Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
PLoS Genet ; 19(10): e1010776, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37871041

RESUMEN

Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.


Asunto(s)
Fabaceae , Sinorhizobium meliloti , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Fabaceae/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiosis/genética , Endopeptidasas/genética , Transducción de Señal/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos
2.
Mol Microbiol ; 121(5): 954-970, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38458990

RESUMEN

The flagellar motor is a powerful macromolecular machine used to propel bacteria through various environments. We determined that flagellar motility of the alpha-proteobacterium Sinorhizobium meliloti is nearly abolished in the absence of the transcriptional regulator LdtR, known to influence peptidoglycan remodeling and stress response. LdtR does not regulate motility gene transcription. Remarkably, the motility defects of the ΔldtR mutant can be restored by secondary mutations in the motility gene motA or a previously uncharacterized gene in the flagellar regulon, which we named motS. MotS is not essential for S. meliloti motility and may serve an accessory role in flagellar motor function. Structural modeling predicts that MotS comprised an N-terminal transmembrane segment, a long-disordered region, and a conserved ß-sandwich domain. The C terminus of MotS is localized in the periplasm. Genetics based substitution of MotA with MotAG12S also restored the ΔldtR motility defect. The MotAG12S variant protein features a local polarity shift at the periphery of the MotAB stator units. We propose that MotS may be required for optimal alignment of stators in wild-type flagellar motors but becomes detrimental in cells with altered peptidoglycan. Similarly, the polarity shift in stator units composed of MotB/MotAG12S might stabilize its interaction with altered peptidoglycan.


Asunto(s)
Flagelos , Regulación Bacteriana de la Expresión Génica , Sinorhizobium meliloti , Factores de Transcripción , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Mutación , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Mol Microbiol ; 122(4): 429-446, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39081077

RESUMEN

Sinorhizobium meliloti senses nutrients and compounds exuded from alfalfa host roots and coordinates an excitation, termination, and adaptation pathway during chemotaxis. We investigated the role of the novel S. meliloti chemotaxis protein CheT. While CheT and the Escherichia coli phosphatase CheZ share little sequence homology, CheT is predicted to possess an α-helix with a DXXXQ phosphatase motif. Phosphorylation assays demonstrated that CheT dephosphorylates the phosphate-sink response regulator, CheY1~P by enhancing its decay two-fold but does not affect the motor response regulator CheY2~P. Isothermal Titration Calorimetry (ITC) experiments revealed that CheT binds to a phosphomimic of CheY1~P with a KD of 2.9 µM, which is 25-fold stronger than its binding to CheY1. Dissimilar chemotaxis phenotypes of the ΔcheT mutant and cheT DXXXQ phosphatase mutants led to the hypothesis that CheT exerts additional function(s). A screen for potential binding partners of CheT revealed that it forms a complex with the methyltransferase CheR. ITC experiments confirmed CheT/CheR binding with a KD of 19 µM, and a SEC-MALS analysis determined a 1:1 and 2:1 CheT/CheR complex formation. Although they did not affect each other's enzymatic activity, CheT binding to CheY1~P and CheR may serve as a link between signal termination and sensory adaptation.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiología , Quimiotaxis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fosforilación , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transducción de Señal , Escherichia coli/genética , Escherichia coli/metabolismo , Medicago sativa/microbiología , Adaptación Fisiológica , Unión Proteica
4.
Mol Microbiol ; 122(1): 50-67, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38798055

RESUMEN

Sensory adaptation in bacterial chemotaxis is mediated by posttranslational modifications of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli, the adaptation proteins CheR and CheB tether to a conserved C-terminal receptor pentapeptide. Here,we investigated the function of the pentapeptide motif (N/D)WE(E/N)F in Sinorhizobium meliloti chemotaxis. Isothermal titration calorimetry revealed stronger affinity of the pentapeptides to CheR and activated CheB relative to unmodified CheB. Strains with mutations of the conserved tryptophan in one or all four MCP pentapeptides resulted in a significant decrease or loss of chemotaxis to glycine betaine, lysine, and acetate, chemoattractants sensed by pentapeptide-bearing McpX and pentapeptide-lacking McpU and McpV, respectively. Importantly, we discovered that the pentapeptide mediates chemotaxis when fused to the C-terminus of pentapeptide-lacking chemoreceptors via a flexible linker. We propose that adaptational assistance and a threshold number of available sites enable the efficient docking of adaptation proteins to the chemosensory array. Altogether, these results demonstrate that S. meliloti effectively utilizes a pentapeptide-dependent adaptation system with a minimal number of tethering units to assist pentapeptide-lacking chemoreceptors and hypothesize that the higher abundance of CheR and CheB in S. meliloti compared to E. coli allows for ample recruitment of adaptation proteins to the chemosensory array.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis , Proteínas Quimiotácticas Aceptoras de Metilo , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Oligopéptidos/metabolismo , Factores Quimiotácticos/metabolismo , Metiltransferasas
5.
J Bacteriol ; 206(10): e0039923, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315799

RESUMEN

The cell cycle is a fundamental process involved in bacterial reproduction and cellular differentiation. For Sinorhizobium meliloti, cell cycle outcomes depend on its growth environment. This bacterium shows a tight coupling of DNA replication initiation with cell division during free-living growth. In contrast, it undergoes a novel program of endoreduplication and terminal differentiation during symbiosis within its host. While several DivK regulators at the top of its CtrA pathway have been shown to play an important role in this differentiation process, there is a lack of resolution regarding the downstream molecular activities required and whether they could be unique to the symbiosis cell cycle. The DivK kinase CbrA is a negative regulator of CtrA activity and is required for successful symbiosis. In this work, spontaneous symbiosis suppressors of ΔcbrA were identified as alleles of divL and cckA. In addition to rescuing symbiotic development, they restore wild-type cell cycle progression to free-living ΔcbrA cells. Biochemical characterization of the S. meliloti hybrid histidine kinase CckA in vitro demonstrates that it has both kinase and phosphatase activities. Specifically, CckA on its own has autophosphorylation activity, and phosphatase activity is induced by the second messenger c-di-GMP. Importantly, the CckAA373S suppressor protein of ΔcbrA has a significant loss in kinase activity, and this is predicted to cause decreased CtrA activity in vivo. These findings deepen our understanding of the CbrA regulatory pathway and open new avenues for further molecular characterization of a network pivotal to the free-living cell cycle and symbiotic differentiation of S. meliloti.IMPORTANCESinorhizobium meliloti is a soil bacterium able to form a nitrogen-fixing symbiosis with certain legumes, including the agriculturally important Medicago sativa. It provides ammonia to plants growing in nitrogen-poor soils and is therefore of agricultural and environmental significance as this symbiosis negates the need for industrial fertilizers. Understanding mechanisms governing symbiotic development is essential to either engineer a more effective symbiosis or extend its potential to non-leguminous crops. Here, we identify mutations within cell cycle regulators and find that they control cell cycle outcomes during both symbiosis and free-living growth. As regulators within the CtrA two-component signal transduction pathway, this study deepens our understanding of a regulatory network shaping host colonization, cell cycle differentiation, and symbiosis in an important model organism.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Fijación del Nitrógeno , Sinorhizobium meliloti , Simbiosis , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Fosforilación
6.
Biochem Biophys Res Commun ; 734: 150767, 2024 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-39366178

RESUMEN

Vitamin B12 is involved in many important biochemical reactions for humans, and its deficiency can lead to serious diseases. The industrial production of vitamin B12 is achieved through microbial fermentation. In this work, we determine the crystal structures of the l-threonine-O-3-phosphate (Thr-P) decarboxylase CobC from Sinorhizobium meliloti (SmCobC), an industrial vitamin B12-producing bacterium, in apo form and in complex with a reaction intermediate. Our structures supported the Thr-P decarboxylase activity of SmCobC and revealed that the positively charged substrate-binding pocket between the large and small domains determines its substrate selectivity for Thr-P. Moreover, our results provided evidence for the proposition that the AP-P linker is formed by direct incorporation of AP-P in the biosynthetic pathway of vitamin B12 in S.meliloti.


Asunto(s)
Carboxiliasas , Modelos Moleculares , Sinorhizobium meliloti , Vitamina B 12 , Sinorhizobium meliloti/enzimología , Sinorhizobium meliloti/metabolismo , Sinorhizobium meliloti/genética , Vitamina B 12/metabolismo , Vitamina B 12/biosíntesis , Vitamina B 12/química , Carboxiliasas/química , Carboxiliasas/metabolismo , Carboxiliasas/genética , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Especificidad por Sustrato , Conformación Proteica , Sitios de Unión
7.
J Proteome Res ; 22(6): 1682-1694, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37017314

RESUMEN

To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.


Asunto(s)
Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteómica , Proteoma/genética , Proteoma/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Simbiosis/genética
8.
Proteins ; 91(10): 1394-1406, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37213073

RESUMEN

Chemotaxis is a fundamental process whereby bacteria seek out nutrient sources and avoid harmful chemicals. For the symbiotic soil bacterium Sinorhizobium meliloti, the chemotaxis system also plays an essential role in the interaction with its legume host. The chemotactic signaling cascade is initiated through interactions of an attractant or repellent compound with chemoreceptors or methyl-accepting chemotaxis proteins (MCPs). S. meliloti possesses eight chemoreceptors to mediate chemotaxis. Six of these receptors are transmembrane proteins with periplasmic ligand-binding domains (LBDs). The specific functions of McpW and McpZ are still unknown. Here, we report the crystal structure of the periplasmic domain of McpZ (McpZPD) at 2.7 Å resolution. McpZPD assumes a novel fold consisting of three concatenated four-helix bundle modules. Through phylogenetic analyses, we discovered that this helical tri-modular domain fold arose within the Rhizobiaceae family and is still evolving rapidly. The structure, offering a rare view of a ligand-free dimeric MCP-LBD, reveals a novel dimerization interface. Molecular dynamics calculations suggest ligand binding will induce conformational changes that result in large horizontal helix movements within the membrane-proximal domains of the McpZPD dimer that are accompanied by a 5 Å vertical shift of the terminal helix toward the inner cell membrane. These results suggest a mechanism of transmembrane signaling for this family of MCPs that entails both piston-type and scissoring movements. The predicted movements terminate in a conformation that closely mirrors those observed in related ligand-bound MCP-LBDs.


Asunto(s)
Proteínas Bacterianas , Sinorhizobium meliloti , Proteínas Bacterianas/química , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Filogenia , Proteínas Quimiotácticas Aceptoras de Metilo/química , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Quimiotaxis/fisiología
9.
Mol Microbiol ; 118(3): 223-243, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35808893

RESUMEN

The bacterial flagellum is a complex macromolecular machine that drives bacteria through diverse fluid environments. Although many components of the flagellar motor are conserved across species, the roles of FliL are numerous and species-specific. Here, we have characterized an additional player required for flagellar motor function in Sinorhizobium meliloti, MotF, which we have identified as a FliL paralog. We performed a comparative analysis of MotF and FliL, identified interaction partners through bacterial two-hybrid and pull-down assays, and investigated their roles in motility and motor rotation. Both proteins form homooligomers, and interact with each other, and with the stator proteins MotA and MotB. The ∆motF mutant exhibits normal flagellation but its swimming behavior and flagellar motor activity are severely impaired and erratic. In contrast, the ∆fliL mutant is mostly aflagellate and nonmotile. Amino acid substitutions in cytoplasmic regions of MotA or disruption of the proton channel plug of MotB partially restored motor activity to the ∆motF but not the ∆fliL mutant. Altogether, our findings indicate that both, MotF and FliL, are essential for flagellar motor torque generation in S. meliloti. FliL may serve as a scaffold for stator integration into the motor, and MotF is required for proton channel modulation.


Asunto(s)
Flagelos , Sinorhizobium meliloti , Proteínas Bacterianas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Protones , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Torque
10.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748569

RESUMEN

We previously showed that specific polyamines (PAs) present in the extracellular environment markedly affect extracellular polysaccharide (EPS) production, biofilm formation and motility in Sinorhizobium meliloti Rm8530. We hypothesized that extracellular PA signals were sensed and transduced by the NspS and MbaA proteins, respectively, which are homologs of the PA-sensing, c-di-GMP modulating NspS-MbaA proteins described in Vibrio cholerae. Here we show that the decrease in biofilm formation and EPS production in the quorum-sensing (QS)-deficient S. meliloti wild-type strain 1021 in cultures containing putrescine or spermine did not occur in a 1021 nspS mutant (1021 nspS). The transcriptional expression of nspS in strain 1021 was significantly increased in cultures containing either of these polyamines, but not by exogenous cadaverine, 1,3-diaminopropane (DAP), spermidine (Spd) or norspermidine (NSpd). Cell aggregation in liquid cultures did not differ markedly between strain 1021 and 1021 nspS in the presence or absence of PAs. The S. meliloti QS-proficient Rm8530 wild-type and nspS mutant (Rm8530 nspS) produced similar levels of biofilm under control conditions and 3.2- and 2.2-fold more biofilm, respectively, in cultures with NSpd, but these changes did not correlate with EPS production. Cells of Rm8530 nspS aggregated from two- to several-fold more than the wild-type in cultures without PAs or in those containing Spm. NSpd, Spd and DAP differently affected swimming and swarming motility in strains 1021 and Rm8530 and their respective nspS mutants. nspS transcription in strain Rm8530 was greatly reduced by exogenous Spm. Bioinformatic analysis revealed similar secondary structures and functional domains in the MbaA proteins of S. meliloti and V. cholerae, while their NspS proteins differed in some residues implicated in polyamine recognition in the latter species. NspS-MbaA homologs occur in a small subset of soil and aquatic bacterial species that commonly interact with eukaryotes. We speculate that the S. meliloti NspS-MbaA system modulates biofilm formation, EPS production and motility in response to environmental or host plant-produced PAs.


Asunto(s)
Poliaminas , Sinorhizobium meliloti , Poliaminas/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Regulación Bacteriana de la Expresión Génica , Polisacáridos Bacterianos/metabolismo
11.
Appl Environ Microbiol ; 89(3): e0190122, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36853042

RESUMEN

Co2+ induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N2-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co2+-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe2+ homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe2+-export systems. An insertional mutant of AitP showed Co2+ sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe2+ sensitivity, despite AitP being a bona fide low affinity Fe2+ exporter as demonstrated by the kinetic analyses of Fe2+ uptake into everted membrane vesicles. Suggesting concomitant Fe2+-dependent induced stress, Co2+ sensitivity was increased in strains carrying mutations in AitP and Fe2+ exporters which did not correlate with the Co2+ accumulation. Growth in the presence of sublethal Fe2+ and Co2+ concentrations suggested that free Fe-import might contribute to Co2+ toxicity. Supporting this, Co2+ induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe2+-export is likely counterbalanced via a nonfutile Fe2+-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co2+ was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co2+ sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. IMPORTANCE Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe2+, Co2+ induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co2+ exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co2+ content may be encountered.


Asunto(s)
Sinorhizobium meliloti , Simportadores , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Hemina/metabolismo , Hierro/metabolismo , Homeostasis , Cobalto/metabolismo , Hemo/metabolismo
12.
J Exp Bot ; 74(12): 3729-3748, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36951479

RESUMEN

Leguminous plants have established mutualistic endosymbiotic interactions with nitrogen-fixing rhizobia to secure nitrogen sources in root nodules. Before nodule formation, the development of early symbiotic structures is essential for rhizobia docking, internalization, targeted delivery, and intracellular accommodation. We recently reported that overexpression of stress-induced mitogen-activated protein kinase (SIMK) in alfalfa affects root hair, nodule, and shoot formation, raising the question of how SIMK modulates these processes. In particular, detailed subcellular spatial distribution, activation, and developmental relocation of SIMK during early stages of alfalfa nodulation remain unclear. Here, we characterized SIMK distribution in Ensifer meliloti-infected root hairs using live-cell imaging and immunolocalization, employing alfalfa stable transgenic lines with genetically manipulated SIMK abundance and kinase activity. In the SIMKK-RNAi line, showing down-regulation of SIMKK and SIMK, we found considerably decreased accumulation of phosphorylated SIMK around infection pockets and infection threads. However, this was strongly increased in the GFP-SIMK line, constitutively overexpressing green fluorescent protein (GFP)-tagged SIMK. Thus, genetically manipulated SIMK modulates root hair capacity to form infection pockets and infection threads. Advanced light-sheet fluorescence microscopy on intact plants allowed non-invasive imaging of spatiotemporal interactions between root hairs and symbiotic E. meliloti, while immunofluorescence detection confirmed that SIMK was activated in these locations. Our results shed new light on SIMK spatiotemporal participation in early interactions between alfalfa and E. meliloti, and its internalization into root hairs, showing that local accumulation of active SIMK modulates early nodulation in alfalfa.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Sinorhizobium meliloti , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Sinorhizobium meliloti/metabolismo , Microscopía , Plantas/metabolismo , Simbiosis/fisiología
13.
Plant Cell ; 32(2): 352-373, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31748328

RESUMEN

Translational control is a widespread mechanism that allows the cell to rapidly modulate gene expression in order to provide flexibility and adaptability to eukaryotic organisms. We applied translating ribosome affinity purification combined with RNA sequencing to characterize translational regulation of mRNAs at early stages of the nitrogen-fixing symbiosis established between Medicago truncatula and Sinorhizobium meliloti Our analysis revealed a poor correlation between transcriptional and translational changes and identified hundreds of regulated protein-coding and long noncoding RNAs (lncRNAs), some of which are regulated in specific cell types. We demonstrated that a short variant of the lncRNA Trans-acting small interference RNA3 (TAS3) increased its association to the translational machinery in response to rhizobia. Functional analysis revealed that this short variant of TAS3 might act as a target mimic that captures microRNA390, contributing to reduce trans acting small interference Auxin Response Factor production and modulating nodule formation and rhizobial infection. The analysis of alternative transcript variants identified a translationally upregulated mRNA encoding subunit 3 of the SUPERKILLER complex (SKI3), which participates in mRNA decay. Knockdown of SKI3 decreased nodule initiation and development, as well as the survival of bacteria within nodules. Our results highlight the importance of translational control and mRNA decay pathways for the successful establishment of the nitrogen-fixing symbiosis.


Asunto(s)
Reprogramación Celular/fisiología , Fijación del Nitrógeno/fisiología , Raíces de Plantas/metabolismo , Polirribosomas/metabolismo , ARN de Planta/metabolismo , ARN no Traducido/metabolismo , Simbiosis/fisiología , Reprogramación Celular/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/genética , ARN de Planta/genética , ARN no Traducido/genética , Nódulos de las Raíces de las Plantas , Sinorhizobium meliloti/metabolismo , Simbiosis/genética
14.
Biochem Biophys Res Commun ; 614: 132-137, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35588563

RESUMEN

Rhizobia infect the roots of host legumes and induce formation of nitrogen-fixing nodules, where nitrogenase genes are inducibly expressed by micro-aerobic signals. FixL/FixJ is an oxygen signal sensing system that is unique to rhizobia. FixL monitors molecular oxygen levels and phosphorylates the response regulator FixJ, thereby regulating downstream gene expression. The cell division of rhizobia is regulated by a phosphorylation relaying cascade that includes the transcription factors CtrA, GcrA, and DnaA. In Sinorhizobium meliloti the expression of these proteins is regulated by NtrX, which affects cell division. In the present work, by analyzing the cell division phenotypes and gene expression patterns of S. meliloti fixJ and ntrX mutants, we found that S. meliloti cell division is regulated by oxygen gas levels. Under normal conditions, FixJ induced NtrX and DnaA expression, but repressed CtrA and GcrA expression. In contrast, under hypoxic conditions, phosphorylated FixJ specifically bound to gene promoter regions to directly induce CtrA and GcrA expression, but to repress DnaA expression. Our findings reveal that molecular oxygen levels regulate S. meliloti cell division by a FixJ-dependent transcription control mechanism.


Asunto(s)
Hemoproteínas , Sinorhizobium meliloti , Proteínas Bacterianas/metabolismo , División Celular , Regulación Bacteriana de la Expresión Génica , Hemoproteínas/metabolismo , Histidina Quinasa/metabolismo , Fijación del Nitrógeno/genética , Oxígeno/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo
15.
Nucleic Acids Res ; 48(1): 332-348, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31777930

RESUMEN

Single-strand specific endoribonuclease YbeY has been shown to play an important role in the processing of the 3' end of the 16S rRNA in Escherichia coli. Lack of YbeY results in the accumulation of the 17S rRNA precursor. In contrast to a previous report, we show that Sinorhizobium meliloti YbeY exhibits endoribonuclease activity on single-stranded RNA substrate but not on the double-stranded substrate. This study also identifies the previously unknown metal ion involved in YbeY function to be Zn2+ and shows that the activity of YbeY is enhanced when the occupancy of zinc is increased. We have identified a pre-16S rRNA precursor that accumulates in the S. meliloti ΔybeY strain. We also show that ΔybeY mutant of Brucella abortus, a mammalian pathogen, also accumulates a similar pre-16S rRNA. The pre-16S species is longer in alpha-proteobacteria than in gamma-proteobacteria. We demonstrate that the YbeY from E. coli and S. meliloti can reciprocally complement the rRNA processing defect in a ΔybeY mutant of the other organism. These results establish YbeY as a zinc-dependent single-strand specific endoribonuclease that functions in 16S rRNA processing in both alpha- and gamma-proteobacteria.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Metaloproteínas/genética , ARN Ribosómico 16S/genética , Sinorhizobium meliloti/genética , Zinc/metabolismo , Emparejamiento Base , Cationes Bivalentes , Pruebas de Enzimas , Escherichia coli/metabolismo , Expresión Génica , Prueba de Complementación Genética , Isoenzimas/deficiencia , Isoenzimas/genética , Metaloproteínas/deficiencia , Mutación , Conformación de Ácido Nucleico , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Ribosómico 16S/metabolismo , Sinorhizobium meliloti/metabolismo
16.
J Bacteriol ; 203(17): e0021621, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34124939

RESUMEN

Chemoreceptors enable the legume symbiont Sinorhizobium meliloti to detect and respond to specific chemicals released from their host plant alfalfa, which allows the establishment of a nitrogen-fixing symbiosis. The periplasmic region (PR) of transmembrane chemoreceptors act as the sensory input module for chemotaxis systems via binding of specific ligands, either directly or indirectly. S. meliloti has six transmembrane and two cytosolic chemoreceptors. However, the function of only three of the transmembrane receptors have been characterized so far, with McpU, McpV, and McpX serving as general amino acid, short-chain carboxylate, and quaternary ammonium compound sensors, respectively. In the present study, we analyzed the S. meliloti chemoreceptor McpT. High-throughput differential scanning fluorimetry assays, using Biolog phenotype microarray plates, identified 15 potential ligands for McpTPR, with the majority classified as mono-, di-, and tricarboxylates. S. meliloti exhibited positive chemotaxis toward seven selected carboxylates, namely, α-ketobutyrate, citrate, glyoxylate, malate, malonate, oxalate, and succinate. These carboxylates were detected in seed exudates of the alfalfa host. Deletion of mcpT resulted in a significant decrease of chemotaxis to all carboxylates except for citrate. Isothermal titration calorimetry revealed that McpTPR bound preferentially to the monocarboxylate glyoxylate and with lower affinity to the dicarboxylates malate, malonate, and oxalate. However, no direct binding was detected for the remaining three carboxylates that elicited an McpT-dependent chemotaxis response. Taken together, these results demonstrate that McpT is a broad-range carboxylate chemoreceptor that mediates chemotactic response via direct ligand binding and an indirect mechanism that needs to be identified. IMPORTANCE Nitrate pollution is one of the most widespread and challenging environmental problems that is mainly caused by the agricultural overapplication of nitrogen fertilizers. Biological nitrogen fixation by the endosymbiont Sinorhizobium meliloti enhances the growth of its host Medicago sativa (alfalfa), which also efficiently supplies the soil with nitrogen. Establishment of the S. meliloti-alfalfa symbiosis relies on the early exchange and recognition of chemical signals. The present study contributes to the disclosure of this complex molecular dialogue by investigating the underlying mechanisms of carboxylate sensing in S. meliloti. Understanding individual steps that govern the S. meliloti-alfalfa molecular cross talk helps in the development of efficient, commercial bacterial inoculants that promote the growth of alfalfa, which is the most cultivated forage legume in the world, and improves soil fertility.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factores Quimiotácticos/metabolismo , Sinorhizobium meliloti/metabolismo , Proteínas Bacterianas/genética , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Factores Quimiotácticos/genética , Quimiotaxis , Eliminación de Gen , Glioxilatos/metabolismo , Ligandos , Sinorhizobium meliloti/genética
17.
Mol Microbiol ; 114(1): 151-171, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198949

RESUMEN

Sinorhizobium (Ensifer) meliloti is a model example of a soil alpha-proteobacterium which induces the formation of nitrogen-fixing symbiotic nodules on the legume roots. In contrast to all other rhizobacterial species, S. meliloti contains multiple homologs of nucleobase transporter genes that belong to NAT/NCS2 family (Nucleobase-Ascorbate Transporter/Nucleobase-Cation Symporter-2). We analyzed functionally all (six) relevant homologs of S. meliloti 1,021 using Escherichia coli K-12 as a host and found that five of them are high-affinity transporters for xanthine (SmLL9), uric acid (SmLL8, SmLL9, SmX28), adenine (SmVC3, SmYE1), guanine (SmVC3), or hypoxanthine (SmVC3). Detailed analysis of substrate profiles showed that two of these transporters display enlarged specificity (SmLL9, SmVC3). SmLL9 is closely related in sequence with the xanthine-specific XanQ of E. coli. We subjected SmLL9 to rationally designed site-directed mutagenesis and found that the role of key binding-site residues of XanQ is conserved in SmLL9, whereas a single amino-acid change (S93N) converts the xanthine/uric-acid transporter SmLL9 to a xanthine-preferring variant, due to disruption of an essential hydrogen bond with the C8 oxygen of uric acid. The results highlight the presence of several different purine nucleobase transporters in S. meliloti and imply that the purine transport might be important in the nodule symbiosis involving S. meliloti.


Asunto(s)
Transporte Biológico Activo/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simportadores/genética , Simportadores/metabolismo , Adenina/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Guanina/metabolismo , Hipoxantina/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Rizosfera , Nódulos de las Raíces de las Plantas/microbiología , Ácido Úrico/metabolismo , Xantina/metabolismo
18.
Environ Microbiol ; 23(11): 6993-7008, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34528360

RESUMEN

The bacterial membrane is constantly remodelled in response to environmental conditions and the external supply of precursor molecules. Some bacteria are able to acquire exogenous lyso-phospholipids and convert them to the corresponding phospholipids. Here, we report that some soil-dwelling bacteria have alternative options to metabolize lyso-phosphatidylglycerol (L-PG). We find that the plant-pathogen Agrobacterium tumefaciens takes up this mono-acylated phospholipid and converts it to two distinct isoforms of the non-canonical lipid bis(monoacylglycero)phosphate (BMP). Chromatographic separation and quadrupole-time-of-flight MS/MS analysis revealed the presence of two possible BMP stereo configurations acylated at either of the free hydroxyl groups of the glycerol head group. BMP accumulated in the inner membrane and did not visibly alter cell morphology and growth behaviour. The plant-associated bacterium Sinorhizobium meliloti was also able to convert externally provided L-PG to BMP. Other bacteria like Pseudomonas fluorescens and Escherichia coli metabolized L-PG after cell disruption, suggesting that BMP production in the natural habitat relies both on dedicated uptake systems and on head-group acylation enzymes. Overall, our study adds two previously overlooked phospholipids to the repertoire of bacterial membrane lipids and provides evidence for the remarkable condition-responsive adaptation of bacterial membranes.


Asunto(s)
Sinorhizobium meliloti , Espectrometría de Masas en Tándem , Lisofosfolípidos , Monoglicéridos/química , Sinorhizobium meliloti/metabolismo
19.
Biotechnol Appl Biochem ; 68(4): 856-864, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32770805

RESUMEN

Sinorhizobium meliloti 320 is a vitamin B12 (VB12 ) high-producing strain that has been isolated and identified in our previous study. Because the regulatory toolbox for S. meliloti is limited, we searched for new genetic components and identified the two xylose-inducible promoters PA and PB based on a promoter-probe vector with a green fluorescent protein (GFP) as reporter. Compared with the ParaA promoter from S. meliloti, both promoters exhibited higher induced expression and lower basal expression. Subsequently, the influence of glucose or sucrose on the expression of GFP driven by these three promoters was assayed. Glucose repressed all three promoters, and the expression of ParaA was the lowest in the presence of glucose. Although sucrose repressed the expression of PA by 35% and improved the expression of ParaA by 16%, the expression level of PA was the highest and was 13% higher than that of ParaA . Lastly, we overexpressed the hemA gene in the C4 pathway using the PA promoter in S. meliloti 320, and the VB12 production of the engineered strain increased by 11%. The VB12 production was further increased by 11% by adding 0.1% sodium succinate to the culture medium.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regiones Promotoras Genéticas , Sinorhizobium meliloti , Vitamina B 12 , Xilosa , Vectores Genéticos/genética , Plásmidos/genética , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Vitamina B 12/biosíntesis , Vitamina B 12/genética , Xilosa/genética , Xilosa/metabolismo , Xilosa/farmacología
20.
Nucleic Acids Res ; 47(12): 6396-6410, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-30993322

RESUMEN

Ribosome-mediated transcription attenuation is a basic posttranscriptional regulation mechanism in bacteria. Liberated attenuator RNAs arising in this process are generally considered nonfunctional. In Sinorhizobium meliloti, the tryptophan (Trp) biosynthesis genes are organized into three operons, trpE(G), ppiD-trpDC-moaC-moeA, and trpFBA-accD-folC, of which only the first one, trpE(G), contains a short ORF (trpL) in the 5'-UTR and is regulated by transcription attenuation. Under conditions of Trp sufficiency, transcription is terminated between trpL and trpE(G), and a small attenuator RNA, rnTrpL, is produced. Here, we show that rnTrpL base-pairs with trpD and destabilizes the polycistronic trpDC mRNA, indicating rnTrpL-mediated downregulation of the trpDC operon in trans. Although all three trp operons are regulated in response to Trp availability, only in the two operons trpE(G) and trpDC the Trp-mediated regulation is controlled by rnTrpL. Together, our data show that the trp attenuator coordinates trpE(G) and trpDC expression posttranscriptionally by two fundamentally different mechanisms: ribosome-mediated transcription attenuation in cis and base-pairing in trans. Also, we present evidence that rnTrpL-mediated regulation of trpDC genes expression in trans is conserved in Agrobacterium and Bradyrhizobium, suggesting that the small attenuator RNAs may have additional conserved functions in the control of bacterial gene expression.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , ARN Pequeño no Traducido/metabolismo , Sinorhizobium meliloti/genética , Triptófano/biosíntesis , Emparejamiento Base , Operón , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , Sinorhizobium meliloti/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda