RESUMEN
The submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here, we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates GALACTOSYLTRANSFERASE 9 (GALT9) and their expression is inversely affected at 24â h of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild-type and MIM775 Arabidopsis shoot. A similar recovery phenotype in the galt9 mutant indicates the role of the miR775-GALT9 module in post-submergence recovery. We predicted that Golgi-localized GALT9 is potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29 and ORE1), ethylene signalling (EIN2 and EIN3) and abscisic acid (ABA) biosynthesis (NCED3) pathway genes occurs in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role for the miR775-GALT9 module in post-submergence recovery through a crosstalk between the ethylene signalling and ABA biosynthesis pathways.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/farmacología , Galactosiltransferasas/metabolismo , MicroARNs/metabolismo , Senescencia de la Planta/efectos de los fármacos , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Galactosiltransferasas/genética , Aparato de Golgi/metabolismo , MicroARNs/química , MicroARNs/genética , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/genética , Estrés FisiológicoRESUMEN
Jasmonate (JA)-induced plant senescence has been mainly studied with a dark/starvation-promoted system using detached leaves; yet, the induction of whole-plant senescence by JA remains largely unclear. This work reports the finding of a JA-induced whole-plant senescence of tobacco under light/non-starvation conditions and the investigation of underlying regulations. Methyl jasmonate (MeJA) treatment induces the whole-plant senescence of tobacco in a light-intensity-dependent manner, which is suppressed by silencing of NtCOI1 that encodes the receptor protein of JA-Ile (the bioactive derivative of JA). MeJA treatment could induce the senescence-specific cysteine protease gene SAG12 and another cysteine protease gene SAG-L1 to high expression levels in the detached leaf patches under dark conditions but failed to induce their expression in tobacco whole plants under light conditions. Furthermore, MeJA attenuates the RuBisCo activase (RCA) level in the detached leaves but has no effect on this protein in the whole plant under light conditions. A genome-wide transcriptional assay also supports the presence of a differential regulatory pattern of senescence-related genes during MeJA-induced whole-plant senescence under non-starvation conditions and results in the finding of a chlorophylase activity increase in this process. We also observed that the MeJA-induced senescence of tobacco whole plants is reversible, which is accompanied by a structural change of chloroplasts. This work provides novel insights into JA-induced plant senescence under non-starvation conditions and is helpful to dissect the JA-synchronized process of whole-plant senescence.
Asunto(s)
Ciclopentanos/efectos adversos , Nicotiana/genética , Nicotiana/fisiología , Oxilipinas/efectos adversos , Senescencia de la Planta/efectos de los fármacos , Senescencia de la Planta/genética , Adaptación Ocular/genética , Adaptación Ocular/fisiología , Adaptación a la Oscuridad/genética , Adaptación a la Oscuridad/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de PlantasRESUMEN
The present study clarified changes in the contents of polar metabolites (amino acids, organic acids, saccharides, cyclitols, and phosphoric acid) in leaf senescence in Ginkgo biloba with or without the application of methyl jasmonate (JA-Me) in comparison with those in naturally senescent leaf blades and petioles. The contents of most amino acids and citric and malic acids were significantly higher in abaxially, and that of myo-inositol was lower in abaxially JA-Me-treated leaves than in adaxially JA-Me-treated and naturally senescent leaves. The levels of succinic and fumaric acids in leaves treated adaxially substantially high, but not in naturally senescent leaves. In contrast, sucrose, glucose, and fructose contents were much lower in leaf blades and petioles treated abaxially with JA-Me than those treated adaxially. The levels of these saccharides were also lower compared with those in naturally senescent leaves. Shikimic acid and quinic acid were present at high levels in leaf blades and petioles of G. biloba. In leaves naturally senescent, their levels were higher compared to green leaves. The shikimic acid content was also higher in the organs of naturally yellow leaves than in those treated with JA-Me. These results strongly suggest that JA-Me applied abaxially significantly enhanced processes of primary metabolism during senescence of G. biloba compared with those applied adaxially. The changes in polar metabolites in relation to natural senescence were also discussed.
Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Ginkgo biloba/crecimiento & desarrollo , Ginkgo biloba/metabolismo , Metaboloma , Oxilipinas/farmacología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Senescencia de la Planta , Aminoácidos/metabolismo , Ácidos Carboxílicos/metabolismo , Ciclitoles/metabolismo , Ginkgo biloba/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica , Ácidos Fosfóricos/metabolismo , Hojas de la Planta/efectos de los fármacos , Senescencia de la Planta/efectos de los fármacos , Análisis de Componente PrincipalRESUMEN
Saline and alkaline stress is one of the major abiotic stresses facing agricultural production, which severely inhibits the growth and yield of plant. The application of plant growth regulators can effectively prevent crop yield reduction caused by saline and alkaline stress. Exogenous melatonin (MT) can act as a signaling molecule involved in the regulation of a variety of physiological processes in plants, has been found to play a key role in enhancing the improvement of plant tolerance to abiotic stresses. However, the effects of exogenous MT on saline and alkaline tolerance of table grape seedlings and its mechanism have not been clarified. The aim of this study was to investigate the role of exogenous MT on morphological and physiological growth of table grape seedlings (Vitis vinifera L.) under saline and alkaline stress. The results showed that saline and alkaline stress resulted in yellowing and wilting of grape leaves and a decrease in chlorophyll content, whereas the application of exogenous MT alleviated the degradation of chlorophyll in grape seedling leaves caused by saline and alkaline stress and promoted the accumulation of soluble sugars and proline content. In addition, exogenous MT increased the activity of antioxidant enzymes, which resulted in the scavenging of reactive oxygen species (ROS) generated by saline and alkaline stress. In conclusion, exogenous MT was involved in the tolerance of grape seedlings to saline and alkaline stress, and enhanced the saline and alkaline resistance of grape seedlings to promote the growth and development of the grape industry in saline and alkaline areas.
Asunto(s)
Melatonina , Hojas de la Planta , Plantones , Estrés Fisiológico , Vitis , Vitis/efectos de los fármacos , Vitis/metabolismo , Vitis/fisiología , Melatonina/farmacología , Melatonina/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Estrés Fisiológico/efectos de los fármacos , Senescencia de la Planta/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Álcalis , Antioxidantes/metabolismo , Prolina/metabolismoRESUMEN
Leaf senescence is an important developmental process in the plant life cycle and has a significant impact on agriculture. When facing harsh environmental conditions, monocarpic plants often initiate early leaf senescence as an adaptive mechanism to ensure a complete life cycle. Upon initiation, the senescence process is fine-tuned through the coordination of both positive and negative regulators. Here, we report that the small secreted peptide CLAVATA3/ESR-RELATED 14 (CLE14) functions in the suppression of leaf senescence by regulating ROS homeostasis in Arabidopsis. Expression of the CLE14-encoding gene in leaves was significantly induced by age, high salinity, abscisic acid (ABA), salicylic acid, and jasmonic acid. CLE14 knockout plants displayed accelerated progression of both natural and salinity-induced leaf senescence, whereas increased CLE14 expression or treatments with synthetic CLE14 peptides delayed senescence. CLE14 peptide treatments also delayed ABA-induced senescence in detached leaves. Further analysis showed that overexpression of CLE14 led to reduced ROS levels in leaves, where higher expression of ROS scavenging genes was detected. Moreover, CLE14 signaling resulted in transcriptional activation of JUB1, a NAC family transcription factor previously identified as a negative regulator of senescence. Notably, the delay of leaf senescence, reduction in H2O2 level, and activation of ROS scavenging genes by CLE14 peptides were dependent on JUB1. Collectively, these results suggest that the small peptide CLE14 serves as a novel "brake signal" to regulate age-dependent and stress-induced leaf senescence through JUB1-mediated ROS scavenging.