Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
J Neurosci ; 44(31)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38918066

RESUMEN

The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and five subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in seven subtypes of neurons, which were validated through in situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with premotor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified nine and six subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in two subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.


Asunto(s)
Bulbo Raquídeo , Neuronas , Médula Espinal , Animales , Bulbo Raquídeo/citología , Bulbo Raquídeo/fisiología , Ratones , Masculino , Femenino , Neuronas/fisiología , Médula Espinal/citología , Médula Espinal/fisiología , Ratones Endogámicos C57BL , Sistema Nervioso Autónomo/fisiología , Sistema Nervioso Autónomo/citología
2.
J Neurosci ; 40(38): 7216-7228, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817244

RESUMEN

Viscera receive innervation from sensory ganglia located adjacent to multiple levels of the brainstem and spinal cord. Here we examined whether molecular profiling could be used to identify functional clusters of colon afferents from thoracolumbar (TL), lumbosacral (LS), and nodose ganglia (NG) in male and female mice. Profiling of TL and LS bladder afferents was also performed. Visceral afferents were back-labeled using retrograde tracers injected into proximal and distal regions of colon or bladder, followed by single-cell qRT-PCR and analysis via an automated hierarchical clustering method. Genes were chosen for assay (32 for bladder; 48 for colon) based on their established role in stimulus detection, regulation of sensitivity/function, or neuroimmune interaction. A total of 132 colon afferents (from NG, TL, and LS ganglia) and 128 bladder afferents (from TL and LS ganglia) were analyzed. Retrograde labeling from the colon showed that NG and TL afferents innervate proximal and distal regions of the colon, whereas 98% of LS afferents only project to distal regions. There were clusters of colon and bladder afferents, defined by mRNA profiling, that localized to either TL or LS ganglia. Mixed TL/LS clustering also was found. In addition, transcriptionally, NG colon afferents were almost completely segregated from colon TL and LS neurons. Furthermore, colon and bladder afferents expressed genes at similar levels, although different gene combinations defined the clusters. These results indicate that genes implicated in both homeostatic regulation and conscious sensations are found at all anatomic levels, suggesting that afferents from different portions of the neuraxis have overlapping functions.SIGNIFICANCE STATEMENT Visceral organs are innervated by sensory neurons whose cell bodies are located in multiple ganglia associated with the brainstem and spinal cord. For the colon, this overlapping innervation is proposed to facilitate visceral sensation and homeostasis, where sensation and pain are mediated by spinal afferents and fear and anxiety (the affective aspects of visceral pain) are the domain of nodose afferents. The transcriptomic analysis performed here reveals that genes implicated in both homeostatic regulation and pain are found in afferents across all ganglia types, suggesting that conscious sensation and homeostatic regulation are the result of convergence, and not segregation, of sensory input.


Asunto(s)
Sistema Nervioso Autónomo/citología , Neuronas Aferentes/metabolismo , Transcriptoma , Animales , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiología , Células Cultivadas , Colon/inervación , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Conducción Nerviosa , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas Aferentes/citología , Neuronas Aferentes/fisiología , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , RNA-Seq , Vejiga Urinaria/inervación , Vísceras/inervación
3.
Adv Anat Embryol Cell Biol ; 230: 1-70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30543033

RESUMEN

The observation of two precursor groups of the early stem cells (Groups I and II) leads to the realization that a first amount of fetal stem cells (Group I) migrate from the AMG (Aortal-Mesonephric-Gonadal)-region into the aorta and its branching vessels. A second group (Group II) gains quite a new significance during human development. This group presents a specific developmental step which is found only in the human. This continuation of the early development along a different way indicates a general alteration of the stem cell biology. This changed process in the stem cell scene dominates the further development of the human stem cells. It remains unclear where this phylogenetic step first appears. By far not all advanced mammals show this second group of stem cells and their axonal migration. Essentially only primates seem to be involved in this special development.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/ultraestructura , Gónadas/citología , Gónadas/embriología , Células APUD/citología , Corteza Suprarrenal/citología , Corteza Suprarrenal/embriología , Corteza Suprarrenal/fisiología , Corteza Suprarrenal/ultraestructura , Médula Suprarrenal/citología , Médula Suprarrenal/embriología , Médula Suprarrenal/fisiología , Aorta/citología , Aorta/embriología , Aorta/ultraestructura , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/embriología , Sistema Nervioso Autónomo/fisiología , Orientación del Axón/fisiología , Movimiento Celular/fisiología , Células Madre Embrionarias/fisiología , Gónadas/fisiología , Gónadas/ultraestructura , Desarrollo Humano/fisiología , Humanos , Microscopía Electrónica , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/fisiología , Páncreas/citología , Páncreas/crecimiento & desarrollo , Páncreas/ultraestructura , Paraganglios Cromafines/citología , Paraganglios Cromafines/fisiología , Paraganglios Cromafines/ultraestructura , Teratoma/embriología , Teratoma/fisiopatología
4.
Bull Exp Biol Med ; 164(5): 680-684, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29577192

RESUMEN

Functional interactions of sympathetic fibers innervating the iris with the neurons of central origin in intraocular transplants of the rat hippocampus were studied by optic, confocal, and electron microscopy. After formaldehyde fixation, fluorescent dye Dil was applied to the upper cervical ganglion; the dye migrated to the transplant by lateral diffusion via axons. Sympathetic nerves labeled with fluorescent dye grew into the neurotransplants along perivascular membranes of blood vessels. In addition, some fluorescent axons were identified in the transplant parenchyma. Electron microscopy showed large bundles of the peripheral type axons in the vascular adventitia and Schwann-axonal complexes in the transplant neuropil. Autonomic axons formed synaptic contacts with transplanted neurons.


Asunto(s)
Sistema Nervioso Autónomo/metabolismo , Neuronas/metabolismo , Sistema Nervioso Simpático/citología , Animales , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/ultraestructura , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/ultraestructura , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/ultraestructura , Microscopía Electrónica , Regeneración Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/ultraestructura , Ratas , Ratas Wistar , Sistema Nervioso Simpático/ultraestructura
5.
Cell Tissue Res ; 370(2): 195-209, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28856468

RESUMEN

Several concepts developed in the nineteenth century have formed the basis of much of our neuroanatomical teaching today. Not all of these were based on solid evidence nor have withstood the test of time. Recent evidence on the evolution and development of the autonomic nervous system, combined with molecular insights into the development and diversification of motor neurons, challenges some of the ideas held for over 100 years about the organization of autonomic motor outflow. This review provides an overview of the original ideas and quality of supporting data and contrasts this with a more accurate and in depth insight provided by studies using modern techniques. Several lines of data demonstrate that branchial motor neurons are a distinct motor neuron population within the vertebrate brainstem, from which parasympathetic visceral motor neurons of the brainstem evolved. The lack of an autonomic nervous system in jawless vertebrates implies that spinal visceral motor neurons evolved out of spinal somatic motor neurons. Consistent with the evolutionary origin of brainstem parasympathetic motor neurons out of branchial motor neurons and spinal sympathetic motor neurons out of spinal motor neurons is the recent revision of the organization of the autonomic nervous system into a cranial parasympathetic and a spinal sympathetic division (e.g., there is no sacral parasympathetic division). We propose a new nomenclature that takes all of these new insights into account and avoids the conceptual misunderstandings and incorrect interpretation of limited and technically inferior data inherent in the old nomenclature.


Asunto(s)
Sistema Nervioso Autónomo/citología , Evolución Biológica , Neuronas Motoras/clasificación , Neuronas Motoras/citología , Médula Espinal/citología , Animales , Sistema Nervioso Autónomo/anatomía & histología , Sistema Nervioso Autónomo/embriología , Tipificación del Cuerpo , Tronco Encefálico/anatomía & histología , Tronco Encefálico/citología , Tronco Encefálico/embriología , Ganglios/anatomía & histología , Ganglios/citología , Ganglios/embriología , Humanos , Cresta Neural/anatomía & histología , Cresta Neural/citología , Cresta Neural/embriología , Médula Espinal/anatomía & histología , Médula Espinal/embriología
6.
J Neurosci ; 35(13): 5385-96, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25834062

RESUMEN

A growing body of evidence suggests that the neuronal dynamics are poised at criticality. Neuronal avalanches and long-range temporal correlations (LRTCs) are hallmarks of such critical dynamics in neuronal activity and occur at fast (subsecond) and slow (seconds to hours) timescales, respectively. The critical dynamics at different timescales can be characterized by their power-law scaling exponents. However, insight into the avalanche dynamics and LRTCs in the human brain has been largely obtained with sensor-level MEG and EEG recordings, which yield only limited anatomical insight and results confounded by signal mixing. We investigated here the relationship between the human neuronal dynamics at fast and slow timescales using both source-reconstructed MEG and intracranial stereotactical electroencephalography (SEEG). Both MEG and SEEG revealed avalanche dynamics that were characterized parameter-dependently by power-law or truncated-power-law size distributions. Both methods also revealed robust LRTCs throughout the neocortex with distinct scaling exponents in different functional brain systems and frequency bands. The exponents of power-law regimen neuronal avalanches and LRTCs were strongly correlated across subjects. Qualitatively similar power-law correlations were also observed in surrogate data without spatial correlations but with scaling exponents distinct from those of original data. Furthermore, we found that LRTCs in the autonomous nervous system, as indexed by heart-rate variability, were correlated in a complex manner with cortical neuronal avalanches and LRTCs in MEG but not SEEG. These scalp and intracranial data hence show that power-law scaling behavior is a pervasive but neuroanatomically inhomogeneous property of neuronal dynamics in central and autonomous nervous systems.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Neuronas/fisiología , Adolescente , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Neocórtex/citología , Neocórtex/fisiología , Factores de Tiempo , Adulto Joven
7.
J Physiol ; 593(14): 3047-53, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25398529

RESUMEN

The autonomic nervous system plays an important role in the modulation of normal cardiac rhythm, but is also implicated in modulating the heart's susceptibility to re-entrant ventricular and atrial arrhythmias. The mechanisms by which the autonomic nervous system is pro-arrhythmic or anti-arrhythmic is multifaceted and varies for different types of arrhythmia and their cardiac substrates. Despite decades of research in this area, fundamental questions related to how neuron density and spatial organization modulate cardiac wave dynamics remain unanswered. These questions may be ill-posed in intact tissues where the activity of individual cells is often experimentally inaccessible. Development of simplified biological models that would allow us to better understand the influence of neural activation on cardiac activity can be beneficial. This Symposium Review summarizes the development of in vitro cardiomyocyte cell culture models of re-entrant activity, as well as challenges associated with extending these models to include the effects of neural activation.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Sistema Nervioso Autónomo/fisiopatología , Miocitos Cardíacos/fisiología , Neuronas/fisiología , Animales , Sistema Nervioso Autónomo/citología , Técnicas de Cocultivo/métodos , Humanos , Microscopía Fluorescente/métodos , Miocitos Cardíacos/citología , Neuronas/citología
8.
Mol Cell Neurosci ; 63: 1-12, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25168001

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide found at synapses throughout the central and autonomic nervous system. We previously found that PACAP engages a selective G-protein coupled receptor (PAC1R) on ciliary ganglion neurons to rapidly enhance quantal acetylcholine (ACh) release from presynaptic terminals via neuronal nitric oxide synthase (NOS1) and cyclic AMP/protein kinase A (PKA) dependent processes. Here, we examined how PACAP stimulates NO production and targets resultant outcomes to synapses. Scavenging extracellular NO blocked PACAP-induced plasticity supporting a retrograde (post- to presynaptic) NO action on ACh release. Live-cell imaging revealed that PACAP stimulates NO production by mechanisms requiring NOS1, PKA and Ca(2+) influx. Ca(2+)-permeable nicotinic ACh receptors composed of α7 subunits (α7-nAChRs) are potentiated by PKA-dependent PACAP/PAC1R signaling and were required for PACAP-induced NO production and synaptic plasticity since both outcomes were drastically reduced following their selective inhibition. Co-precipitation experiments showed that NOS1 associates with α7-nAChRs, many of which are perisynaptic, as well as with heteromeric α3*-nAChRs that generate the bulk of synaptic activity. NOS1-nAChR physical association could facilitate NO production at perisynaptic and adjacent postsynaptic sites to enhance focal ACh release from juxtaposed presynaptic terminals. The synaptic outcomes of PACAP/PAC1R signaling are localized by PKA anchoring proteins (AKAPs). PKA regulatory-subunit overlay assays identified five AKAPs in ganglion lysates, including a prominent neuronal subtype. Moreover, PACAP-induced synaptic plasticity was selectively blocked when PKA regulatory-subunit binding to AKAPs was inhibited. Taken together, our findings indicate that PACAP/PAC1R signaling coordinates nAChR, NOS1 and AKAP activities to induce targeted, retrograde plasticity at autonomic synapses. Such coordination has broad relevance for understanding the control of autonomic synapses and consequent visceral functions.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Plasticidad Neuronal , Óxido Nítrico Sintasa de Tipo I/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores Nicotínicos/metabolismo , Sinapsis/metabolismo , Animales , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/metabolismo , Sistema Nervioso Autónomo/fisiología , Calcio/metabolismo , Células Cultivadas , Embrión de Pollo , Neuronas/metabolismo , Neuronas/fisiología , Óxido Nítrico/metabolismo , Unión Proteica , Sinapsis/fisiología
9.
Cell Tissue Res ; 356(1): 1-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24337689

RESUMEN

Pericytes are contractile cells that surround blood vessels. When contracting, they change the diameter of the vessel and therefore influence blood flow homeostasis; however, mechanisms controlling pericyte action are less well understood. Since blood flow regulation per se is controlled by the autonomic nervous system, the latter might also be involved in pericyte action. Hence, rat choroidal pericytes were analyzed for such a connection by using appropriate markers. Rat choroidal wholemounts and sections were prepared for immunohistochemistry of the pericyte marker chondroitin-sulfate-proteoglycan (NG2) and the pan-neuronal marker PGP9.5 or of tyrosine hydroxylase (TH), vasoactive intestinal polypeptide (VIP) and choline acetyl transferase (ChAT). Additionally, PGP9.5 and TH were analyzed in the choroid of DCX-dsRed2 transgenic rats, displaying red-fluorescent perivascular cells and serving as a putative model for studying pericyte function in vivo. Confocal laser-scanning microscopy revealed NG2-immunoreactive cells and processes surrounding the blood vessels. These NG2-positive cells were not co-localized with PGP9.5 but received close appositions of PGP9.5-, TH-, VIP- and ChAT-immunoreactive boutons and fibers. In the DCX-dsRed2 transgenic rat, PGP9.5 and TH were also densely apposed on the dsRed-positive cells adjacent to blood vessels. These cells were likewise immunoreactive for NG2, suggesting their pericyte identity. In addition to the innervation of vascular smooth muscle cells, the close relationship of PGP9.5 and further sympathetic (TH) and parasympathetic (VIP, ChAT) nerve fibers on NG2-positive pericytes indicated an additional target of the autonomic nervous system for choroidal blood flow regulation. Similar findings in the DCX-dsRed transgenic rat indicate the potential use of this animal model for in vivo experiments revealing the role of pericytes in blood flow regulation.


Asunto(s)
Sistema Nervioso Autónomo/citología , Coroides/citología , Pericitos/citología , Animales , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Ratas , Ratas Endogámicas BN , Ratas Transgénicas
10.
Dev Biol ; 363(1): 219-33, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22236961

RESUMEN

Different prespecification of mesencephalic and trunk neural crest cells determines their response to environmental differentiation signals and contributes to the generation of different autonomic neuron subtypes, parasympathetic ciliary neurons in the head and trunk noradrenergic sympathetic neurons. The differentiation of ciliary and sympathetic neurons shares many features, including the initial BMP-induced expression of noradrenergic characteristics that is, however, subsequently lost in ciliary but maintained in sympathetic neurons. The molecular basis of specific prespecification and differentiation patterns has remained unclear. We show here that HoxB gene expression in trunk neural crest is maintained in sympathetic neurons. Ectopic expression of a single HoxB gene, HoxB8, in mesencephalic neural crest results in a strongly increased expression of sympathetic neuron characteristics like the transcription factor Hand2, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) in ciliary neurons. Other subtype-specific properties like RGS4 and RCad are not induced. HoxB8 has only minor effects in postmitotic ciliary neurons and is unable to induce TH and DBH in the enteric nervous system. Thus, we conclude that HoxB8 acts by maintaining noradrenergic properties transiently expressed in ciliary neuron progenitors during normal development. HoxC8, HoxB9, HoxB1 and HoxD10 elicit either small and transient or no effects on noradrenergic differentiation, suggesting a selective effect of HoxB8. These results implicate that Hox genes contribute to the differential development of autonomic neuron precursors by maintaining noradrenergic properties in the trunk sympathetic neuron lineage.


Asunto(s)
Neuronas Adrenérgicas/metabolismo , Sistema Nervioso Autónomo/metabolismo , Proteínas Aviares/genética , Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Neuronas Adrenérgicas/citología , Animales , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/embriología , Proteínas Aviares/metabolismo , Embrión de Pollo , Pollos , Dopamina beta-Hidroxilasa/genética , Dopamina beta-Hidroxilasa/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ganglios Espinales/metabolismo , Ganglios Simpáticos/citología , Ganglios Simpáticos/embriología , Ganglios Simpáticos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Tubo Neural/citología , Tubo Neural/embriología , Tubo Neural/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
11.
Mol Pharmacol ; 80(1): 97-109, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21502378

RESUMEN

Abelson family kinases (AFKs; Abl1, Abl2) are non-receptor tyrosine kinases (NRTKs) implicated in cancer, but they also have important physiological roles that include regulating synaptic structure and function. Recent studies using Abl-deficient mice and the antileukemia drug STI571 [imatinib mesylate (Gleevec); Novartis], which potently and selectively blocks Abl kinase activity, implicate AFKs in regulating presynaptic neurotransmitter release in hippocampus and postsynaptic clustering of nicotinic acetylcholine receptors (nAChRs) in muscle. Here, we tested whether AFKs are relevant for regulating nAChRs and nAChR-mediated synapses on autonomic neurons. AFK immunoreactivity was detected in ciliary ganglion (CG) lysates and neurons, and STI571 application blocked endogenous Abl tyrosine kinase activity. With similar potency, STI571 specifically reduced whole-cell current responses generated by both nicotinic receptor subtypes present on CG neurons (α3*- and α7-nAChRs) and lowered the frequency and amplitude of α3*-nAChR-mediated excitatory postsynaptic currents. Quantal analysis indicated that the synaptic perturbations were postsynaptic in origin, and confocal imaging experiments revealed they were unaccompanied by changes in nAChR clustering or alignment with presynaptic terminals. The results indicate that in autonomic neurons, Abl kinase activity normally supports postsynaptic nAChR function to sustain nAChR-mediated neurotransmission. Such consequences contrast with the influence of Abl kinase activity on presynaptic function and synaptic structure in hippocampus and muscle, respectively, demonstrating a cell-specific mechanism of action. Finally, because STI571 potently inhibits Abl kinase activity, the autonomic dysfunction side effects associated with its use as a chemotherapeutic agent may result from perturbed α3*- and/or α7-nAChR function.


Asunto(s)
Sistema Nervioso Autónomo/citología , Neuronas/fisiología , Proteínas Tirosina Quinasas/metabolismo , Receptores Nicotínicos/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Embrión de Pollo , Ganglios/enzimología , Fosforilación , Proteínas Tirosina Quinasas/antagonistas & inhibidores
12.
Am J Hum Biol ; 23(1): 5-21, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21140464

RESUMEN

The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex (ACC) in great apes and humans but not other primates. We stereologically counted the VENs in FI and the limbic anterior (LA) area of ACC and found them to be more numerous in humans than in apes. In humans, VENs first appear in small numbers in the 36th week postconception are rare at birth and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than the left in FI and LA in postnatal brains; this may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, containing FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. In a preliminary diffusion tensor imaging study of the connections of FI, we found that the VEN-containing regions connect with the frontal pole as well as with other parts of frontal and insular cortex, the septum, and the amygdala. The VENs and a related cell population, the fork cells, selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing pepide, which signal satiety. The loss of VENs and fork cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. These cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals.


Asunto(s)
Encéfalo/fisiología , Corteza Cerebral/fisiología , Giro del Cíngulo/fisiología , Hominidae/fisiología , Neuronas/fisiología , Animales , Regulación del Apetito , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/fisiología , Evolución Biológica , Encéfalo/anatomía & histología , Corteza Cerebral/citología , Giro del Cíngulo/citología , Hominidae/anatomía & histología , Humanos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/clasificación , Neuronas/citología
13.
Am J Physiol Regul Integr Comp Physiol ; 298(3): R617-26, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20053957

RESUMEN

Despite recent evidence describing prokineticin 2 (PK2)-producing neurons and receptors in the dorsomedial medulla, little is known regarding the potential mechanisms by which this circadian neuropeptide acts in the medulla to influence autonomic function. Using whole cell electrophysiology, we have investigated a potential role for PK2 in the regulation of excitability in neurons of the area postrema (AP), a medullary structure known to influence autonomic processes in the central nervous system. In current-clamp recordings, focal application of 1 microM PK2 reversibly influenced the excitability of the majority of dissociated AP cells tested, producing depolarizations (38%) and hyperpolarizations (28%) in a concentration-dependent manner. Slow voltage ramps and ion-substitution experiments revealed that a PK2-induced Cl(-) current was responsible for membrane depolarization, whereas hyperpolarizations were the result of inhibition of a nonselective cation current. In contrast to these differential effects on membrane potential, nearly all neurons that displayed spontaneous activity responded to PK2 with a decrease in spike frequency. These observations are in accordance with voltage-clamp experiments showing that PK2 caused a leftward shift in Na(+) channel activation and inactivation gating. Lastly, using post hoc single-cell RT-PCR technology, we have shown that 7 of 10 enkephalin-expressing AP neurons were depolarized by PK2 indicating that PK2 may have specific inhibitory actions on this population of neurons in the AP to reduce their sensitivity to homeostatic signals. These data suggest that the level of AP neuronal excitability may be regulated by PK2, ultimately affecting AP autonomic control.


Asunto(s)
Área Postrema/citología , Área Postrema/fisiología , Hormonas Gastrointestinales/genética , Hormonas Gastrointestinales/metabolismo , Neuronas/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/fisiología , Células Cultivadas , Cloruros/metabolismo , Ritmo Circadiano/fisiología , Encefalinas/metabolismo , Hormonas Gastrointestinales/farmacología , Técnicas In Vitro , Masculino , Neuronas/citología , Neuropéptidos/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Canales de Sodio/fisiología
14.
Biochem Biophys Res Commun ; 390(2): 223-9, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-19785992

RESUMEN

The basic helix-loop-helix transcription factor Hand2 is induced by bone morphogenetic proteins (BMPs) in neural crest-derived precursor cells during the early stage of development of the autonomic nervous system (ANS). Previous studies showed that Hand2 was essential for the ANS differentiation. However, regulatory mechanism of pluripotent genes has not been elucidated in ANS differentiation. Here, we show that Hand2 regulated nanog expression in ANS differentiation. Our studies demonstrated that the forced expression of Hand2 promoted the ANS differentiation program in P19 embryonal carcinoma (EC) cells without aggregation. Furthermore, our results suggested that Hand2 bound to the promoter of nanog, a gene required for embryonic stem cells self-renewal, and suppressed nanog expression after Hand2 induction. The rapid downregulation of nanog mRNA during ANS differentiation correlated with the Hand2 transcriptional activity and nanog promoter methylation. These findings are evidence for a presence of the novel regulatory mechanism of nanog in ANS differentiation.


Asunto(s)
Sistema Nervioso Autónomo/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Neurogénesis/genética , Animales , Sistema Nervioso Autónomo/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Células Madre Embrionarias/metabolismo , Ratones , Proteína Homeótica Nanog
15.
J Cell Biol ; 41(2): 462-76, 1969 May.
Artículo en Inglés | MEDLINE | ID: mdl-5783868

RESUMEN

Acetylcholinesterase (AChE) has been detected on the plasma membrane of about 25% of the axons in the longitudinal smooth muscle tissue of guinea pig vas deferens. These axons are presumably cholinergic. No enzyme was detected in the remaining 75% of axons. These axons are presumably adrenergic. The plasma membrane of the Schwann cells associated with the cholinergic axons also stained for AChE. Some axon bundles contained only cholinergic or adrenergic axons while others contained both types of axon. When a cholinergic axon approached within 1100 A of a smooth muscle cell, there was a patch of AChE activity on the muscle membrane adjacent to the axon. It is suggested that these approaches are the points of effective transmission from cholinergic axons to smooth muscle cells. Butyrylcholinesterase activity was detected on the plasma membranes of all axons and smooth muscle cells in this tissue.


Asunto(s)
Acetilcolinesterasa , Sistema Nervioso Autónomo/enzimología , Músculo Liso/inervación , Conducto Deferente/inervación , Animales , Sistema Nervioso Autónomo/citología , Axones/enzimología , Colinesterasas/metabolismo , Cobayas , Histocitoquímica , Masculino , Microscopía Electrónica , Sistema Nervioso Parasimpático , Células de Schwann/enzimología , Sistema Nervioso Simpático
16.
Int J Dev Neurosci ; 27(1): 97-102, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18824086

RESUMEN

Neurotrophic factors are well-recognized extracellular signaling molecules that regulate neuron development including neurite growth, survival and maturation of neuronal phenotypes in the central and peripheral nervous system. Previous studies have suggested that TGF-beta plays a key role in the regulation of neuron survival and death and potentiates the neurotrophic activity of several neurotrophic factors, most strikingly of GDNF. To test the physiological relevance of this finding, TGF-beta2/GDNF double mutant (d-ko) mice were generated. Double mutant mice die at birth like single mutants due to kidney agenesis (GDNF-/-) and congential cyanosis (TGF-beta2-/-), respectively. To test for the in vivo relevance of TGF-beta2/GDNF cooperativity to regulate neuron survival, mesencephalic dopaminergic neurons, lumbar motoneurons, as well as neurons of the lumbar dorsal root ganglion and the superior cervical ganglion were investigated. No loss of mesencephalic dopaminergic neurons was observed in double mutant mice at E18.5. A partial reduction in neuron numbers was observed in lumbar motoneurons, sensory and sympathetic neurons in GDNF single mutants, which was further reduced in TGF-beta2/GDNF double mutant mice at E18.5. However, TGF-beta2 single mutant mice showed no loss of neurons. These data point towards a cooperative role of TGF-beta2 and GDNF with regard to promotion of survival within the peripheral motor and sensory systems investigated.


Asunto(s)
Sistema Nervioso Autónomo/anomalías , Sistema Nervioso Central/anomalías , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Neurogénesis/genética , Sistema Nervioso Periférico/anomalías , Factor de Crecimiento Transformador beta/genética , Animales , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/metabolismo , Recuento de Células , Muerte Celular/genética , Supervivencia Celular/genética , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Noqueados , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Sistema Nervioso Periférico/citología , Sistema Nervioso Periférico/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
17.
Neuron ; 29(1): 57-71, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11182081

RESUMEN

Rat neural crest stem cells (NCSCs) prospectively isolated from uncultured E14.5 sciatic nerve and transplanted into chick embryos generate fewer neurons than do NCSCs isolated from E10.5 neural tube explants. In addition, they differentiate primarily to cholinergic parasympathetic neurons, although in culture they can also generate noradrenergic sympathetic neurons. This in vivo behavior can be explained, at least in part, by a reduced sensitivity of sciatic nerve-derived NCSCs to the neurogenic signal BMP2 and by the observation that cholinergic neurons differentiate at a lower BMP2 concentration than do noradrenergic neurons in vitro. These results demonstrate that neural stem cells can undergo cell-intrinsic changes in their sensitivity to instructive signals, while maintaining multipotency and self-renewal capacity. They also suggest that the choice between sympathetic and parasympathetic fates may be determined by the local concentration of BMP2.


Asunto(s)
Diferenciación Celular/fisiología , Cresta Neural/citología , Neuronas/citología , Trasplante de Células Madre , Células Madre/citología , Factor de Crecimiento Transformador beta , Acetilcolina/metabolismo , Animales , Antígenos de Diferenciación/biosíntesis , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/embriología , Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Quimera , Cresta Neural/embriología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/trasplante , Neuronas Aferentes/citología , Norepinefrina/metabolismo , Sistema Nervioso Parasimpático/citología , Sistema Nervioso Parasimpático/embriología , Pelvis/embriología , Fenotipo , Ratas , Nervio Ciático/citología , Nervio Ciático/embriología , Nervio Ciático/trasplante , Células Madre/efectos de los fármacos , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/embriología , Trasplante Heterólogo
18.
J Comp Neurol ; 506(4): 733-44, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18067150

RESUMEN

The immunohistochemical expression of a novel chromogranin-like protein, neuroendocrine secretory protein 55 (NESP55), in the rat spinal cord was investigated. NESP55-immunoreactive cells were detected in the ventral horn, intermediate laminae, and deep dorsal horn, comprising motoneurons, autonomic neurons, and interneurons throughout all spinal segments. Within laminae I-II of the dorsal horn, one or two NESP55-positive cells were often seen. Nerve fibers also contained NESP55 immunoreactivity (IR) and were particularly prominent in the ventral horn. No nerve terminals/varicosities appeared to contain NESP55 in any spinal lamina. Double-staining experiments revealed that a high proportion of the NESP55-positive neurons were cholinergic. Moreover, NESP55-IR in the motoneurons was evenly distributed in the whole cytoplasm with a finely granular appearance. In contrast, the fluorescent material in the preganglionic neurons was concentrated in the perinuclear region and largely overlapped with the trans-Golgi network marker TGN38. Our data provide detailed morphological information on the distribution of NESP55-IR in the rat spinal cord. Also, the differential intracellular expression of NESP55-IR in the spinal motoneurons and autonomic neurons suggests that NESP55 may be processed into different secretory granules and may be involved in both constitutive and regulated pathways in these neurons.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Neuronas/metabolismo , Médula Espinal/metabolismo , Acetilcolina/metabolismo , Animales , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/metabolismo , Axones/metabolismo , Axones/ultraestructura , Cromograninas , Citoplasma/metabolismo , Citoplasma/ultraestructura , Femenino , Inmunohistoquímica , Interneuronas/citología , Interneuronas/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Neuronas/citología , Neurosecreción/fisiología , Ratas , Ratas Sprague-Dawley , Vesículas Secretoras/metabolismo , Vesículas Secretoras/ultraestructura , Médula Espinal/citología
19.
Brain Res Rev ; 53(1): 39-62, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16872680

RESUMEN

Over the last five decades, several neuropeptides have been discovered which subsequently have been found to be highly conserved during evolution, to be widely distributed both in the central and peripheral nervous system and which act as neurotransmitters and/or neuromodulators. In the eye, the first peptide to be explored was substance P which was reported to be present in the retina but also in peripherally innervated tissues of the eye. Substance P is certainly the best characterized peptide which has been found in sensory neurons innervating the eye. Functionally, it has been shown to act trophically on corneal wound healing and to participate in the irritative response in lower mammals, a model for neurogenic inflammation, where it mediates the noncholinergic nonadrenergic contraction of the sphincter muscle. Over the last three decades, the interest has extended to investigate the presence and distribution of other neuropeptides including calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, pituitary adenylate cyclase-activating polypeptides, cholecystokinin, somatostatin, neuronal nitric oxide, galanin, neurokinin A or secretoneurin and important functional results have been obtained for these peptides. This review focuses on summarizing the current knowledge about neuropeptides in the eye excluding the retina and retinal pigment epithelium and to elucidate their potential functional significance.


Asunto(s)
Sistema Nervioso Autónomo/metabolismo , Ojo/inervación , Ojo/metabolismo , Neuropéptidos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Sistema Nervioso Autónomo/citología , Sistema Nervioso Autónomo/fisiopatología , Ojo/fisiopatología , Oftalmopatías/metabolismo , Oftalmopatías/fisiopatología , Humanos , Sistema Nervioso Parasimpático/citología , Sistema Nervioso Parasimpático/metabolismo , Sistema Nervioso Parasimpático/fisiopatología , Receptores de Neuropéptido/metabolismo , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiopatología , Sistema Nervioso Simpático/citología , Sistema Nervioso Simpático/metabolismo , Sistema Nervioso Simpático/fisiopatología
20.
Lab Chip ; 18(5): 714-722, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29297916

RESUMEN

We present an experimental system of networks of coupled non-linear chemical reactors, which we theoretically model within a reaction-diffusion framework. The networks consist of patterned arrays of diffusively coupled nanoliter-scale reactors containing the Belousov-Zhabotinsky (BZ) reaction. Microfluidic fabrication techniques are developed that provide the ability to vary the network topology and the reactor coupling strength and offer the freedom to choose whether an arbitrary reactor is inhibitory or excitatory coupled to its neighbor. This versatile experimental and theoretical framework can be used to create a wide variety of chemical networks. Here we design, construct and characterize chemical networks that achieve the complexity of central pattern generators (CPGs), which are found in the autonomic nervous system of a variety of organisms.


Asunto(s)
Sistema Nervioso Autónomo/citología , Difusión , Técnicas Analíticas Microfluídicas , Redes Neurales de la Computación , Ingeniería de Tejidos , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda