revealed that the binding force between OPD and P-gp was much lower than that between P-gp and verapamil (a P-gp substrate). The transport study in vitro indicated that OPD increased the flux of VCR across MDCK-MDR1 cell monolayer. The in vivo pharmacokinetic parameters data showed OPD increased the absorption of DTX. OPD activated P-gp ATPase activity and enhanced intracellular accumulation of Rh123 in MDCK-MDR1 cells. Western blotting and qRT-PCR outcomes indicated that OPD suppressed P-gp protein expression as well as downregulated P-gp mRNA level. Thus, OPD reverse P-gp-mediated drug transport via inhibition of P-gp activity and P-gp protein expression as well as downregulation of P-gp mRNA level. Our results suggest that OPD could reverse P-gp-mediated drug resistance in tumor cells.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Furocumarinas/farmacología , ARN Mensajero/antagonistas & inhibidores , Taxoides/metabolismo , Vincristina/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Docetaxel , Perros , Resistencia a Múltiples Medicamentos/genética , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/farmacología , Furocumarinas/química , Furocumarinas/metabolismo , Expresión Génica/efectos de los fármacos , Cinética , Células de Riñón Canino Madin Darby , Simulación del Acoplamiento Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rodamina 123/metabolismo , Rodamina 123/farmacología , Taxoides/farmacología , Verapamilo/metabolismo , Verapamilo/farmacología , Vincristina/farmacologíaRESUMEN
Currently, the most prominent barrier to the success of orally delivered paclitaxel (PTX) is the extremely limited bioavailability of delivered therapeutic. In light of this issue, an amphiphilic sulfhydrylated N-deoxycholic acid-N,O-hydroxyethyl chitosan (TGA-DHC) was synthesized to improve the oral bioavailability of PTX. First, TGA-DHC demonstrated substantial loading of PTX into the inner hydrophobic core. A desirable enhancement in the bioavailability of PTX by TGA-DHC was verified by pharmacokinetic studies on rats against Taxol and non-sulfhydrylated DHC micelles. Moreover, cellular uptake studies revealed significant accumulation of TGA-DHC micelles encapsulating PTX or rhodamine-123 into Caco-2 cells via clathrin/caveolae-mediated endocytosis and inhibition of P-gp efflux of substrates. The results of the Caco-2 transport study further confirmed the mechanistic basis of TGA-DHC efficacy; which was attributed to permeabilized tight junctions, clathrin-mediated transcytosis across the endothelium, and inhibition of P-gp. Finally, in vitro mucoadhesion investigations on freshly excised rat intestine intuitively confirmed increased intestinal retention of drug-loaded TGA-DHC through thiol-mediated mucoadhesion. TGA-DHC has demonstrated the capability to overcome what is perhaps the most prominent barrier to oral PTX efficacy, low bioavailability, and serves as a prominent platform for oral delivery of P-gp substrates.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Quitosano/análogos & derivados , Portadores de Fármacos/química , Micelas , Paclitaxel/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Permeabilidad de la Membrana Celular , Quitosano/química , Ácido Desoxicólico/química , Colorantes Fluorescentes/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Absorción Intestinal/efectos de los fármacos , Modelos Animales , Permeabilidad , Ratas , Rodamina 123/farmacología , Compuestos de Sulfhidrilo/química , Uniones Estrechas/metabolismoRESUMEN
The aim of this study was to synthesize the preactivated thiomer poly(acrylic acid)-cyteine-2-mercaptonicotinic acid (PAA-Cys-2MNA) and to evaluate its P-glycoprotein (P-gp) inhibitory properties. The thiomer (PAA-Cys) was synthesized by covalent immobilization of thiol groups on poly(acrylic acid) (PAA) with a molecular mass of 250 kDa followed by immobilization of 2-mercaptonicotinic acid (2MNA) to thiol groups via disulfide bond formation resulting in PAA-Cys-2MNA. P-gp inhibitory effect of this preactivated thiomer was evaluated on Caco-2 cells. Transports of rhodamine 123 at 37 °C with and without verapamil and at 4 °C were performed to evaluate P-gp function of cells. In total, 1571.81 ± 156.18 µmol thiol groups were immobilized per gram of polymer that were in the next step by 99.88% preactivated. The enhancement ratios of Papp calculated from the ratio between Papp of rhodamine 123 in the presence of P-gp inhibitors and Papp of rhodamine 123 alone were 2.36, 2.09, and 1.84-fold in the presence of PAA-Cys-2MNA, PAA-Cys, and PAA, respectively. Because of its pronounced P-gp inhibitory effect, PAA-Cys-2MNA could be considered as promising macromolecular P-gp inhibitor for various drug delivery systems.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Resinas Acrílicas/síntesis química , Resinas Acrílicas/farmacología , Supervivencia Celular/efectos de los fármacos , Rodamina 123/síntesis química , Rodamina 123/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/fisiología , Células CACO-2 , Supervivencia Celular/fisiología , Evaluación Preclínica de Medicamentos/métodos , HumanosRESUMEN
The aim of this study was to synthesize the preactivated thiomer poly(acrylic acid)-cyteine-2-mercaptonicotinic acid (PAA-Cys-2MNA) and to evaluate its P-glycoprotein (P-gp) inhibitory properties. The thiomer (PAA-Cys) was synthesized by covalent immobilization of thiol groups on poly(acrylic acid) (PAA) with a molecular mass of 250 kDa followed by immobilization of 2-mercaptonicotinic acid (2MNA) to thiol groups via disulfide bond formation resulting in PAA-Cys-2MNA. P-gp inhibitory effect of this preactivated thiomer was evaluated on Caco-2 cells. Transports of rhodamine 123 at 37 °C with and without verapamil and at 4 °C were performed to evaluate P-gp function of cells. In total, 1571.81 ± 156.18 µmol thiol groups were immobilized per gram of polymer that were in the next step by 99.88% preactivated. The enhancement ratios of Papp calculated from the ratio between Papp of rhodamine 123 in the presence of P-gp inhibitors and Papp of rhodamine 123 alone were 2.36, 2.09, and 1.84-fold in the presence of PAA-Cys-2MNA, PAA-Cys, and PAA, respectively. Because of its pronounced P-gp inhibitory effect, PAA-Cys-2MNA could be considered as promising macromolecular P-gp inhibitor for various drug delivery systems.
Asunto(s)
Resinas Acrílicas/síntesis química , Resinas Acrílicas/farmacología , Ácidos Nicotínicos/síntesis química , Ácidos Nicotínicos/farmacología , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/antagonistas & inhibidores , Células CACO-2 , Sistemas de Liberación de Medicamentos/métodos , Humanos , Rodamina 123/farmacología , Verapamilo/farmacologíaRESUMEN
Melanoma is one of the most aggressive and extremely resistant to conventional therapies neoplasms. Recently, cellular resistance was linked to the cancer stem cell phenotype, still controversial and not well-defined. In this study, we used a Rhodamine 123 (Rh123) exclusion assay to functionally identify stem-like cells in metastatic human melanomas and melanoma cell lines. We demonstrate that a small subset of Rh123-low-retention (Rh123(low)) cells is enriched for stem cell-like activities, including the ability to self-renew and produce nonstem Rh123(high) progeny and to form melanospheres, recapitulating the phenotypic profile of the parental tumor. Rh123(low) cells are relatively quiescent and chemoresistant. At the molecular level, we show that melanoma Rh123(low) cells overexpress HIF1α, pluripotency factor OCT4, and the ABCB5 marker of melanoma stem cells and downregulate the expression of Cyclin D1 and CDK4. Interestingly, a short treatment with LY294002, an inhibitor of the PI3K/AKT pathway, specifically reverts a subset of Rh123(high) cells to the Rh123(low) phenotype, whereas treatment with inhibitors of mammalian target of rapamycin, phosphatase and tensin homolog or mitogen-activated protein kinase signaling does not. This phenotypic switching was associated with reduced levels of the HIF1α transcript and an increase in the level of phosphorylated nuclear FOXO3a preferentially in Rh123(low) cells. Moreover, the Rh123(low) cells became less quiescent and displayed a significant increase in their melanosphere-forming ability. All the above indicates that the Rh123(low) melanoma stem cell pool is composed of cycling and quiescent cells and that the PI3K/AKT signaling while maintaining the quiescence of Rh123(low) G0 cells promotes the exit of cycling cells from the stem cell compartment.
Asunto(s)
Melanoma/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rodamina 123/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Cromonas/farmacología , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunohistoquímica , Morfolinas/farmacología , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Células Tumorales CultivadasRESUMEN
ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-ß mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Melanoma/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Clorgilina/farmacología , Daunorrubicina/farmacología , Humanos , Rodamina 123/farmacología , Rodaminas/farmacología , Saccharomyces cerevisiae/genética , Tacrolimus/farmacologíaRESUMEN
Colorectal cancer (CRC) is deadly anaplastic changes in the gastrointestinal tract with high-rate mortality. In recent years, the application of phytocompounds has been extended along with different therapeutic protocols. Here, we monitored the effects of Thymoquinone (TQ) on autophagy via mitochondrial function after modulation of the Wnt/ß-catenin signaling pathway.Human colorectal adenocarcinoma HT-29 cells were treated with TQ (60 µM) and 15 µM Wnt3a inhibitor (LGK974) for 48 h. The survival rate was evaluated using an MTT assay. The expression of Wnt-related factors (c-Myc, and Axin), angiogenesis (VE-Cadherin), and mitophagy-related factors (PINK1, OPTN) was assessed using real-time PCR assay. Protein levels of autophagy factors (Beclin-1, LC3, and P62) were monitored using western blotting. Using flow cytometry analysis, the intracellular accumulation of Rhodamine 123 was evaluated. The migration properties were analyzed using a scratch wound healing assay.Data indicated that TQ can reduce the viability of HT-29 cells compared to the control cells (p < 0.05). The expression of VE-Cadherin was inhibited while the expression of PINK1 was induced in treated cells (p < 0.05). Both LGK974 and TQ-treated cells exhibited activation of autophagy flux (Beclin-1↑, LC3II/I↑, and p62↓) compared to the control group (p < 0.05). TQ can increase intracellular accumulation of Rhodamine 123, indicating the inhibition of efflux mechanisms in cancer cells. Along with these changes, the migration of cells was also reduced (p < 0.05).TQ is a potential phytocompound to alter the dynamic growth of human colorectal HT-29 cells via the modulation of autophagy, and mitophagy-related mechanisms.
Asunto(s)
Adenocarcinoma , Benzoquinonas , Neoplasias Colorrectales , Humanos , Rodamina 123/farmacología , Rodamina 123/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Autofagia , Proteínas QuinasasRESUMEN
The inhibition of P-glycoprotein (P-gp) has emerged as an intriguing strategy for circumventing multidrug resistance (MDR) in anticancer chemotherapy. In this study, we have designed and synthesized 30 indole-selenides as a new class of P-gp inhibitors based on the scaffold hopping strategy. Among them, the preferred compound H27 showed slightly stronger reversal activity (reversal fold: 271.7 vs 261.6) but weaker cytotoxicity (inhibition ratio: 33.7% vs 45.1%) than the third-generation P-gp inhibitor tariquidar on the tested MCF-7/ADR cells. Rh123 accumulation experiments and Western blot analysis demonstrated that H27 displayed excellent MDR reversal activity by dose-dependently inhibiting the efflux function of P-gp rather than its expression. Besides, UIC-2 reactivity shift assay revealed that H27 could bind to P-gp directly and induced a conformation change of P-gp. Moreover, docking study revealed that H27 matched well in the active pockets of P-gp by forming some key H-bonding interactions, arene-H interactions and hydrophobic contacts. These results suggested that H27 is worth to be a starting point for the development of novel Se-containing P-gp inhibitors for clinic use.
Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Humanos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Doxorrubicina/farmacología , Células MCF-7 , Rodamina 123/química , Rodamina 123/metabolismo , Rodamina 123/farmacologíaRESUMEN
Multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively explored for the treatment of MDR in cancer because of its ability to inhibit P-glycoprotein. Here, we have established multifunctional nanoparticles (MFNPs) using a single-molecule modification of TPGS, which can deliver a hydrophobic drug, paclitaxel (PTX), and a hydrophilic drug, fluorouracil (5-FU), and overcome MDR in cancer. Our data indicated that, when delivered into a PTX-resistant cell line using MFNPs, the combination of PTX and 5-FU was more cytotoxic than each agent individually.
Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Diseño de Fármacos , Citometría de Flujo , Fluorouracilo/farmacología , Humanos , Hidrólisis , Modelos Químicos , Paclitaxel/farmacología , Polietilenglicoles/farmacología , Rodamina 123/farmacología , Vitamina E/análogos & derivados , Vitamina E/farmacologíaRESUMEN
Methadone is an effective analgesic opioid that may have a place for the treatment of pain in horses. However, its absorption seems to be impaired by the presence of a transmembrane protein, P-glycoprotein, present in different tissues including the small intestine in other species. This study aims to determine the effect of the P-glycoprotein on methadone flux in the equine intestinal mucosa, as an indicator of in vivo drug absorption. Jejunum tissues from five horses were placed into the Ussing chambers and exposed to methadone solution in the presence or absence of Rhodamine 123 or verapamil. Electrical measurements demonstrated tissue viability for 120 min, and the flux of methadone across the jejunal membrane (mucosal to submucosal direction) was calculated based on the relative drug concentration measured by ELISA. The flux of methadone was significantly higher only in the presence of verapamil. P-glycoprotein was immunolocalized in the apical membrane of the jejunal epithelial cells (enterocytes), mainly located in the tip of the villi compared to cells of the crypts. P-glycoprotein is present in the equine jejunum and may possibly mediate the intestinal transport of methadone. This study suggests that P-glycoprotein may play a role in the poor intestinal absorption of methadone in vivo.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/farmacología , Analgésicos Opioides/farmacología , Mucosa Intestinal/efectos de los fármacos , Metadona/farmacocinética , Animales , Caballos , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Rodamina 123/farmacología , Verapamilo/farmacologíaRESUMEN
The ABC transporter LmrA from Lactococcus lactis has been intensively studied and a role in multidrug resistance was proposed. Here, we performed a comprehensive detergent screen to analyze the impact of detergents for a successful solubilization, purification and retention of functional properties of this ABC transporter. Our screen revealed the preference of LmrA for zwitterionic detergents. In detergent solution, LmrA purified with FC-16 was highly active with respect to ATPase activity, which could be stimulated by a substrate (rhodamine 123) of LmrA. Both, high ATPase activity and substrate stimulation were not detected for LmrA solubilized in DDM. Interestingly, reconstituted LmrA showed an opposite behavior, with a high basal ATPase activity and stimulation by rhodamine 123 for a DDM-reconstituted, but only low ATPase activity and no substrate stimulation for a FC-16 reconstituted sample.
Asunto(s)
Proteínas Bacterianas/química , Detergentes/química , Lactococcus lactis/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Transportadoras de Casetes de Unión a ATP/química , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Cromatografía/métodos , Resistencia a Múltiples Medicamentos , Escherichia coli/metabolismo , Hidrólisis , Cinética , Liposomas/química , Rodamina 123/farmacología , Especificidad por Sustrato , TemperaturaRESUMEN
Clotrimazole has anticarcinogenic activity in several cell types. Our aims were to investigate the anticarcinogenic effect of clotrimazole in a tumoral intestinal epithelial (Caco-2) cell line, to compare it with the effect in a nontumoral intestinal epithelial cell line (IEC-6 cells), and to investigate inhibition of energy substrate uptake as a mechanism contributing to it. The effect of clotrimazole on cell proliferation, viability and differentiation, H-deoxyglucose (H-DG), H-O-methyl-glucose (H-OMG), and C-butyrate uptake, as well as mRNA expression levels of glucose transporters was assessed. In Caco-2 cells, clotrimazole decreased cellular viability and proliferation and increased cell differentiation. The effect on cell proliferation and viability was potentiated by rhodamine123. Clotrimazole also decreased cellular viability and proliferation in IEC-6 cells, but increased the cellular DNA synthesis rate and had no effect on cell differentiation. Exposure of Caco-2 cells to clotrimazole (10 µmol/l) for 1 and 7 days increased (by 20-30%) the uptake of H-DG and H-OMG, respectively, but had no effect on C-butyrate uptake. The effect on H-DG and H-OMG transport was maximal at 10 µmol/l, and the pharmacological characteristics of transport were not changed. However, clotrimazole changed the mRNA expression levels of the facilitative glucose transporter 2 and the Na-dependent glucose cotransporter. Clotrimazole exhibits comparable cytotoxic effects in tumoral and nontumoral intestinal epithelial cell lines. In Caco-2 cells, the cytotoxic effect of clotrimazole was strongly potentiated by the inhibition of oxidative phosphorylation. Moreover, stimulation of glucose uptake might be a compensation mechanism in response to the glycolysis inhibition caused by clotrimazole.
Asunto(s)
Antineoplásicos/farmacología , Clotrimazol/farmacología , Metabolismo Energético/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Mucosa Intestinal/efectos de los fármacos , 3-O-Metilglucosa/metabolismo , Butiratos/metabolismo , Células CACO-2 , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/biosíntesis , Desoxiglucosa/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Rodamina 123/farmacologíaRESUMEN
Biodegradable hyperbranched polyglycerols (dHPGs) were synthesized through oxyanionic initiating hybrid polymerization of glycerol and glycidyl methacrylate. Due to the introduction of ester linkages into the hyperbranched polyglycerol backbone, dHPGs showed good biodegradability and low cytotoxicity. Benefiting from the existence of terminal hydroxyls and methacryloyl groups, both the anticancer drug methotrexate (MTX) and fluorescent probe Rhodamine-123 could be conjugated onto the surface of dHPGs easily. The resultant MTX-conjugated polymers (dHPG-MTXs) exhibited an amphiphilic character, resulting in the formation of micelles in an aqueous solution. The release of MTX from micelles was significantly faster at mildly acidic pH of 5.0 compared to physiological pH of 7.4. dHPG-MTX micelles could be efficiently internalized by cancer cells. MTT assay against cancer cells showed dHPG-MTXs micelles had high anticancer efficacy. On the basis of their good biodegradability and low cytotoxicity, dHPGs provide an opportunity to design excellent drug delivery systems.