Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.656
Filtrar
Más filtros

Publication year range
1.
Plant J ; 117(3): 856-872, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983569

RESUMEN

Sorbitol is a critical photosynthate and storage substance in the Rosaceae family. Sorbitol transporters (SOTs) play a vital role in facilitating sorbitol allocation from source to sink organs and sugar accumulation in sink organs. While prior research has addressed gene duplications within the SOT gene family in Rosaceae, the precise origin and evolutionary dynamics of these duplications remain unclear, largely due to the complicated interplay of whole genome duplications and tandem duplications. Here, we investigated the synteny relationships among all identified Polyol/Monosaccharide Transporter (PLT) genes in 61 angiosperm genomes and SOT genes in representative genomes within the Rosaceae family. By integrating phylogenetic analyses, we elucidated the lineage-specific expansion and syntenic conservation of PLTs and SOTs across diverse plant lineages. We found that Rosaceae SOTs, as PLT family members, originated from a pair of tandemly duplicated PLT genes within Class III-A. Furthermore, our investigation highlights the role of lineage-specific and synergistic duplications in Amygdaloideae in contributing to the expansion of SOTs in Rosaceae plants. Collectively, our findings provide insights into the genomic origins, duplication events, and subsequent divergence of SOT gene family members. Such insights lay a crucial foundation for comprehensive functional characterizations in future studies.


Asunto(s)
Magnoliopsida , Rosaceae , Rosaceae/genética , Filogenia , Magnoliopsida/genética , Genoma de Planta/genética , Sorbitol , Evolución Molecular , Duplicación de Gen
2.
BMC Genomics ; 25(1): 794, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169310

RESUMEN

BACKGROUND: PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS: In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS: These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Rosaceae , Flores/genética , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rosaceae/genética , Pyrus/genética , Arabidopsis/genética , Evolución Molecular , Sintenía , Familia de Multigenes
3.
BMC Plant Biol ; 24(1): 596, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914948

RESUMEN

BACKGROUND: Cliffs are recognized as one of the most challenging environments for plants, characterized by harsh conditions such as drought, infertile soil, and steep terrain. However, they surprisingly host ancient and diverse plant communities and play a crucial role in protecting biodiversity. The Taihang Mountains, which act as a natural boundary in eastern China, support a rich variety of plant species, including many unique to cliff habitats. However, it is little known how cliff plants adapt to harsh habitats and the demographic history in this region. RESULTS: To better understand the demographic history and adaptation of cliff plants in this area, we analyzed the chromosome-level genome of a representative cliff plant, T. rupestris var. ciliata, which has a genome size of 769.5 Mb, with a scaffold N50 of 104.92 Mb. The rapid expansion of transposable elements may have contributed to the increasing genome and its ability to adapt to unique and challenging cliff habitats. Comparative analysis of the genome evolution between Taihangia and non-cliff plants in Rosaceae revealed a significant expansion of gene families associated with oxidative phosphorylation, which is likely a response to the abiotic stresses faced by cliff plants. This expansion may explain the long-term adaptation of Taihangia to harsh cliff environments. The effective population size of the two varieties has continuously decreased due to climatic fluctuations during the Quaternary period. Furthermore, significant differences in gene expression between the two varieties may explain the varied leaf phenotypes and adaptations to harsh conditions in different natural distributions. CONCLUSION: Our study highlights the extraordinary adaptation of T. rupestris var. ciliata, shedding light on the evolution of cliff plants worldwide.


Asunto(s)
Adaptación Fisiológica , Cromosomas de las Plantas , Genoma de Planta , China , Cromosomas de las Plantas/genética , Adaptación Fisiológica/genética , Rosaceae/genética , Rosaceae/fisiología , Ecosistema , Evolución Molecular
4.
BMC Plant Biol ; 24(1): 23, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38166728

RESUMEN

BACKGROUND: Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS: In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS: The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.


Asunto(s)
Genoma del Cloroplasto , Genoma de Plastidios , Rosaceae , Spiraea , Filogenia , Evolución Molecular , Genoma del Cloroplasto/genética
5.
BMC Plant Biol ; 24(1): 169, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443784

RESUMEN

BACKGROUND: Dwarf rootstocks have important practical significance for high-density planting in pear orchards. The shoots of 'Cuiguan' grafted onto the dwarf rootstock were shorter than those grafted onto the vigorous rootstock. However, the mechanism of shorter shoot formation is not clear. RESULTS: In this study, the current-year shoot transcriptomes and phytohormone contents of 'CG‒QA' ('Cuiguan' was grafted onto 'Quince A', and 'Hardy' was used as interstock) and 'CG‒DL' ('Cuiguan' was grafted onto 'Duli', and 'Hardy' was used as interstock) were compared. The transcriptome results showed that a total of 452 differentially expressed genes (DEGs) were identified, including 248 downregulated genes and 204 upregulated genes; the plant hormone signal transduction and zeatin biosynthesis pathways were significantly enriched in the top 20 KEGG enrichment terms. Abscisic acid (ABA) was the most abundant hormone in 'CG‒QA' and 'CG‒DL'; auxin and cytokinin (CTK) were the most diverse hormones; additionally, the contents of ABA, auxin, and CTK in 'CG‒DL' were higher than those in 'CG‒QA', while the fresh shoot of 'CG‒QA' accumulated more gibberellin (GA) and salicylic acid (SA). Metabolome and transcriptome co-analysis identified three key hormone-related DEGs, of which two (Aldehyde dehydrogenase gene ALDH3F1 and YUCCA2) were upregulated and one (Cytokinin oxidase/dehydrogenase gene CKX3) was downregulated. CONCLUSIONS: Based on the results of transcriptomic and metabolomic analysis, we found that auxin and CTK mainly regulated the shoot differences of 'CG-QA' and 'CG-DL', and other hormones such as ABA, GA, and SA synergistically regulated this process. Three hormone-related genes ALDH3F1, YUCCA2, and CKX3 were the key genes contributing to the difference in shoot growth between 'CG-QA' and 'CG-DL' pear. This research provides new insight into the molecular mechanism underlying shoot shortening after grafted onto dwarf rootstocks.


Asunto(s)
Pyrus , Rosaceae , Pyrus/genética , Transcriptoma , Metaboloma , Reguladores del Crecimiento de las Plantas , Ácido Abscísico , Citocininas , Hormonas , Ácidos Indolacéticos , China
6.
Mol Genet Genomics ; 299(1): 21, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429502

RESUMEN

Wide hybridizations across species and genera have been employed to enhance agriculturally important traits in crops. Within the tribe Maleae of the Rosaceae family, different genera and species exhibit several traits useful for increasing diversity and gene pool through hybridization. This study aimed to develop and characterize intergeneric hybrid individuals between Malus and Pyrus. Through seed germination, shoot multiplication, and rooting in vitro, acclimatized seedlings showing vegetative growth on their own roots were obtained from crosses of Malus × domestica pollinated by Pyrus communis, P. bretschneideri, and the Pyrus interspecific hybrid (P. communis × P. pyrifolia). Comparative analysis of leaf morphology, flow cytometry, and molecular genotyping confirmed the hybrid status of the individuals. Genome-wide genotyping revealed that all the hybrid individuals inherited genomic fragments symmetrically from the Malus and Pyrus parents. To the best of our knowledge, this is the first report on the development of intergeneric hybrid seedlings between Malus × domestica and P. bretschneideri. Furthermore, the Pyrus interspecific hybrid individual served as a bridge plant for introducing the genetic background of P. pyrifolia into Malus × domestica. The results of this study provided a crucial foundation for breeding through intergeneric hybridization between Malus and Pyrus, facilitating the incorporation of valuable traits from diverse gene pools.


Asunto(s)
Malus , Pyrus , Rosaceae , Humanos , Malus/genética , Pyrus/genética , Pyrus/metabolismo , Fitomejoramiento , Rosaceae/genética , Hibridación Genética
7.
Mol Phylogenet Evol ; 190: 107956, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898296

RESUMEN

Phylogenomic conflicts are widespread among genomic data, with most previous studies primarily focusing on nuclear datasets instead of organellar genomes. In this study, we investigate phylogenetic conflict analyses within and between plastid and mitochondrial genomes using Potentilla as a case study. We generated three plastid datasets (coding, noncoding, and all-region) and one mitochondrial dataset (coding regions) to infer phylogenies based on concatenated and multispecies coalescent (MSC) methods. Conflict analyses were then performed using PhyParts and Quartet Sampling (QS). Both plastid and mitochondrial genomes divided the Potentilla into eight highly supported clades, two of which were newly identified in this study. While most organellar loci were uninformative for the majority of nodes (bootstrap value < 70%), PhyParts and QS detected conflicting signals within the two organellar genomes. Regression analyses revealed that conflict signals mainly occurred among shorter loci, whereas longer loci tended to be more concordant with the species tree. In addition, two significant disagreements between the two organellar genomes were detected, likely attributed to hybridization and/or incomplete lineage sorting. Our results demonstrate that mitochondrial genes can fully resolve the phylogenetic relationships among eight major clades of Potentilla and are not always linked with plastome in evolutionary history. Stochastic inferences appear to be the primary source of observed conflicts among the gene trees. We recommend that the loci with short sequence length or containing limited informative sites should be used cautiously in MSC analysis, and suggest the joint application of concatenated and MSC methods for phylogenetic inference using organellar genomes.


Asunto(s)
Genoma Mitocondrial , Genoma de Plastidios , Potentilla , Rosaceae , Filogenia , Potentilla/genética , Rosaceae/genética , Plastidios/genética
8.
Mol Phylogenet Evol ; 190: 107961, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918684

RESUMEN

The tribe Potentilleae comprises approximately 1700 species in 13 genera, making it one of the largest of the 16 tribes in Rosaceae. Our understanding of the composition and relationships among members of Potentilleae has advanced dramatically with the application of molecular markers in the last two decades. Yet there is still much work remaining toward a robust phylogenetic framework for the entire Potentilleae and a comprehensive genus-level dating framework for the tribe. The goals of the present study were to establish a phylogenetic framework for Potentilleae, infer the origin and diversification of the tribe using a temporal framework, and explore the taxonomic implications in light of the updated phylogenetic framework. We used the plastome sequences from 158 accessions representing 139 taxa covering all 13 recognized genera of the tribe to reconstruct the Potentilleae phylogeny. High phylogenetic resolution was recovered along the Potentilleae backbone. Two major clades were recovered within Potentilleae, corresponding to the two subtribes Fragariinae and Potentillinae. Within Fragariinae, two subclades were recovered. In one subclade, Sibbaldia sensu stricto is sister to a clade containing Sibbaldianthe, Comarum, Farinopsis, and Alchemilla sensu lato. In the other subclade, Fragaria is sister to a clade comprising Chamaerhodos, Chamaecallis, Drymocallis, Dasiphora, and Potaninia. Within Potentillinae, Argentina is sister to Potentilla sensu stricto. Within Potentilla sensu stricto, clade Himalaya is sister to Alba, and the Himalaya-Alba clade together is sister to a clade comprising Reptans, Potentilla ancistrifolia Bunge, Fragarioides, Ivesioid, and Argentea. Divergence time estimates indicated that tribe Potentilleae originated during the middle Eocene, and subtribes Fragariinae and Potentillinae diverged around the Eocene-Oligocene transition, and divergence times dated for Potentilleae genera ranged from the early Miocene to the late Pleistocene.


Asunto(s)
Rosaceae , Filogenia , Plastidios/genética , Argentina
9.
Langmuir ; 40(21): 10992-11010, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743441

RESUMEN

The exploration of environmentally friendly, less toxic, sustained-release insecticide is increasing with the growing demand for food to meet the requirements of the expanding population. As a sustained-release carrier, the unique, environmentally friendly intelligent responsive hydrogel system is an important factor in improving the efficiency of insecticide utilization and accurate release. In this study, we developed a facile approach for incorporating the natural compound rosin (dehydroabietic acid, DA) and zinc ions (Zn2+) into a poly(N-isopropylacrylamide) (PNIPAM) hydrogel network to construct a controlled-release hydrogel carrier (DA-PNIPAM-Zn2+). Then, the model insecticide avermectin (AVM) was encapsulated in the carrier at a drug loading rate of 36.32% to form AVM@DA-PNIPAM-Zn2+. Surprisingly, the smart controlled carrier exhibited environmental responsiveness, strongly enhanced mechanical properties, self-healing ability, hydrophobicity, and photostability to ensure a balance between environmental friendliness and the precision of the drug release. The release experiments showed that the carboxyl and amide groups in the polymer chains alter the intermolecular forces within the hydrogel meshes and ingredient diffusion by changing temperatures (25 and 40 °C) and pH values (5.8, 7.4, and 8.5), leading to different release behaviors. The insecticidal activity of the AVM@DA-PNIPAM-Zn2+ against oriental armyworms was good, with an effective minimum toxicity toward aquatic animals. Therefore, AVM@DA-PNIPAM-Zn2+ is an effective drug delivery system against oriental armyworms. We anticipate that this ecofriendly, sustainable, smart-response carrier may broaden the utilization rosin and its possible applications in the agricultural sector.


Asunto(s)
Portadores de Fármacos , Hidrogeles , Insecticidas , Ivermectina , Resinas de Plantas , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/farmacología , Ivermectina/toxicidad , Hidrogeles/química , Hidrogeles/farmacología , Animales , Concentración de Iones de Hidrógeno , Insecticidas/química , Insecticidas/farmacología , Resinas de Plantas/química , Portadores de Fármacos/química , Temperatura , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Liberación de Fármacos , Mariposas Nocturnas/efectos de los fármacos , Rosaceae/química , Zinc/química , Zinc/farmacología , Resinas Acrílicas
10.
Ann Bot ; 134(1): 163-178, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38549558

RESUMEN

BACKGROUND AND AIMS: Rubus ser. Glandulosi provides a unique model of geographical parthenogenesis on a homoploid (2n = 4x) level. We aim to characterize evolutionary and phylogeographical patterns in this taxon and shed light on the geographical differentiation of apomicts and sexuals. Ultimately, we aim to evaluate the importance of phylogeography in the formation of geographical parthenogenesis. METHODS: Rubus ser. Glandulosi was sampled across its Eurasian range together with other co-occurring Rubus taxa (587 individuals in total). Double-digest restriction site-associated DNA sequencing (ddRADseq) and modelling of suitable climate were used for evolutionary inferences. KEY RESULTS: Six ancestral species were identified that contributed to the contemporary gene pool of R. ser. Glandulosi. Sexuals were introgressed from Rubus dolichocarpus and Rubus moschus in West Asia and from Rubus ulmifolius agg., Rubus canescens and Rubus incanescens in Europe, whereas apomicts were characterized by alleles of Rubus subsect. Rubus. Gene flow between sexuals and apomicts was also detected, as was occasional hybridization with other taxa. CONCLUSIONS: We hypothesize that sexuals survived the last glacial period in several large southern refugia, whereas apomicts were mostly restricted to southern France, whence they quickly recolonized Central and Western Europe. The secondary contact of sexuals and apomicts was probably the principal factor that established geographical parthenogenesis in R. ser. Glandulosi. Sexual populations are not impoverished in genetic diversity along their borderline with apomicts, and maladaptive population genetic processes probably did not shape the geographical patterns.


Asunto(s)
Filogeografía , Rosaceae , Europa (Continente) , Rosaceae/genética , Rosaceae/fisiología , Flujo Génico , Evolución Biológica , Apomixis/genética , Asia , Partenogénesis/genética , Variación Genética , Filogenia
11.
Plant Dis ; 108(8): 2435-2446, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38557244

RESUMEN

Blackberry production is increasing in the Southeastern United States with the availability of new cultivars. In addition to high production costs, growers are challenged by virus diseases. Blackberry yellow vein disease (BYVD) significantly limits blackberry production. BYVD is associated with the crinivirus blackberry yellow vein-associated virus in mixed infections with other viruses. The specific disease etiology and ecological factors underlying BYVD are not well understood and rely on the effective diagnosis of several viruses involved in the complex. In 2021, we collected samples from blackberry plants showing BYVD symptoms, asymptomatic blackberry plants, and wild Rosaceae spp. from nine farms across South Carolina, for a total of 372 individual plant samples. RNA from individual samples was isolated and pooled into sample groups (i.e., symptomatic, asymptomatic, and wild) from each farm for a total of 24 pooled samples. We sequenced the pooled RNA using Illumina and analyzed sequence profiles using the Virtool bioinformatics application. We also tested each plant for six viruses by reverse transcriptase PCR or reverse transcriptase quantitative PCR and compared plant (PCR)-level and field (high-throughput sequencing [HTS])-level data. Virtool detected 17 known viruses in the pooled samples, including 11 blackberry viruses. PCR testing was mostly consistent with HTS, with some notable disagreements for specific viruses. Our study demonstrates that HTS could be used as an efficient tool to detect viruses in bulked samples in blackberry fields, although limitations to using HTS for field-level surveillance are also discussed here.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rubus , Rubus/virología , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Virus de Plantas/aislamiento & purificación , South Carolina , ARN Viral/genética , Rosaceae/virología
12.
Phytochem Anal ; 35(1): 87-92, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37581346

RESUMEN

INTRODUCTION: Nanoparticles are used in various fields such as chemistry, pharmacy, biotechnology, and food science since they provide higher sensitivity than traditional optical detection methods. Recently, synthesis of nanomaterials using green chemistry has become popular. Many phytochemical components are used in the synthesis of nanoparticles, including vitamins, proteins, polysaccharides, glycosides, essential oils and phenolic compounds. OBJECTIVE: A novel green nanotechnology-based method using quince seed mucilage (QSM) was designed for the determination of ascorbic acid in pharmaceutical preparations. QSM, a natural polysaccharide, was used as a bioreducing and stabilizing reagent in the proposed silver nanoparticle (SNP)-based method. METHOD: In the first stage of the developed method, silver(I) is reduced to silver(0) via QSM and spherical, homogeneous SNPs were prepared (QSM-SNPs). In the second stage of the developed method, SNPs nuclei were enlarged with the addition of ascorbic acid. The developed method was validated by performance parameters (linearity, recovery, and precision). Ascorbic acid determination was performed by measuring increase in absorbance at 420 nm. RESULTS: The limit of detection and limit of quantification for ascorbic acid were, respectively, found to be at 0.27 and 0.90 µM. The QSM-SNP-based method was successfully applied to effervescent tablets containing ascorbic acid. The standards of the excipients frequently used in pharmaceutical preparations did not interfere with the developed method. CONCLUSION: The developed QSM-SNP-based method satisfies the requirements of green nanotechnology. The developed QSM-SNP-based method is simple, fast, eco-friendly and low-cost.


Asunto(s)
Nanopartículas del Metal , Rosaceae , Ácido Ascórbico/análisis , Plata/análisis , Plata/química , Nanopartículas del Metal/química , Rosaceae/química , Semillas/química , Polisacáridos/análisis , Preparaciones Farmacéuticas/análisis
13.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474218

RESUMEN

SMXL genes constitute a conserved gene family that is ubiquitous in angiosperms and involved in regulating various plant processes, including branching, leaf elongation, and anthocyanin biosynthesis, but little is known about their molecular functions in pear branching. Here, we performed genome-wide identification and investigation of the SMXL genes in 16 angiosperms and analyzed their phylogenetics, structural features, conserved motifs, and expression patterns. In total, 121 SMXLs genes were identified and were classified into four groups. The number of non-redundant SMXL genes in each species varied from 3 (Amborella trichopoda Baill.) to 18 (Glycine max Merr.) and revealed clear gene expansion events over evolutionary history. All the SMXL genes showed conserved structures, containing no more than two introns. Three-dimensional protein structure prediction revealed distinct structures between but similar structures within groups. A quantitative real-time PCR analysis revealed different expressions of 10 SMXL genes from pear branching induced by fruit-thinning treatment. Overall, our study provides a comprehensive investigation of SMXL genes in the Rosaceae family, especially pear. The results offer a reference for understanding the evolutionary history of SMXL genes and provide excellent candidates for studying fruit tree branching regulation, and in facilitating pear pruning and planting strategies.


Asunto(s)
Pyrus , Rosaceae , Rosaceae/genética , Pyrus/genética , Familia de Multigenes , Filogenia , Intrones , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Genoma de Planta , Evolución Molecular
14.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38892026

RESUMEN

In this study, we examined the potential antidepressant-like effects of Chinese quince fruit extract (Chaenomeles sinensis fruit extract, CSFE) in an in vivo model induced by repeated injection of corticosterone (CORT)-induced depression. HPLC analysis determined that chlorogenic acid (CGA), neo-chlorogenic acid (neo-CGA), and rutin (RT) compounds were major constituents in CSFE. Male ICR mice (5 weeks old) were orally administered various doses (30, 100, and 300 mg/kg) of CSFE and selegiline (10 mg/kg), a monoamine oxidase B (MAO-B) inhibitor, as a positive control following daily intraperitoneal injections of CORT (40 mg/kg) for 21 days. In our results, mice treated with CSFE exhibited significant improvements in depressive-like behaviors induced by CORT. This was evidenced by reduced immobility times in the tail suspension test and forced swim test, as well as increased step-through latency times in the passive avoidance test. Indeed, mice treated with CSFE also exhibited a significant decrease in anxiety-like behaviors as measured by the elevated plus maze test. Moreover, molecular docking analysis indicated that CGA and neo-CGA from CSFE had stronger binding to the active site of MAO-B. Our results indicate that CSFE has potential antidepressant effects in a mouse model of repeated injections of CORT-induced depression.


Asunto(s)
Antidepresivos , Depresión , Frutas , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Extractos Vegetales , Rosaceae , Animales , Antidepresivos/farmacología , Antidepresivos/química , Masculino , Ratones , Frutas/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Depresión/tratamiento farmacológico , Rosaceae/química , Conducta Animal/efectos de los fármacos , Monoaminooxidasa/metabolismo , Modelos Animales de Enfermedad , Corticosterona , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Ácido Clorogénico/farmacología , Ácido Clorogénico/química , Pueblos del Este de Asia
15.
Molecules ; 29(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474645

RESUMEN

Fruit peels might be a valuable source of active ingredients for cosmetics, leading to more sustainable usage of plant by-products. The aim of the study was to evaluate the phytochemical content and selected biological properties of hydroglycolic extracts from peels and pulps of Annona cherimola, Diospyros kaki, Cydonia oblonga, and Fortunella margarita as potential cosmetic ingredients. Peel and pulp extracts were compared for their antiradical activity (using DPPH and ABTS radical scavenging assays), skin-lightening potential (tyrosinase inhibitory assay), sun protection factor (SPF), and cytotoxicity toward human fibroblast, keratinocyte, and melanoma cell lines. The total content of polyphenols and/or flavonoids was significantly higher in peel than in pulp extracts, and the composition of particular active compounds was also markedly different. The HPLC-MS fingerprinting revealed the presence of catechin, epicatechin and rutoside in the peel of D. kaki, whereas kaempferol glucoside and procyanidin A were present only in the pulp. In A. cherimola, catechin, epicatechin and rutoside were identified only in the peel of the fruit, whereas procyanidins were traced only in the pulp extracts. Quercetin and luteolinidin were found to be characteristic compounds of F. margarita peel extract. Naringenin and hesperidin were found only in the pulp of F. margarita. The most significant compositional variety between the peel and pulp extracts was observed for C. oblonga: Peel extracts contained a higher number of active components (e.g., vicenin-2, kaempferol rutinoside, or kaempferol galactoside) than pulp extract. The radical scavenging potential of peel extracts was higher than of the pulp extracts. D. kaki and F. margarita peel and pulp extracts inhibited mushroom and murine tyrosinases at comparable levels. The C. oblonga pulp extract was a more potent mushroom tyrosinase inhibitor than the peel extract. Peel extract of A. cherimola inhibited mushroom tyrosinase but activated the murine enzyme. F. margarita pulp and peel extracts showed the highest in vitro SPF. A. cherimola, D. kaki, and F. margarita extracts were not cytotoxic for fibroblasts and keratinocytes up to a concentration of 2% (v/v) and the peel extracts were cytotoxic for A375 melanoma cells. To summarize, peel extracts from all analyzed fruit showed comparable or better cosmetic-related properties than pulp extracts and might be considered multifunctional active ingredients of skin lightening, anti-aging, and protective cosmetics.


Asunto(s)
Annona , Catequina , Diospyros , Melanoma , Rosaceae , Rutaceae , Ratones , Animales , Humanos , Catequina/análisis , Antioxidantes/farmacología , Diospyros/química , Quempferoles/análisis , Monofenol Monooxigenasa , Pulgar , Frutas/química , Rosaceae/química , Rutina/análisis , Fitoquímicos/análisis , Extractos Vegetales/química
16.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998935

RESUMEN

This article systematically reviews the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of C. speciosa polysaccharides, and their potential application in food, medicine, functional products, and feed, in order to provide a useful reference for future research. Chaenomeles speciosa (Sweet) Nakai. has attracted the attention of health consumers and medical researchers as a traditional Chinese medicine with edible, medicinal, and nutritional benefits. According to this study, C. speciosa polysaccharides have significant health benefits, such as anti-diaetic, anti-inflammatory and analgesic, anti-tumor, and immunomodulatory effects. Researchers determined the molecular weight, structural characteristics, and monosaccharide composition and ratio of C. speciosa polysaccharides by water extraction and alcohol precipitation. This study will lay a solid foundation for further optimization of the extraction process of C. speciosa polysaccharides and the development of their products. As an active ingredient with high value, C. speciosa polysaccharides are worthy of further study and full development. C. speciosa polysaccharides should be further explored in the future, to innovate their extraction methods, enrich their types and biological activities, and lay a solid foundation for further research and development of products containing polysaccharides that are beneficial to the human body.


Asunto(s)
Polisacáridos , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Polisacáridos/farmacología , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Rosaceae/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Medicina Tradicional China , Monosacáridos/química , Monosacáridos/análisis , Relación Estructura-Actividad , Animales
17.
J Sci Food Agric ; 104(6): 3705-3718, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160248

RESUMEN

BACKGROUND: Rosaceae fruits have been used in traditional medicine for the prevention and treatment of diseases. However, these fruits have not extensively been studied regarding their phenolic composition. Thus, this research focuses on the determination of phenolic compounds by high-performance liquid chromatography electrospray ionization time-of-flight mass spectrometry, flavan-3-ols by high-performance liquid chromatography with fluorescence detection, and the antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ferric reducing antioxidant power of the fruits of five species of genera Crataegus and Sorbus (Rosaceae). RESULTS: We found a total of 71 phenolic compounds from which 30 were identified in these berries for the first time. Crataegus monogyna and Crataegus laciniata revealed higher total phenolic and flavan-3-ol contents than the other species and the highest antioxidant activities. CONCLUSIONS: Therefore, the fruits evaluated have demonstrated to be important sources of bioactive compounds with huge potential for being used in nutraceutical or food scopes. Additional studies could be needed to evaluate the influence of the different production areas on the phenolic content. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Antioxidantes , Rosaceae , Antioxidantes/química , Rosaceae/química , Frutas/química , Fenoles/química , Cromatografía Líquida de Alta Presión/métodos
18.
Plant J ; 109(6): 1614-1629, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34905278

RESUMEN

Fruits represent key evolutionary innovations in angiosperms and exhibit diverse types adapted for seed dissemination. However, the mechanisms that underlie fruit type diversity are not understood. The Rosaceae family comprises many different fruit types, including 'pome' and 'drupe' fruits, and hence is an excellent family for investigating the genetic basis of fruit type specification. Using comparative transcriptomics, we investigated the molecular events that correlate with pome (apple) and drupe (peach) fleshy fruit development, focusing on the earliest stages of fruit initiation. We identified PI and TM6, MADS box genes whose expression negatively correlates with fruit flesh-forming tissues irrespective of fruit type. In addition, the MADS box gene FBP9 is expressed in fruit-forming tissues in both species, and was lost multiple times in the genomes of dry-fruit-forming eudicots including Arabidopsis. Network analysis reveals co-expression between FBP9 and photosynthesis genes in both apple and peach, suggesting that FBP9 and photosynthesis may both promote fleshy fruit development. The large transcriptomic datasets at the earliest stages of pome and drupe fruit development provide rich resources for comparative studies, and the work provides important insights into fruit-type specification.


Asunto(s)
Malus , Prunus persica , Rosaceae , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Malus/genética , Prunus persica/genética , Rosaceae/genética , Transcriptoma/genética
19.
BMC Genomics ; 24(1): 337, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337162

RESUMEN

BACKGROUND: Wall associated kinase (WAK) and WAK-like (WAKL) are typical pattern recognition receptors act as the first sentry of plant defense. But little of WAK/WAKL family is known in Rosaceae. RESULTS: In this study, 131 WAK/WAKL genes from apple, peach and strawberry were identified using a bioinformatics approach. Together with 68 RcWAK/RcWAKL in rose, we performed a comparative analysis of 199 WAK/WAKL in four Rosaceae crops. The phylogenetic analysis divided all the WAK/WAKL into five clades. Among them, the cis-elements of Clade II and Clade V promoters were enriched in jasmonic acid (JA) signaling and abiotic stress, respectively. And this can also be verified by the rose transcriptome responding to different hormone treatments. WAK/WAKL families have experienced a considerable proportion of purifying selection during evolution, but still 26 amino acid sites evolved under positive selection, which focused on extracellular conserved domains. WAK/WAKL genes presented collinearity relationship within and between crops, throughout four crops we mined four orthologous groups (OGs). The WAK/WAKL genes in OG1 and OG4 were speculated to involve in plant-Botrytis cinerea interaction, which were validated in rose via VIGS as well as strawberry by qRT-PCR. CONCLUSIONS: These results not only provide genetic resources and valuable information for the evolutionary relationship of WAK/WAKL gene family, but also offer a reference for future in-depth studies of Rosaceae WAK/WAKL genes.


Asunto(s)
Fragaria , Rosa , Rosaceae , Rosaceae/genética , Rosaceae/metabolismo , Filogenia , Botrytis/genética , Fragaria/genética , Fragaria/metabolismo , Genómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
BMC Genomics ; 24(1): 49, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36707756

RESUMEN

BACKGROUND: The circadian clock integrates endogenous and exogenous signals and regulates various physiological processes in plants. REVEILLE (RVE) proteins play critical roles in circadian clock system, especially CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which also participate in flowering regulation. However, little is known about the evolution and function of the RVE family in Rosaceae species, especially in Pyrus bretschneideri. RESULTS: In this study, we performed a genome-wide analysis and identified 51 RVE genes in seven Rosaceae species. The RVE family members were classified into two groups based on phylogenetic analysis. Dispersed duplication events and purifying selection were the main drivers of evolution in the RVE family. Moreover, the expression patterns of ten PbRVE genes were diverse in P. bretschneideri tissues. All PbRVE genes showed diurnal rhythms under light/dark cycles in P. bretschneideri leaves. Four PbRVE genes also displayed robust rhythms under constant light conditions. PbLHY, the gene with the highest homology to AtCCA1 and AtLHY in P. bretschneideri, is localized in the nucleus. Ectopic overexpression of PbLHY in Arabidopsis delayed flowering time and repressed the expression of flowering time-related genes. CONCLUSION: These results contribute to improving the understanding and functional research of RVE genes in P. bretschneideri.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Rosaceae , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Rosaceae/genética , Filogenia , Arabidopsis/metabolismo , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda