Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.082
Filtrar
Más filtros

Publication year range
1.
Cell ; 187(18): 5048-5063.e25, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106863

RESUMEN

It is currently not known whether mRNAs fulfill structural roles in the cytoplasm. Here, we report the fragile X-related protein 1 (FXR1) network, an mRNA-protein (mRNP) network present throughout the cytoplasm, formed by FXR1-mediated packaging of exceptionally long mRNAs. These mRNAs serve as an underlying condensate scaffold and concentrate FXR1 molecules. The FXR1 network contains multiple protein binding sites and functions as a signaling scaffold for interacting proteins. We show that it is necessary for RhoA signaling-induced actomyosin reorganization to provide spatial proximity between kinases and their substrates. Point mutations in FXR1, found in its homolog FMR1, where they cause fragile X syndrome, disrupt the network. FXR1 network disruption prevents actomyosin remodeling-an essential and ubiquitous process for the regulation of cell shape, migration, and synaptic function. Our findings uncover a structural role for cytoplasmic mRNA and show how the FXR1 RNA-binding protein as part of the FXR1 network acts as an organizer of signaling reactions.


Asunto(s)
Actomiosina , ARN Mensajero , Proteínas de Unión al ARN , Transducción de Señal , Proteína de Unión al GTP rhoA , Humanos , Actomiosina/metabolismo , Citoplasma/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Proteína de Unión al GTP rhoA/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
2.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37209683

RESUMEN

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Asunto(s)
Síndrome del Cromosoma X Frágil , Expansión de Repetición de Trinucleótido , Humanos , Estructuras R-Loop , Metilación de ADN , Síndrome del Cromosoma X Frágil/genética , Epigénesis Genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
3.
Cell ; 186(26): 5840-5858.e36, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134876

RESUMEN

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion. H3K9me3 domains connect via inter-chromosomal interactions and demarcate severe misfolding of TADs and loops. They harbor long synaptic genes replicating at the end of S phase, replication-stress-induced double-strand breaks, and STRs prone to stepwise somatic instability. CRISPR engineering of the mutation-length CGG to premutation length reverses H3K9me3 on the X chromosome and multiple autosomes, refolds TADs, and restores gene expression. H3K9me3 domains can also arise in normal-length iPSCs created with perturbations linked to genome instability, suggesting their relevance beyond FXS. Our results reveal Mb-scale heterochromatinization and trans interactions among loci susceptible to instability.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Expansión de Repetición de Trinucleótido , Metilación de ADN , Mutación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo
4.
Cell ; 175(1): 38-40, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241613

RESUMEN

TAD boundaries are insulators of genomic neighborhoods. In this issue, Sun et al. show that disease-associated tandem repeats are located to TAD boundaries and affect their insulation. The findings have important implications for TAD function and mechanisms underlying diseases such as fragile X syndrome and Huntington's disease.


Asunto(s)
Cromatina , Síndrome del Cromosoma X Frágil/genética , Genoma , Genómica , Humanos , Repeticiones de Microsatélite
5.
Cell ; 172(5): 979-992.e6, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29456084

RESUMEN

Fragile X syndrome (FXS), the most common genetic form of intellectual disability in males, is caused by silencing of the FMR1 gene associated with hypermethylation of the CGG expansion mutation in the 5' UTR of FMR1 in FXS patients. Here, we applied recently developed DNA methylation editing tools to reverse this hypermethylation event. Targeted demethylation of the CGG expansion by dCas9-Tet1/single guide RNA (sgRNA) switched the heterochromatin status of the upstream FMR1 promoter to an active chromatin state, restoring a persistent expression of FMR1 in FXS iPSCs. Neurons derived from methylation-edited FXS iPSCs rescued the electrophysiological abnormalities and restored a wild-type phenotype upon the mutant neurons. FMR1 expression in edited neurons was maintained in vivo after engrafting into the mouse brain. Finally, demethylation of the CGG repeats in post-mitotic FXS neurons also reactivated FMR1. Our data establish that demethylation of the CGG expansion is sufficient for FMR1 reactivation, suggesting potential therapeutic strategies for FXS.


Asunto(s)
Metilación de ADN/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Edición Génica , Neuronas/patología , Animales , Proteína 9 Asociada a CRISPR/metabolismo , Epigénesis Genética , Células HEK293 , Heterocromatina/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cinética , Masculino , Ratones , Neuronas/metabolismo , Fenotipo , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida/metabolismo , Expansión de Repetición de Trinucleótido/genética
6.
Cell ; 175(1): 224-238.e15, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30173918

RESUMEN

More than 25 inherited human disorders are caused by the unstable expansion of repetitive DNA sequences termed short tandem repeats (STRs). A fundamental unresolved question is why some STRs are susceptible to pathologic expansion, whereas thousands of repeat tracts across the human genome are relatively stable. Here, we discover that nearly all disease-associated STRs (daSTRs) are located at boundaries demarcating 3D chromatin domains. We identify a subset of boundaries with markedly higher CpG island density compared to the rest of the genome. daSTRs specifically localize to ultra-high-density CpG island boundaries, suggesting they might be hotspots for epigenetic misregulation or topological disruption linked to STR expansion. Fragile X syndrome patients exhibit severe boundary disruption in a manner that correlates with local loss of CTCF occupancy and the degree of FMR1 silencing. Our data uncover higher-order chromatin architecture as a new dimension in understanding repeat expansion disorders.


Asunto(s)
Cromatina/genética , Repeticiones de Microsatélite/fisiología , Expansión de Repetición de Trinucleótido/fisiología , Adulto , Encéfalo/citología , Encéfalo/patología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/fisiología , Línea Celular , Cromatina/fisiología , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Islas de CpG/genética , Islas de CpG/fisiología , ADN/genética , Enfermedad/etiología , Enfermedad/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Genoma Humano/genética , Humanos , Masculino , Repeticiones de Microsatélite/genética , Expansión de Repetición de Trinucleótido/genética
7.
Mol Cell ; 84(3): 413-414, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307002

RESUMEN

In a recent study in Cell, Malachowski et al.1 show that the trinucleotide expansion in the FMR1 gene underlying fragile X syndrome triggers formation of large heterochromatin domains across the genome, resulting in the repression of synaptic genes housed within these domains.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido/genética , Heterocromatina/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Regiones Promotoras Genéticas , Repeticiones de Trinucleótidos/genética
8.
Mol Cell ; 83(23): 4304-4317.e8, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37949069

RESUMEN

RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Fosforilación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Mol Cell ; 82(23): 4564-4581.e11, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36356584

RESUMEN

How fragile X syndrome protein (FMRP) binds mRNAs and regulates mRNA metabolism remains unclear. Our previous work using human neuronal cells focused on mRNAs targeted for nonsense-mediated mRNA decay (NMD), which we showed are generally bound by FMRP and destabilized upon FMRP loss. Here, we identify >400 high-confidence FMRP-bound mRNAs, only ∼35% of which are NMD targets. Integrative transcriptomics together with SILAC-LC-MS/MS reveal that FMRP loss generally results in mRNA destabilization and more protein produced per FMRP target. We use our established RIP-seq technology to show that FMRP footprints are independent of protein-coding potential, target GC-rich and structured sequences, and are densest in 5' UTRs. Regardless of where within an mRNA FMRP binds, we find that FMRP protects mRNAs from deadenylation and directly binds the cytoplasmic poly(A)-binding protein. Our results reveal how FMRP sequesters polyadenylated mRNAs into stabilized and translationally repressed complexes, whose regulation is critical for neurogenesis and synaptic plasticity.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Síndrome del Cromosoma X Frágil/genética
10.
Mol Cell ; 80(3): 381-383, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33157013

RESUMEN

Recent work by Licznerski et al. suggests that mutant FMRP linked to Fragile-X syndrome elevates the inner mitochondrial membrane proton leak, leading to increased metabolism and changes in protein synthesis that trigger impaired synaptic maturation and autistic behaviors.


Asunto(s)
Síndrome del Cromosoma X Frágil , Adenosina Trifosfato , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Mitocondrias/genética , Navíos
11.
Cell ; 151(7): 1581-94, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260144

RESUMEN

The activity-dependent transcription factor myocyte enhancer factor 2 (MEF2) induces excitatory synapse elimination in mouse neurons, which requires fragile X mental retardation protein (FMRP), an RNA-binding protein implicated in human cognitive dysfunction and autism. We report here that protocadherin 10 (Pcdh10), an autism-spectrum disorders gene, is necessary for this process. MEF2 and FMRP cooperatively regulate the expression of Pcdh10. Upon MEF2 activation, PSD-95 is ubiquitinated by the ubiquitin E3 ligase murine double minute 2 (Mdm2) and then binds to Pcdh10, which links it to the proteasome for degradation. Blockade of the Pcdh10-proteasome interaction inhibits MEF2-induced PSD-95 degradation and synapse elimination. In FMRP-lacking neurons, elevated protein levels of eukaryotic translation elongation factor 1 α (EF1α), an Mdm2-interacting protein and FMRP target mRNA, sequester Mdm2 and prevent MEF2-induced PSD-95 ubiquitination and synapse elimination. Together, our findings reveal roles for multiple autism-linked genes in activity-dependent synapse elimination.


Asunto(s)
Guanilato-Quinasas/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Cadherinas/metabolismo , Dendritas/metabolismo , Modelos Animales de Enfermedad , Homólogo 4 de la Proteína Discs Large , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Hipocampo/citología , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Factores Reguladores Miogénicos/genética , Factores Reguladores Miogénicos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Protocadherinas , Sinapsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
Proc Natl Acad Sci U S A ; 121(31): e2407546121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042682

RESUMEN

Fragile X syndrome (FXS) is the most common genetic cause of autism spectrum disorder engendered by transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Given the early onset of behavioral and molecular changes, it is imperative to know the optimal timing for therapeutic intervention. Case reports documented benefits of metformin treatment in FXS children between 2 and 14 y old. In this study, we administered metformin from birth to Fmr1-/y mice which corrected up-regulated mitogen-2 activated protein kinase/extracellular signal-regulated kinase and mammalian/mechanistic target of rapamycin complex 1 signaling pathways and specific synaptic mRNA-binding targets of FMRP. Metformin rescued increased number of calls in ultrasonic vocalization and repetitive behavior in Fmr1-/y mice. Our findings demonstrate that in mice, early-in-life metformin intervention is effective in treating FXS pathophysiology.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Metformina , Metformina/farmacología , Metformina/uso terapéutico , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/metabolismo , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Masculino , Ratones Noqueados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos
13.
Hum Mol Genet ; 33(16): 1391-1405, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710511

RESUMEN

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder and the leading genetic cause of autism spectrum disorders. FXS is caused by loss of function mutations in Fragile X mental retardation protein (FMRP), an RNA binding protein that is known to regulate translation of its target mRNAs, predominantly in the brain and gonads. The molecular mechanisms connecting FMRP function to neurodevelopmental phenotypes are well understood. However, neither the full extent of reproductive phenotypes, nor the underlying molecular mechanisms have been as yet determined. Here, we developed new fmr1 knockout zebrafish lines and show that they mimic key aspects of FXS neuronal phenotypes across both larval and adult stages. Results from the fmr1 knockout females also showed that altered gene expression in the brain, via the neuroendocrine pathway contribute to distinct abnormal phenotypes during ovarian development and oocyte maturation. We identified at least three mechanisms underpinning these defects, including altered neuroendocrine signaling in sexually mature females resulting in accelerated ovarian development, altered expression of germ cell and meiosis promoting genes at various stages during oocyte maturation, and finally a strong mitochondrial impairment in late stage oocytes from knockout females. Our findings have implications beyond FXS in the study of reproductive function and female infertility. Dissection of the translation control pathways during ovarian development using models like the knockout lines reported here may reveal novel approaches and targets for fertility treatments.


Asunto(s)
Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ovario , Proteínas de Pez Cebra , Pez Cebra , Animales , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Femenino , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Fenotipo , Humanos , Proteínas de Unión al ARN
14.
Nat Rev Neurosci ; 22(5): 275-289, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828309

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.


Asunto(s)
Canalopatías/etiología , Canalopatías/fisiopatología , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/fisiopatología , Animales , Canalopatías/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos
15.
Nat Rev Neurosci ; 22(4): 209-222, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33608673

RESUMEN

Fragile X mental retardation protein (FMRP) is the product of the fragile X mental retardation 1 gene (FMR1), a gene that - when epigenetically inactivated by a triplet nucleotide repeat expansion - causes the neurodevelopmental disorder fragile X syndrome (FXS). FMRP is a widely expressed RNA-binding protein with activity that is essential for proper synaptic plasticity and architecture, aspects of neural function that are known to go awry in FXS. Although the neurophysiology of FXS has been described in remarkable detail, research focusing on the molecular biology of FMRP has only scratched the surface. For more than two decades, FMRP has been well established as a translational repressor; however, recent whole transcriptome and translatome analyses in mouse and human models of FXS have shown that FMRP is involved in the regulation of nearly all aspects of gene expression. The emerging mechanistic details of the mechanisms by which FMRP regulates gene expression may offer ways to design new therapies for FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Neuronas/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Ratones , Plasticidad Neuronal/fisiología
16.
EMBO Rep ; 25(2): 902-926, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177924

RESUMEN

Viruses interact with numerous host factors to facilitate viral replication and to dampen antiviral defense mechanisms. We currently have a limited mechanistic understanding of how SARS-CoV-2 binds host factors and the functional role of these interactions. Here, we uncover a novel interaction between the viral NSP3 protein and the fragile X mental retardation proteins (FMRPs: FMR1, FXR1-2). SARS-CoV-2 NSP3 mutant viruses preventing FMRP binding have attenuated replication in vitro and reduced levels of viral antigen in lungs during the early stages of infection. We show that a unique peptide motif in NSP3 binds directly to the two central KH domains of FMRPs and that this interaction is disrupted by the I304N mutation found in a patient with fragile X syndrome. NSP3 binding to FMRPs disrupts their interaction with the stress granule component UBAP2L through direct competition with a peptide motif in UBAP2L to prevent FMRP incorporation into stress granules. Collectively, our results provide novel insight into how SARS-CoV-2 hijacks host cell proteins and provides molecular insight into the possible underlying molecular defects in fragile X syndrome.


Asunto(s)
COVID-19 , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Péptidos/metabolismo , Proteínas de Unión al ARN/genética , SARS-CoV-2
17.
Nucleic Acids Res ; 52(10): 5928-5949, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38412259

RESUMEN

A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Demencia Frontotemporal , Biosíntesis de Proteínas , Proteínas Ribosómicas , Expansión de Repetición de Trinucleótido , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Ataxia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Secuencia Rica en GC , Células HEK293 , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Ribosomas/metabolismo , Ribosomas/genética , Temblor , Expansión de Repetición de Trinucleótido/genética , Proteínas Ribosómicas/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(27): e2302534120, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364131

RESUMEN

Aberrant alternative splicing of mRNAs results in dysregulated gene expression in multiple neurological disorders. Here, we show that hundreds of mRNAs are incorrectly expressed and spliced in white blood cells and brain tissues of individuals with fragile X syndrome (FXS). Surprisingly, the FMR1 (Fragile X Messenger Ribonucleoprotein 1) gene is transcribed in >70% of the FXS tissues. In all FMR1-expressing FXS tissues, FMR1 RNA itself is mis-spliced in a CGG expansion-dependent manner to generate the little-known FMR1-217 RNA isoform, which is comprised of FMR1 exon 1 and a pseudo-exon in intron 1. FMR1-217 is also expressed in FXS premutation carrier-derived skin fibroblasts and brain tissues. We show that in cells aberrantly expressing mis-spliced FMR1, antisense oligonucleotide (ASO) treatment reduces FMR1-217, rescues full-length FMR1 RNA, and restores FMRP (Fragile X Messenger RibonucleoProtein) to normal levels. Notably, FMR1 gene reactivation in transcriptionally silent FXS cells using 5-aza-2'-deoxycytidine (5-AzadC), which prevents DNA methylation, increases FMR1-217 RNA levels but not FMRP. ASO treatment of cells prior to 5-AzadC application rescues full-length FMR1 expression and restores FMRP. These findings indicate that misregulated RNA-processing events in blood could serve as potent biomarkers for FXS and that in those individuals expressing FMR1-217, ASO treatment may offer a therapeutic approach to mitigate the disorder.


Asunto(s)
Síndrome del Cromosoma X Frágil , Humanos , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Expansión de Repetición de Trinucleótido/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Decitabina , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Oligonucleótidos , ARN
19.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38664011

RESUMEN

Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual-specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS.


Asunto(s)
Calcio , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Ratones Noqueados , Neuronas , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Masculino , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Neuronas/metabolismo , Calcio/metabolismo , Ratones Endogámicos C57BL , Canales de Potasio Shal/metabolismo , Canales de Potasio Shal/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
20.
J Neurosci ; 44(30)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38830765

RESUMEN

Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism spectrum disorder. The mesocorticolimbic system, which includes the prefrontal cortex (PFC), basolateral amygdala (BLA), and nucleus accumbens core (NAcC), is essential for regulating socioemotional behaviors. We employed optogenetics to compare the functional properties of the BLA→NAcC, PFC→NAcC, and reciprocal PFC↔BLA pathways in Fmr1-/y::Drd1a-tdTomato male mice. In FXS mice, the PFC↔BLA reciprocal pathway was unaffected, while significant synaptic modifications occurred in the BLA/PFC→NAcC pathways. We observed distinct changes in D1 striatal projection neurons (SPNs) and separate modifications in D2 SPNs. In FXS mice, the BLA/PFC→NAcC-D2 SPN pathways demonstrated heightened synaptic strength. Focusing on the BLA→NAcC pathway, linked to autistic symptoms, we found increased AMPAR and NMDAR currents and elevated spine density in D2 SPNs. Conversely, the amplified firing probability of BLA→NAcC-D1 SPNs was not accompanied by increased synaptic strength, AMPAR and NMDAR currents, or spine density. These pathway-specific alterations resulted in an overall enhancement of excitatory-to-spike coupling, a physiologically relevant index of how efficiently excitatory inputs drive neuronal firing, in both BLA→NAcC-D1 and BLA→NAcC-D2 pathways. Finally, the absence of fragile X messenger ribonucleoprotein 1 (FMRP) led to impaired long-term depression specifically in BLA→D1 SPNs. These distinct alterations in synaptic transmission and plasticity within circuits targeting the NAcC highlight the potential role of postsynaptic mechanisms in selected SPNs in the observed circuit-level changes. This research underscores the heightened vulnerability of the NAcC in the context of FMRP deficiency, emphasizing its pivotal role in the pathophysiology of FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Núcleo Accumbens , Animales , Síndrome del Cromosoma X Frágil/fisiopatología , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Ratones , Masculino , Núcleo Accumbens/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Vías Nerviosas/fisiopatología , Optogenética , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Ratones Endogámicos C57BL , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/fisiopatología , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Plasticidad Neuronal/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda