Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 4.081
Filtrar
Más filtros

Colección SES
Publication year range
1.
Cell ; 174(4): 897-907.e14, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30078705

RESUMEN

Akt is a critical protein kinase that drives cancer proliferation, modulates metabolism, and is activated by C-terminal phosphorylation. The current structural model for Akt activation by C-terminal phosphorylation has centered on intramolecular interactions between the C-terminal tail and the N lobe of the kinase domain. Here, we employ expressed protein ligation to produce site-specifically phosphorylated forms of purified Akt1 that are well suited for mechanistic analysis. Using biochemical, crystallographic, and cellular approaches, we determine that pSer473-Akt activation is driven by an intramolecular interaction between the C-tail and the pleckstrin homology (PH)-kinase domain linker that relieves PH domain-mediated Akt1 autoinhibition. Moreover, dual phosphorylation at Ser477/Thr479 activates Akt1 through a different allosteric mechanism via an apparent activation loop interaction that reduces autoinhibition by the PH domain and weakens PIP3 affinity. These results provide a new framework for understanding how Akt is controlled in cell signaling and suggest distinct functions for differentially modified Akt forms.


Asunto(s)
Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Células HCT116 , Humanos , Fosforilación , Dominios Homólogos a Pleckstrina , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-akt/química , Serina/química , Transducción de Señal , Treonina/química
2.
Mol Cell ; 69(4): 610-621.e5, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29452640

RESUMEN

Upon glucose restriction, eukaryotic cells upregulate oxidative metabolism to maintain homeostasis. Using genetic screens, we find that the mitochondrial serine hydroxymethyltransferase (SHMT2) is required for robust mitochondrial oxygen consumption and low glucose proliferation. SHMT2 catalyzes the first step in mitochondrial one-carbon metabolism, which, particularly in proliferating cells, produces tetrahydrofolate (THF)-conjugated one-carbon units used in cytoplasmic reactions despite the presence of a parallel cytoplasmic pathway. Impairing cytoplasmic one-carbon metabolism or blocking efflux of one-carbon units from mitochondria does not phenocopy SHMT2 loss, indicating that a mitochondrial THF cofactor is responsible for the observed phenotype. The enzyme MTFMT utilizes one such cofactor, 10-formyl THF, producing formylmethionyl-tRNAs, specialized initiator tRNAs necessary for proper translation of mitochondrially encoded proteins. Accordingly, SHMT2 null cells specifically fail to maintain formylmethionyl-tRNA pools and mitochondrially encoded proteins, phenotypes similar to those observed in MTFMT-deficient patients. These findings provide a rationale for maintaining a compartmentalized one-carbon pathway in mitochondria.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Glicina Hidroximetiltransferasa/metabolismo , Mitocondrias/genética , Iniciación de la Cadena Peptídica Traduccional , ARN de Transferencia de Metionina/química , Serina/química , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Sistemas CRISPR-Cas , Proliferación Celular , Citosol/metabolismo , Femenino , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Glicina Hidroximetiltransferasa/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Procesamiento Proteico-Postraduccional , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , Serina/genética , Serina/metabolismo , Tetrahidrofolatos/farmacología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Biol Chem ; 300(6): 107354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718862

RESUMEN

The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Arginina/química , Arginina/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , COVID-19/virología , COVID-19/metabolismo , Espectroscopía de Resonancia Magnética , Nucleocápside/metabolismo , Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de la Nucleocápside/química , Separación de Fases , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Unión Proteica , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Serina/metabolismo , Serina/química
4.
Am J Hum Genet ; 109(2): 311-327, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077669

RESUMEN

Human brain organoid models that recapitulate the physiology and complexity of the human brain have a great potential for in vitro disease modeling, in particular for neurodegenerative diseases, such as Parkinson disease. In the present study, we compare single-cell RNA-sequencing data of human midbrain organoids to the developing human embryonic midbrain. We demonstrate that the in vitro model is comparable to its in vivo equivalents in terms of developmental path and cellular composition. Moreover, we investigate the potential of midbrain organoids for modeling early developmental changes in Parkinson disease. Therefore, we compare the single-cell RNA-sequencing data of healthy-individual-derived midbrain organoids to their isogenic LRRK2-p.Gly2019Ser-mutant counterparts. We show that the LRRK2 p.Gly2019Ser variant alters neurodevelopment, resulting in an untimely and incomplete differentiation with reduced cellular variability. Finally, we present four candidate genes, APP, DNAJC6, GATA3, and PTN, that might contribute to the LRRK2-p.Gly2019Ser-associated transcriptome changes that occur during early neurodevelopment.


Asunto(s)
Sustitución de Aminoácidos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Neurogénesis/genética , Organoides/metabolismo , Enfermedad de Parkinson/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Diferenciación Celular , Citocinas/genética , Citocinas/metabolismo , Embrión de Mamíferos , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glicina/química , Glicina/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mesencéfalo , Modelos Biológicos , Mutación , Organoides/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Análisis de Secuencia de ARN , Serina/química , Serina/metabolismo , Análisis de la Célula Individual/métodos , Transcriptoma
5.
Nature ; 567(7748): 420-424, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30867596

RESUMEN

Living systems can generate an enormous range of cellular functions, from mechanical infrastructure and signalling networks to enzymatic catalysis and information storage, using a notably limited set of chemical functional groups. This observation is especially notable when compared to the breadth of functional groups used as the basis for similar functions in synthetically derived small molecules and materials. The relatively small cross-section between biological and synthetic reactivity space forms the foundation for the development of bioorthogonal chemistry, in which the absence of a pair of reactive functional groups within the cell allows for a selective in situ reaction1-4. However, biologically 'rare' functional groups, such as the fluoro5, chloro6,7, bromo7,8, phosphonate9, enediyne10,11, cyano12, diazo13, alkene14 and alkyne15-17 groups, continue to be discovered in natural products made by plants, fungi and microorganisms, which offers a potential route to genetically encode the endogenous biosynthesis of bioorthogonal reagents within living organisms. In particular, the terminal alkyne has found broad utility via the Cu(I)-catalysed azide-alkyne cycloaddition 'click' reaction18. Here we report the discovery and characterization of a unique pathway to produce a terminal alkyne-containing amino acid in the bacterium Streptomyces cattleya. We found that L-lysine undergoes an unexpected reaction sequence that includes halogenation, oxidative C-C bond cleavage and triple bond formation through a putative allene intermediate. This pathway offers the potential for de novo cellular production of halo-, alkene- and alkyne-labelled proteins and natural products from glucose for a variety of downstream applications.


Asunto(s)
Alquinos/química , Alquinos/metabolismo , Aminoácidos/biosíntesis , Aminoácidos/química , Vías Biosintéticas , Streptomyces/metabolismo , Alcadienos/química , Alcadienos/metabolismo , Alquenos/química , Alquenos/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Carbono/química , Carbono/metabolismo , Glucosa/química , Glucosa/metabolismo , Halogenación , Lisina/química , Lisina/metabolismo , Familia de Multigenes/genética , Serina/análogos & derivados , Serina/biosíntesis , Serina/química , Streptomyces/genética
6.
J Proteome Res ; 23(7): 2474-2494, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850255

RESUMEN

Protein glycosylation is a ubiquitous process observed across all domains of life. Within the human pathogen Acinetobacter baumannii, O-linked glycosylation is required for virulence; however, the targets and conservation of glycosylation events remain poorly defined. In this work, we expand our understanding of the breadth and site specificity of glycosylation within A. baumannii by demonstrating the value of strain specific glycan electron-transfer/higher-energy collision dissociation (EThcD) triggering for bacterial glycoproteomics. By coupling tailored EThcD-triggering regimes to complementary glycopeptide enrichment approaches, we assessed the observable glycoproteome of three A. baumannii strains (ATCC19606, BAL062, and D1279779). Combining glycopeptide enrichment techniques including ion mobility (FAIMS), metal oxide affinity chromatography (titanium dioxide), and hydrophilic interaction liquid chromatography (ZIC-HILIC), as well as the use of multiple proteases (trypsin, GluC, pepsin, and thermolysis), we expand the known A. baumannii glycoproteome to 33 unique glycoproteins containing 42 glycosylation sites. We demonstrate that serine is the sole residue subjected to glycosylation with the substitution of serine for threonine abolishing glycosylation in model glycoproteins. An A. baumannii pan-genome built from 576 reference genomes identified that serine glycosylation sites are highly conserved. Combined this work expands our knowledge of the conservation and site specificity of A. baumannii O-linked glycosylation.


Asunto(s)
Acinetobacter baumannii , Glicoproteínas , Polisacáridos , Proteómica , Serina , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/química , Glicosilación , Serina/metabolismo , Serina/química , Proteómica/métodos , Glicoproteínas/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Polisacáridos/metabolismo , Polisacáridos/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo , Cromatografía Liquida
7.
J Biol Chem ; 299(5): 104684, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030501

RESUMEN

Serine palmitoyltransferase (SPT) is a key enzyme of sphingolipid biosynthesis, which catalyzes the pyridoxal-5'-phosphate-dependent decarboxylative condensation reaction of l-serine (l-Ser) and palmitoyl-CoA (PalCoA) to form 3-ketodihydrosphingosine called long chain base (LCB). SPT is also able to metabolize l-alanine (l-Ala) and glycine (Gly), albeit with much lower efficiency. Human SPT is a membrane-bound large protein complex containing SPTLC1/SPTLC2 heterodimer as the core subunits, and it is known that mutations of the SPTLC1/SPTLC2 genes increase the formation of deoxy-type of LCBs derived from l-Ala and Gly to cause some neurodegenerative diseases. In order to study the substrate recognition of SPT, we examined the reactivity of Sphingobacterium multivorum SPT on various amino acids in the presence of PalCoA. The S. multivorum SPT could convert not only l-Ala and Gly but also l-homoserine, in addition to l-Ser, into the corresponding LCBs. Furthermore, we obtained high-quality crystals of the ligand-free form and the binary complexes with a series of amino acids, including a nonproductive amino acid, l-threonine, and determined the structures at 1.40 to 1.55 Å resolutions. The S. multivorum SPT accommodated various amino acid substrates through subtle rearrangements of the active-site amino acid residues and water molecules. It was also suggested that non-active-site residues mutated in the human SPT genes might indirectly influence the substrate specificity by affecting the hydrogen-bonding networks involving the bound substrate, water molecules, and amino acid residues in the active site of this enzyme. Collectively, our results highlight SPT structural features affecting substrate specificity for this stage of sphingolipid biosynthesis.


Asunto(s)
Serina C-Palmitoiltransferasa , Sphingobacterium , Humanos , Palmitoil Coenzima A/química , Palmitoil Coenzima A/metabolismo , Serina/química , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Sphingobacterium/enzimología , Esfingolípidos/metabolismo , Especificidad por Sustrato
8.
J Am Chem Soc ; 146(21): 14785-14798, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38743019

RESUMEN

Selective RNA delivery is required for the broad implementation of RNA clinical applications, including prophylactic and therapeutic vaccinations, immunotherapies for cancer, and genome editing. Current polyanion delivery relies heavily on cationic amines, while cationic guanidinium systems have received limited attention due in part to their strong polyanion association, which impedes intracellular polyanion release. Here, we disclose a general solution to this problem in which cationic guanidinium groups are used to form stable RNA complexes upon formulation but at physiological pH undergo a novel charge-neutralization process, resulting in RNA release. This new delivery system consists of guanidinylated serinol moieties incorporated into a charge-altering releasable transporter (GSer-CARTs). Significantly, systematic variations in structure and formulation resulted in GSer-CARTs that exhibit highly selective mRNA delivery to the lung (∼97%) and spleen (∼98%) without targeting ligands. Illustrative of their breadth and translational potential, GSer-CARTs deliver circRNA, providing the basis for a cancer vaccination strategy, which in a murine model resulted in antigen-specific immune responses and effective suppression of established tumors.


Asunto(s)
Guanidina , ARN Mensajero , Animales , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química , Guanidina/química , Humanos , Serina/química
9.
Chemistry ; 30(28): e202400271, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38456538

RESUMEN

Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.


Asunto(s)
Vías Biosintéticas , Familia de Multigenes , Serina , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina/química , Serina/biosíntesis , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Aminobutiratos/química , Aminobutiratos/metabolismo , Antibacterianos/biosíntesis , Antibacterianos/química
10.
Mol Pharm ; 21(8): 4038-4046, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38949624

RESUMEN

The plasma protein α1-acid glycoprotein (AGP) primarily affects the pharmacokinetics of basic drugs. There are two AGP variants in humans, A and F1*S, exhibiting distinct drug-binding selectivity. Elucidation of the drug-binding selectivity of human AGP variants is essential for drug development and personalized drug therapy. Herein, we aimed to establish the contribution of amino acids 112 and 114 of human AGP to drug-binding selectively. Both amino acids are located in the drug-binding region and differ between the variants. Phe112/Ser114 of the A variant and its equivalent residues in the F1*S variant (Leu112/Phe114) were swapped with each other. Binding experiments were then conducted using the antiarrhythmic drug disopyramide, which selectively binds to the A variant. A significant decrease in the bound fraction was observed in each singly mutated A protein (Phe112Leu or Ser114Phe). Moreover, the bound fraction of the double A mutant (Phe112Leu/Ser114Phe) was decreased to that of wild-type F1*S. Intriguingly, the double F1*S mutant (Leu112Phe/Phe114Ser), in which residues were swapped with those of the A variant, showed only partial restoration in binding. The triple F1*S mutant (Leu112Phe/Phe114Ser/Asp115Tyr), where position 115 is thought to contribute to the difference in pocket size between variants, showed a further recovery in binding to 70% of that of wild-type A. These results were supported by thermodynamic analysis and acridine orange binding, which selectively binds the A variant. Together, these data indicate that, in addition to direct interaction with Phe112 and Ser114, the binding pocket size contributed by Tyr115 is important for the drug-binding selectivity of the A variant.


Asunto(s)
Orosomucoide , Unión Proteica , Orosomucoide/metabolismo , Orosomucoide/genética , Orosomucoide/química , Humanos , Sitios de Unión , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Tirosina/química , Tirosina/metabolismo , Tirosina/genética , Mutación , Serina/metabolismo , Serina/genética , Serina/química , Antiarrítmicos/química , Antiarrítmicos/metabolismo
11.
J Org Chem ; 89(14): 9937-9948, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38985331

RESUMEN

Baloxavir marboxil (1; BXM) is a potent drug used for treating influenza infections. The current synthetic route to BXM (1) is based on optical resolution; however, this method results in the loss of nearly 50% of the material. This study aimed to describe an efficient and simpler method for the synthesis of BXM. We achieved a stereoselective synthesis of BXM (1). The tricyclic triazinanone core possessing a chiral center was prepared via diastereoselective cyclization utilizing the readily available amino acid l-serine. The carboxyl moiety derived from l-serine was removed via photoredox decarboxylation under mild conditions to furnish the chiral tricyclic triazinanone core ((R)-14). The synthetic route demonstrated herein provides an efficient and atomically economical method for preparing this potent anti-influenza agent.


Asunto(s)
Dibenzotiepinas , Serina , Estereoisomerismo , Ciclización , Serina/química , Estructura Molecular , Dibenzotiepinas/química , Dibenzotiepinas/síntesis química , Triazinas/química , Triazinas/síntesis química , Oxidación-Reducción , Descarboxilación , Morfolinas/química , Morfolinas/síntesis química , Piridonas/química , Piridonas/síntesis química , Procesos Fotoquímicos , Antivirales/síntesis química , Antivirales/química
12.
Acta Pharmacol Sin ; 45(9): 1861-1878, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38719955

RESUMEN

Pulmonary hypertension (PH) is a progressive fatal disease with no cure. Canagliflozin (CANA), a novel medication for diabetes, has been found to have remarkable cardiovascular benefits. However, few studies have addressed the effect and pharmacological mechanism of CANA in the treatment of PH. Therefore, our study aimed to investigate the effect and pharmacological mechanism of CANA in treating PH. First, CANA suppressed increased pulmonary artery pressure, right ventricular hypertrophy, and vascular remodeling in both mouse and rat PH models. Network pharmacology, transcriptomics, and biological results suggested that CANA could ameliorate PH by suppressing excessive oxidative stress and pulmonary artery smooth muscle cell proliferation partially through the activation of PPARγ. Further studies demonstrated that CANA inhibited phosphorylation of PPARγ at Ser225 (a novel serine phosphorylation site in PPARγ), thereby promoting the nuclear translocation of PPARγ and increasing its ability to resist oxidative stress and proliferation. Taken together, our study not only highlighted the potential pharmacological effect of CANA on PH but also revealed that CANA-induced inhibition of PPARγ Ser225 phosphorylation increases its capacity to counteract oxidative stress and inhibits proliferation. These findings may stimulate further research and encourage future clinical trials exploring the therapeutic potential of CANA in PH treatment.


Asunto(s)
Canagliflozina , Proliferación Celular , Hipertensión Pulmonar , Estrés Oxidativo , PPAR gamma , Animales , Masculino , Ratones , Ratas , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Proliferación Celular/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , PPAR gamma/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Ratas Sprague-Dawley , Remodelación Vascular/efectos de los fármacos , Serina/química , Serina/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34556581

RESUMEN

d-amino acids are increasingly recognized as important signaling molecules in the mammalian central nervous system. However, the d-stereoisomer of the amino acid with the fastest spontaneous racemization ratein vitro in vitro, cysteine, has not been examined in mammals. Using chiral high-performance liquid chromatography and a stereospecific luciferase assay, we identify endogenous d-cysteine in the mammalian brain. We identify serine racemase (SR), which generates the N-methyl-d-aspartate (NMDA) glutamate receptor coagonist d-serine, as a candidate biosynthetic enzyme for d-cysteine. d-cysteine is enriched more than 20-fold in the embryonic mouse brain compared with the adult brain. d-cysteine reduces the proliferation of cultured mouse embryonic neural progenitor cells (NPCs) by ∼50%, effects not shared with d-serine or l-cysteine. The antiproliferative effect of d-cysteine is mediated by the transcription factors FoxO1 and FoxO3a. The selective influence of d-cysteine on NPC proliferation is reflected in overgrowth and aberrant lamination of the cerebral cortex in neonatal SR knockout mice. Finally, we perform an unbiased screen for d-cysteine-binding proteins in NPCs by immunoprecipitation with a d-cysteine-specific antibody followed by mass spectrometry. This approach identifies myristoylated alanine-rich C-kinase substrate (MARCKS) as a putative d-cysteine-binding protein. Together, these results establish endogenous mammalian d-cysteine and implicate it as a physiologic regulator of NPC homeostasis in the developing brain.


Asunto(s)
Encéfalo/fisiología , Células-Madre Neurales/fisiología , Racemasas y Epimerasas/fisiología , Serina/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/química
14.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811140

RESUMEN

Early spliceosome assembly requires phosphorylation of U1-70K, a constituent of the U1 small nuclear ribonucleoprotein (snRNP), but it is unclear which sites are phosphorylated, and by what enzyme, and how such modification regulates function. By profiling the proteome, we found that the Cdc2-like kinase 1 (CLK1) phosphorylates Ser-226 in the C terminus of U1-70K. This releases U1-70K from subnuclear granules facilitating interaction with U1 snRNP and the serine-arginine (SR) protein SRSF1, critical steps in establishing the 5' splice site. CLK1 breaks contacts between the C terminus and the RNA recognition motif (RRM) in U1-70K releasing the RRM to bind SRSF1. This reorganization also permits stable interactions between U1-70K and several proteins associated with U1 snRNP. Nuclear induction of the SR protein kinase 1 (SRPK1) facilitates CLK1 dissociation from U1-70K, recycling the kinase for catalysis. These studies demonstrate that CLK1 plays a vital, signal-dependent role in early spliceosomal protein assembly by contouring U1-70K for protein-protein multitasking.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Empalmosomas/metabolismo , Células HeLa , Humanos , Fosforilación , Unión Proteica , Ribonucleoproteína Nuclear Pequeña U1/química , Serina/química
15.
Chem Pharm Bull (Tokyo) ; 72(6): 559-565, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880627

RESUMEN

Biosynthetic intermediates of siderophore vibrioferrin (VF), O-citryl-L-serine, 2-aminoethyl citrate, and alanine-2-amidoethyl citrate were respectively synthesized as a mixture of stereoisomers. These compounds were used as substrates for enzyme reactions using recombinant PvsA, PvsB, and PvsE proteins as corresponding enzyme equivalents. The results of our study show that each enzyme reacts with a respective substrate and produces VF along the proposed biosynthetic pathway. Furthermore, the results of this study will contribute to the understanding of VF biosynthetic enzymes and may help in the development of antimicrobial drugs by inhibiting siderophore biosynthetic enzymes.


Asunto(s)
Sideróforos , Estereoisomerismo , Sideróforos/biosíntesis , Sideróforos/química , Sideróforos/metabolismo , Especificidad por Sustrato , Estructura Molecular , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Serina/biosíntesis , Serina/química , Serina/metabolismo
16.
J Am Chem Soc ; 145(5): 3158-3174, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36696670

RESUMEN

The first dual-function assay for human serine racemase (hSR), the only bona fide racemase in human biology, is reported. The hSR racemization function is essential for neuronal signaling, as the product, d-serine (d-Ser), is a potent N-methyl d-aspartate (NMDA) coagonist, important for learning and memory, with dysfunctional d-Ser-signaling being observed in some neuronal disorders. The second hSR function is ß-elimination and gives pyruvate; this activity is elevated in colorectal cancer. This new NMR-based assay allows one to monitor both α-proton-exchange chemistry and ß-elimination using only the native l-Ser substrate and hSR and is the most sensitive such assay. The assay judiciously employs segregated dual 13C-labeling and 13C/2H crosstalk, exploiting both the splitting and shielding effects of deuterium. The assay is deployed to screen a 1020-compound library and identifies an indolo-chroman-2,4-dione inhibitor family that displays allosteric site binding behavior (noncompetitive inhibition vs l-Ser substrate; competitive inhibition vs adenosine 5'-triphosphate (ATP)). This assay also reveals important mechanistic information for hSR; namely, that H/D exchange is ∼13-fold faster than racemization, implying that K56 protonates the carbanionic intermediate on the si-face much faster than does S84 on the re-face. Moreover, the 13C NMR peak pattern seen is suggestive of internal return, pointing to K56 as the likely enamine-protonating residue for ß-elimination. The 13C/2H-isotopic crosstalk assay has also been applied to the enzyme tryptophan synthase and reveals a dramatically different partition ratio in this active site (ß-replacement: si-face protonation ∼6:1 vs ß-elimination: si-face protonation ∼1:3.6 for hSR), highlighting the value of this approach for fingerprinting the pyridoxal phosphate (PLP) enzyme mechanism.


Asunto(s)
Protones , Fosfato de Piridoxal , Humanos , Racemasas y Epimerasas , Serina/química
17.
Cancer Immunol Immunother ; 72(12): 4001-4014, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973660

RESUMEN

BACKGROUND: Regulation of alternative splicing is a new therapeutic approach in cancer. The programmed cell death receptor 1 (PD-1) is an immunoinhibitory receptor expressed on immune cells that binds to its ligands, PD-L1 and PD-L2 expressed by cancer cells forming a dominant immune checkpoint pathway in the tumour microenvironment. Targeting this pathway using blocking antibodies (nivolumab and pembrolizumab) is the mainstay of anti-cancer immunotherapies, restoring the function of exhausted T cells. PD-1 is alternatively spliced to form isoforms that are either transmembrane signalling receptors (flPD1) that mediate T cell death by binding to the ligand, PD-L1 or an alternatively spliced, soluble, variant that lacks the transmembrane domain. METHODS: We used PCR and western blotting on primary peripheral blood mononuclear cells (PBMCs) and Jurkat T cells, IL-2 ELISA, flow cytometry, co-culture of melanoma and cholangiocarcinoma cells, and bioinformatics analysis and molecular cloning to examine the mechanism of splicing of PD1 and its consequence. RESULTS: The soluble form of PD-1, generated by skipping exon 3 (∆Ex3PD1), was endogenously expressed in PBMCs and T cells and prevents cancer cell-mediated T cell repression. Multiple binding sites of SRSF1 are adjacent to PD-1 exon 3 splicing sites. Overexpression of phosphomimic SRSF1 resulted in preferential expression of flPD1. Inhibition of SRSF1 phosphorylation both by SRPK1 shRNA knockdown and by a selective inhibitor, SPHINX31, resulted in a switch in splicing to ∆Ex3PD1. Cholangiocarcinoma cell-mediated repression of T cell IL-2 expression was reversed by SPHINX31 (equivalent to pembrolizumab). CONCLUSIONS: These results indicate that switching of the splicing decision from flPD1 to ∆Ex3PD1 by targeting SRPK1 could represent a potential novel mechanism of immune checkpoint inhibition in cancer.


Asunto(s)
Empalme Alternativo , Colangiocarcinoma , Humanos , Fosforilación , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Arginina/genética , Arginina/metabolismo , Serina/química , Serina/genética , Serina/metabolismo , Agotamiento de Células T , Interleucina-2/genética , Leucocitos Mononucleares/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Factores de Empalme Serina-Arginina/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inmunoterapia
18.
Arch Biochem Biophys ; 745: 109712, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543353

RESUMEN

Mangiferin, a polyphenolic xanthone glycoside found in various botanical sources, including mango (Mangifera indica L.) leaves, can exhibit a variety of bioactivities. Although mangiferin has been reported to inhibit many targets, none of the studies have investigated the inhibition of serine hydroxymethyltransferase (SHMT), an attractive target for antimalarial and anticancer drugs. SHMT, one of the key enzymes in the deoxythymidylate synthesis cycle, catalyzes the reversible conversion of l-serine and (6S)-tetrahydrofolate (THF) into glycine and 5,10-methylene THF. Here, in vitro and in silico studies were used to probe how mangiferin isolated from mango leaves inhibits Plasmodium falciparum and human cytosolic SHMTs. The inhibition kinetics at pH 7.5 revealed that mangiferin is a competitive inhibitor against THF for enzymes from both organisms. Molecular docking and molecular dynamic (MD) simulations demonstrated the inhibitory effects of the deprotonated forms of mangiferin, specifically the C6-O- species and its resonance C9-O- species appearing at pH 7.5, combined with two docked poses, either a xanthone or glucose moiety, placed inside the THF-binding pocket. The MD analysis revealed that both C6-O- and its resonance-stabilized C9-O- species can favorably bind to SHMT in a similar fashion to THF, supporting the THF competitive inhibition of mangiferin. In addition, characterization of the proton dissociation equilibria of isolated mangiferin revealed that only three hydroxy groups of the xanthone moiety, C6-OH, C3-OH, and C7-OH, underwent varying degrees of deprotonation with pKa values of 6.38 ± 0.11, 8.21 ± 0.35, and 12.37 ± 0.30, respectively, while C1-OH remained protonated. Altogether, our findings demonstrate a new bioactivity of mangiferin and provide the basis for the future development of mangiferin as a potent antimalarial and anticancer drug.


Asunto(s)
Antimaláricos , Antineoplásicos , Antagonistas del Ácido Fólico , Xantonas , Humanos , Antimaláricos/farmacología , Glicina Hidroximetiltransferasa , Simulación del Acoplamiento Molecular , Xantonas/farmacología , Antineoplásicos/farmacología , Serina/química
19.
Nature ; 548(7669): 549-554, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28813411

RESUMEN

The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.


Asunto(s)
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldehído/química , Formaldehído/metabolismo , Redes y Vías Metabólicas , Mutágenos/química , Mutágenos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Animales , Carbono/deficiencia , Línea Celular , Pollos , Coenzimas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Daño del ADN , Reparación del ADN , Humanos , Inactivación Metabólica , Ratones , Nucleótidos/biosíntesis , Oxidación-Reducción , Serina/química , Serina/metabolismo , Tetrahidrofolatos/metabolismo
20.
Chirality ; 35(9): 535-539, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36890664

RESUMEN

Mammalian D-Cysteine is racemized from L-cysteine by serine racemase, a pyridoxal phosphate (PLP)-dependent enzyme. Endogenous D-Cysteine plays a role in neural development by inhibiting proliferation of neural progenitor cells (NPCs) via protein kinase B (AKT) signaling mediated by the FoxO family of transcription factors. D-Cysteine binds to Myristoylated Alanine Rich C Kinase Substrate (MARCKS) and alters phosphorylation at Ser 159/163 and its translocation from the membrane. By racemizing serine and cysteine, mammalian serine racemase may play important roles in neural development highlighting its importance in psychiatric disorders.


Asunto(s)
Aminoácidos , Cisteína , Animales , Humanos , Estereoisomerismo , Proteínas , Serina/química , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda