Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.339
Filtrar
Más filtros

Publication year range
1.
Cell ; 186(24): 5375-5393.e25, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37995657

RESUMEN

Itch is an unpleasant sensation that evokes a desire to scratch. The skin barrier is constantly exposed to microbes and their products. However, the role of microbes in itch generation is unknown. Here, we show that Staphylococcus aureus, a bacterial pathogen associated with itchy skin diseases, directly activates pruriceptor sensory neurons to drive itch. Epicutaneous S. aureus exposure causes robust itch and scratch-induced damage. By testing multiple isogenic bacterial mutants for virulence factors, we identify the S. aureus serine protease V8 as a critical mediator in evoking spontaneous itch and alloknesis. V8 cleaves proteinase-activated receptor 1 (PAR1) on mouse and human sensory neurons. Targeting PAR1 through genetic deficiency, small interfering RNA (siRNA) knockdown, or pharmacological blockade decreases itch and skin damage caused by V8 and S. aureus exposure. Thus, we identify a mechanism of action for a pruritogenic bacterial factor and demonstrate the potential of inhibiting V8-PAR1 signaling to treat itch.


Asunto(s)
Péptido Hidrolasas , Prurito , Receptor PAR-1 , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Ratones , Péptido Hidrolasas/metabolismo , Prurito/microbiología , Receptor PAR-1/metabolismo , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología
2.
Cell ; 162(5): 1113-26, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317473

RESUMEN

The RNA-guided DNA endonuclease Cas9 cleaves double-stranded DNA targets with a protospacer adjacent motif (PAM) and complementarity to the guide RNA. Recently, we harnessed Staphylococcus aureus Cas9 (SaCas9), which is significantly smaller than Streptococcus pyogenes Cas9 (SpCas9), to facilitate efficient in vivo genome editing. Here, we report the crystal structures of SaCas9 in complex with a single guide RNA (sgRNA) and its double-stranded DNA targets, containing the 5'-TTGAAT-3' PAM and the 5'-TTGGGT-3' PAM, at 2.6 and 2.7 Å resolutions, respectively. The structures revealed the mechanism of the relaxed recognition of the 5'-NNGRRT-3' PAM by SaCas9. A structural comparison of SaCas9 with SpCas9 highlighted both structural conservation and divergence, explaining their distinct PAM specificities and orthologous sgRNA recognition. Finally, we applied the structural information about this minimal Cas9 to rationally design compact transcriptional activators and inducible nucleases, to further expand the CRISPR-Cas9 genome editing toolbox.


Asunto(s)
Proteínas Bacterianas/química , Staphylococcus aureus/enzimología , Secuencia de Aminoácidos , Sistemas CRISPR-Cas , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Ingeniería Genética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo , Alineación de Secuencia , Streptococcus pyogenes/enzimología
3.
Cell ; 161(3): 501-512, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25865481

RESUMEN

Mycobacterium tuberculosis and Staphylococcus aureus secrete virulence factors via type VII protein secretion (T7S), a system that intriguingly requires all of its secretion substrates for activity. To gain insights into T7S function, we used structural approaches to guide studies of the putative translocase EccC, a unique enzyme with three ATPase domains, and its secretion substrate EsxB. The crystal structure of EccC revealed that the ATPase domains are joined by linker/pocket interactions that modulate its enzymatic activity. EsxB binds via its signal sequence to an empty pocket on the C-terminal ATPase domain, which is accompanied by an increase in ATPase activity. Surprisingly, substrate binding does not activate EccC allosterically but, rather, by stimulating its multimerization. Thus, the EsxB substrate is also an integral T7S component, illuminating a mechanism that helps to explain interdependence of substrates, and suggests a model in which binding of substrates modulates their coordinate release from the bacterium.


Asunto(s)
Actinobacteria/enzimología , Sistemas de Secreción Bacterianos , Actinobacteria/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/patogenicidad , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidad , Factores de Virulencia/química
4.
Nature ; 613(7943): 375-382, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599987

RESUMEN

Broad-spectrum ß-lactam antibiotic resistance in Staphylococcus aureus is a global healthcare burden1,2. In clinical strains, resistance is largely controlled by BlaR13, a receptor that senses ß-lactams through the acylation of its sensor domain, inducing transmembrane signalling and activation of the cytoplasmic-facing metalloprotease domain4. The metalloprotease domain has a role in BlaI derepression, inducing blaZ (ß-lactamase PC1) and mecA (ß-lactam-resistant cell-wall transpeptidase PBP2a) expression3-7. Here, overcoming hurdles in isolation, we show that BlaR1 cleaves BlaI directly, as necessary for inactivation, with no requirement for additional components as suggested previously8. Cryo-electron microscopy structures of BlaR1-the wild type and an autocleavage-deficient F284A mutant, with or without ß-lactam-reveal a domain-swapped dimer that we suggest is critical to the stabilization of the signalling loops within. BlaR1 undergoes spontaneous autocleavage in cis between Ser283 and Phe284 and we describe the catalytic mechanism and specificity underlying the self and BlaI cleavage. The structures suggest that allosteric signalling emanates from ß-lactam-induced exclusion of the prominent extracellular loop bound competitively in the sensor-domain active site, driving subsequent dynamic motions, including a shift in the sensor towards the membrane and accompanying changes in the zinc metalloprotease domain. We propose that this enhances the expulsion of autocleaved products from the active site, shifting the equilibrium to a state that is permissive of efficient BlaI cleavage. Collectively, this study provides a structure of a two-component signalling receptor that mediates action-in this case, antibiotic resistance-through the direct cleavage of a repressor.


Asunto(s)
Antibacterianos , Staphylococcus aureus , Resistencia betalactámica , beta-Lactamas , Humanos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Resistencia betalactámica/efectos de los fármacos , beta-Lactamas/química , beta-Lactamas/farmacología , Microscopía por Crioelectrón , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo
5.
Mol Cell ; 81(4): 756-766.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33472056

RESUMEN

Bacillus subtilis structural maintenance of chromosomes (SMC) complexes are topologically loaded at centromeric sites adjacent to the replication origin by the partitioning protein ParB. These ring-shaped ATPases then translocate down the left and right chromosome arms while tethering them together. Here, we show that the site-specific recombinase XerD, which resolves chromosome dimers, is required to unload SMC tethers when they reach the terminus. We identify XerD-specific binding sites in the terminus region and show that they dictate the site of unloading in a manner that depends on XerD but not its catalytic residue, its partner protein XerC, or the recombination site dif. Finally, we provide evidence that ParB and XerD homologs perform similar functions in Staphylococcus aureus. Thus, two broadly conserved factors that act at the origin and terminus have second functions in loading and unloading SMC complexes that travel between them.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/metabolismo , Integrasas/metabolismo , Staphylococcus aureus/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Primasa/genética , ADN Primasa/metabolismo , Integrasas/genética , Staphylococcus aureus/genética
6.
Mol Cell ; 73(2): 278-290.e4, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30503774

RESUMEN

Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.


Asunto(s)
Autoinmunidad , Proteínas Bacterianas/inmunología , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ARN Bacteriano/inmunología , Autotolerancia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/inmunología , Cinética , Microscopía Fluorescente , Mutación , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Transducción de Señal , Imagen Individual de Molécula/métodos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus epidermidis/enzimología , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/inmunología , Relación Estructura-Actividad
7.
Proc Natl Acad Sci U S A ; 121(36): e2321939121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39186649

RESUMEN

Developing an effective Staphylococcus aureus (S. aureus) vaccine has been a challenging endeavor, as demonstrated by numerous failed clinical trials over the years. In this study, we formulated a vaccine containing a highly conserved moonlighting protein, the pyruvate dehydrogenase complex E2 subunit (PDHC), and showed that it induced strong protective immunity against epidemiologically relevant staphylococcal strains in various murine disease models. While antibody responses contributed to bacterial control, they were not essential for protective immunity in the bloodstream infection model. Conversely, vaccine-induced systemic immunity relied on γδ T cells. It has been suggested that prior S. aureus exposure may contribute to the reduction of vaccine efficacy. However, PDHC-induced protective immunity still facilitated bacterial clearance in mice previously exposed to S. aureus. Collectively, our findings indicate that PDHC is a promising serotype-independent vaccine candidate effective against both methicillin-sensitive and methicillin-resistant S. aureus isolates.


Asunto(s)
Infecciones Estafilocócicas , Vacunas Estafilocócicas , Staphylococcus aureus , Animales , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Ratones , Staphylococcus aureus/inmunología , Staphylococcus aureus/enzimología , Vacunas Estafilocócicas/inmunología , Complejo Piruvato Deshidrogenasa/metabolismo , Complejo Piruvato Deshidrogenasa/inmunología , Femenino , Anticuerpos Antibacterianos/inmunología , Modelos Animales de Enfermedad , Humanos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Ratones Endogámicos C57BL , Staphylococcus aureus Resistente a Meticilina/inmunología , Piruvato Deshidrogenasa (Lipoamida)/inmunología , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Piruvato Deshidrogenasa (Lipoamida)/genética
8.
PLoS Genet ; 20(8): e1011349, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39088561

RESUMEN

Cellular processes require precise and specific gene regulation, in which continuous mRNA degradation is a major element. The mRNA degradation mechanisms should be able to degrade a wide range of different RNA substrates with high efficiency, but should at the same time be limited, to avoid killing the cell by elimination of all cellular RNA. RNase Y is a major endoribonuclease found in most Firmicutes, including Bacillus subtilis and Staphylococcus aureus. However, the molecular interactions that direct RNase Y to cleave the correct RNA molecules at the correct position remain unknown. In this work we have identified transcripts that are homologs in S. aureus and B. subtilis, and are RNase Y targets in both bacteria. Two such transcript pairs were used as models to show a functional overlap between the S. aureus and the B. subtilis RNase Y, which highlighted the importance of the nucleotide sequence of the RNA molecule itself in the RNase Y targeting process. Cleavage efficiency is driven by the primary nucleotide sequence immediately downstream of the cleavage site and base-pairing in a secondary structure a few nucleotides downstream. Cleavage positioning is roughly localised by the downstream secondary structure and fine-tuned by the nucleotide immediately upstream of the cleavage. The identified elements were sufficient for RNase Y-dependent cleavage, since the sequence elements from one of the model transcripts were able to convert an exogenous non-target transcript into a target for RNase Y.


Asunto(s)
Bacillus subtilis , Regulación Bacteriana de la Expresión Génica , División del ARN , Estabilidad del ARN , ARN Bacteriano , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/enzimología , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Conformación de Ácido Nucleico , Secuencia de Bases
9.
Mol Cell ; 70(1): 60-71.e15, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29606590

RESUMEN

Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Fidaxomicina/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Diseño de Fármacos , Farmacorresistencia Bacteriana/genética , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/ultraestructura , Fidaxomicina/química , Fidaxomicina/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Modelos Moleculares , Mutación , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestructura , Unión Proteica , Conformación Proteica , Imagen Individual de Molécula , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Relación Estructura-Actividad
10.
Nucleic Acids Res ; 52(14): 8241-8253, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38869061

RESUMEN

Pathogenic bacteria employ complex systems to cope with metal ion shortage conditions and propagate in the host. IsrR is a regulatory RNA (sRNA) whose activity is decisive for optimum Staphylococcus aureus fitness upon iron starvation and for full virulence. IsrR down-regulates several genes encoding iron-containing enzymes to spare iron for essential processes. Here, we report that IsrR regulates the tricarboxylic acid (TCA) cycle by controlling aconitase (CitB), an iron-sulfur cluster-containing enzyme, and its transcriptional regulator, CcpE. This IsrR-dependent dual-regulatory mechanism provides an RNA-driven feedforward loop, underscoring the tight control required to prevent aconitase expression. Beyond its canonical enzymatic role, aconitase becomes an RNA-binding protein with regulatory activity in iron-deprived conditions, a feature that is conserved in S. aureus. Aconitase not only negatively regulates its own expression, but also impacts the enzymes involved in both its substrate supply and product utilization. This moonlighting activity concurrently upregulates pyruvate carboxylase expression, allowing it to compensate for the TCA cycle deficiency associated with iron scarcity. These results highlight the cascade of complex posttranscriptional regulations controlling S. aureus central metabolism in response to iron deficiency.


Asunto(s)
Aconitato Hidratasa , Proteínas Bacterianas , Ciclo del Ácido Cítrico , Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus , Aconitato Hidratasa/metabolismo , Aconitato Hidratasa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hierro/metabolismo , Deficiencias de Hierro , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Pequeño no Traducido/metabolismo , ARN Pequeño no Traducido/genética , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/enzimología
11.
Nucleic Acids Res ; 52(15): 8998-9013, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979572

RESUMEN

The hibernation-promoting factor (Hpf) in Staphylococcus aureus binds to 70S ribosomes and induces the formation of the 100S complex (70S dimer), leading to translational avoidance and occlusion of ribosomes from RNase R-mediated degradation. Here, we show that the 3'-5' exoribonuclease YhaM plays a previously unrecognized role in modulating ribosome stability. Unlike RNase R, which directly degrades the 16S rRNA of ribosomes in S. aureus cells lacking Hpf, YhaM destabilizes ribosomes by indirectly degrading the 3'-hpf mRNA that carries an intrinsic terminator. YhaM adopts an active hexameric assembly and robustly cleaves ssRNA in a manganese-dependent manner. In vivo, YhaM appears to be a low-processive enzyme, trimming the hpf mRNA by only 1 nucleotide. Deletion of yhaM delays cell growth. These findings substantiate the physiological significance of this cryptic enzyme and the protective role of Hpf in ribosome integrity, providing a mechanistic understanding of bacterial ribosome turnover.


Asunto(s)
Proteínas Bacterianas , Exorribonucleasas , ARN Mensajero , Proteínas Ribosómicas , Ribosomas , Staphylococcus aureus , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Ribosomas/metabolismo , Ribosomas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Staphylococcus aureus/genética , Staphylococcus aureus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Estabilidad del ARN/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
12.
J Biol Chem ; 300(2): 105627, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211817

RESUMEN

The soluble flavoprotein oleate hydratase (OhyA) hydrates the 9-cis double bond of unsaturated fatty acids. OhyA substrates are embedded in membrane bilayers; OhyA must remove the fatty acid from the bilayer and enclose it in the active site. Here, we show that the positively charged helix-turn-helix motif in the carboxy terminus (CTD) is responsible for interacting with the negatively charged phosphatidylglycerol (PG) bilayer. Super-resolution microscopy of Staphylococcus aureus cells expressing green fluorescent protein fused to OhyA or the CTD sequence shows subcellular localization along the cellular boundary, indicating OhyA is membrane-associated and the CTD sequence is sufficient for membrane recruitment. Using cryo-electron microscopy, we solved the OhyA dimer structure and conducted 3D variability analysis of the reconstructions to assess CTD flexibility. Our surface plasmon resonance experiments corroborated that OhyA binds the PG bilayer with nanomolar affinity and we found the CTD sequence has intrinsic PG binding properties. We determined that the nuclear magnetic resonance structure of a peptide containing the CTD sequence resembles the OhyA crystal structure. We observed intermolecular NOE from PG liposome protons next to the phosphate group to the CTD peptide. The addition of paramagnetic MnCl2 indicated the CTD peptide binds the PG surface but does not insert into the bilayer. Molecular dynamics simulations, supported by site-directed mutagenesis experiments, identify key residues in the helix-turn-helix that drive membrane association. The data show that the OhyA CTD binds the phosphate layer of the PG surface to obtain bilayer-embedded unsaturated fatty acids.


Asunto(s)
Ácido Oléico , Péptidos , Staphylococcus aureus , Microscopía por Crioelectrón , Ácidos Grasos Insaturados , Membrana Dobles de Lípidos/metabolismo , Fosfatos , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
13.
J Biol Chem ; 300(6): 107404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782204

RESUMEN

Infectious diseases are a significant cause of death, and recent studies estimate that common bacterial infectious diseases were responsible for 13.6% of all global deaths in 2019. Among the most significant bacterial pathogens is Staphylococcus aureus, accounting for more than 1.1 million deaths worldwide in 2019. Vitamin biosynthesis has been proposed as a promising target for antibacterial therapy. Here, we investigated the biochemical, structural, and dynamic properties of the enzyme complex responsible for vitamin B6 (pyridoxal 5-phosphate, PLP) biosynthesis in S. aureus, which comprises enzymes SaPdx1 and SaPdx2. The crystal structure of the 24-mer complex of SaPdx1-SaPdx2 enzymes indicated that the S. aureus PLP synthase complex forms a highly dynamic assembly with transient interaction between the enzymes. Solution scattering data indicated that SaPdx2 typically binds to SaPdx1 at a substoichiometric ratio. We propose a structure-based view of the PLP synthesis mechanism initiated with the assembly of SaPLP synthase complex that proceeds in a highly dynamic interaction between Pdx1 and Pdx2. This interface interaction can be further explored as a potentially druggable site for the design of new antibiotics.


Asunto(s)
Proteínas Bacterianas , Fosfato de Piridoxal , Staphylococcus aureus , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Conformación Proteica , Unión Proteica
14.
J Biol Chem ; 300(9): 107627, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098536

RESUMEN

Staphylococcus aureus expresses three high-affinity neutrophil serine protease (NSP) inhibitors known as the extracellular adherence protein domain (EAPs) proteins. Whereas EapH1 and EapH2 are comprised of a single EAP domain, the modular extracellular adherence protein (Eap) from S. aureus strain Mu50 consists of four EAP domains. We recently reported that EapH2 can simultaneously bind and inhibit cathepsin-G (CG) and neutrophil elastase (NE), which are the two most abundant NSPs. This unusual property of EapH2 arises from independent CG and NE-binding sites that lie on opposing faces of its EAP domain. Here we used X-ray crystallography and enzyme assays to show that all four individual domains of Eap (i.e. Eap1, Eap2, Eap3, and Eap4) exhibit an EapH2-like ability to form ternary complexes with CG and NE that inhibit both enzymes simultaneously. We found that Eap1, Eap2, and Eap3 have similar functional profiles insofar as NSP inhibition is concerned but that Eap4 displays an unexpected ability to inhibit two NE enzymes simultaneously. Using X-ray crystallography, we determined that this second NE-binding site in Eap4 arises through the same region of its EAP domain that also comprises its CG-binding site. Interestingly, small angle X-ray scattering data showed that stable tail-to-tail dimers of the NE/Eap4/NE ternary complex exist in solution. This arrangement is compatible with NSP-binding at all available sites in a two-domain fragment of Eap. Together, our work implies that Eap is a polyvalent inhibitor of NSPs. It also raises the possibility that higher-order structures of NSP-bound Eap may have unique functional properties.


Asunto(s)
Proteínas Bacterianas , Elastasa de Leucocito , Inhibidores de Serina Proteinasa , Staphylococcus aureus , Humanos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Sitios de Unión , Catepsina G/metabolismo , Catepsina G/química , Catepsina G/antagonistas & inhibidores , Cristalografía por Rayos X , Elastasa de Leucocito/metabolismo , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/química , Neutrófilos/metabolismo , Neutrófilos/enzimología , Unión Proteica , Dominios Proteicos , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo , Staphylococcus aureus/enzimología
15.
Mol Microbiol ; 121(5): 865-881, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38366323

RESUMEN

In the human pathogen Staphylococcus aureus, branched-chain fatty acids (BCFAs) are the most abundant fatty acids in membrane phospholipids. Strains deficient for BCFAs synthesis experience auxotrophy in laboratory culture and attenuated virulence during infection. Furthermore, the membrane of S. aureus is among the main targets for antibiotic therapy. Therefore, determining the mechanisms involved in BCFAs synthesis is critical to manage S. aureus infections. Here, we report that the overexpression of SAUSA300_2542 (annotated to encode an acyl-CoA synthetase) restores BCFAs synthesis in strains lacking the canonical biosynthetic pathway catalyzed by the branched-chain α-keto acid dehydrogenase (BKDH) complex. We demonstrate that the acyl-CoA synthetase activity of MbcS activates branched-chain carboxylic acids (BCCAs), and is required by S. aureus to utilize the isoleucine derivative 2-methylbutyraldehyde to restore BCFAs synthesis in S. aureus. Based on the ability of some staphylococci to convert branched-chain aldehydes into their respective BCCAs and our findings demonstrating that branched-chain aldehydes are in fact BCFAs precursors, we propose that MbcS promotes the scavenging of exogenous BCCAs and mediates BCFA synthesis via a de novo alternative pathway.


Asunto(s)
Coenzima A Ligasas , Ácidos Grasos , Staphylococcus aureus , Aldehídos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Vías Biosintéticas , Ácidos Carboxílicos/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/enzimología
16.
Mol Cell ; 65(1): 168-175, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28017588

RESUMEN

CRISPR loci and their associated (Cas) proteins encode a prokaryotic immune system that protects against viruses and plasmids. Upon infection, a low fraction of cells acquire short DNA sequences from the invader. These sequences (spacers) are integrated in between the repeats of the CRISPR locus and immunize the host against the matching invader. Spacers specify the targets of the CRISPR immune response through transcription into short RNA guides that direct Cas nucleases to the invading DNA molecules. Here we performed random mutagenesis of the RNA-guided Cas9 nuclease to look for variants that provide enhanced immunity against viral infection. We identified a mutation, I473F, that increases the rate of spacer acquisition by more than two orders of magnitude. Our results highlight the role of Cas9 during CRISPR immunization and provide a useful tool to study this rare process and develop it as a biotechnological application.


Asunto(s)
Inmunidad Adaptativa , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Intergénico/genética , ADN Viral/genética , Endonucleasas/genética , Mutación , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Proteína 9 Asociada a CRISPR , Proteínas Asociadas a CRISPR/inmunología , Proteínas Asociadas a CRISPR/metabolismo , ADN Intergénico/inmunología , ADN Intergénico/metabolismo , ADN Viral/inmunología , ADN Viral/metabolismo , Endonucleasas/inmunología , Endonucleasas/metabolismo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Fenotipo , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología , Especificidad por Sustrato , Factores de Tiempo
17.
Nucleic Acids Res ; 51(8): 3903-3917, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37014013

RESUMEN

The RNA-guided Cas9 endonuclease from Staphylococcus aureus (SauCas9) can catalyze multiple-turnover reactions whereas Cas9 from Streptococcus pyogenes (SpyCas9) is a single-turnover enzyme. Here we dissect the mechanism of multiple-turnover catalysis by SauCas9 and elucidate its molecular basis. We show that the multiple-turnover catalysis does not require more than stoichiometric RNA guides to Cas9 nuclease. Rather, the RNA-guide loaded ribonucleoprotein (RNP) is the reactive unity that is slowly released from product and recycled in the subsequent reaction. The mechanism that RNP is recycled for multiple-turnover reaction entails the unwinding of the RNA:DNA duplex in the R-loop. We argue that DNA rehybridization is required for RNP release by supplementing the energy cost in the process. Indeed, turnover is arrested when DNA rehybridization is suppressed. Further, under higher salt conditions, both SauCas9 and SpyCas9 showed increased turnover, and engineered SpyCas9 nucleases that form fewer direct or hydrogen bonding interactions with target DNA became multiple-turnover enzymes. Thus, these results indicate that for both SpyCas9 and SauCas9, turnover is determined by the energetic balance of the post-chemistry RNP-DNA interaction. Due to the conserved protein core folds, the mechanism underpinning turnover we establish here is likely operant in all Cas9 nucleases.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Proteína 9 Asociada a CRISPR/metabolismo , ADN/química , División del ADN , Edición Génica/métodos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Streptococcus pyogenes/enzimología , Staphylococcus aureus/enzimología
18.
J Bacteriol ; 206(5): e0004824, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712944

RESUMEN

Whole genome sequencing has revealed that the genome of Staphylococcus aureus possesses an uncharacterized 5-gene operon (SAOUHSC_00088-00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus as ssc for staphylococcal surface carbohydrate. We found that the ssc genes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed in Escherichia coli and extracted by heat treatment. Ssc was also conjugated to AcrA from Campylobacter jejuni in E. coli using protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting of N-acetylgalactosamine. We further demonstrated that the expression of the ssc genes in S. aureus affected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCE: Surface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens. Staphylococcus aureus produces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide in S. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.


Asunto(s)
Polisacáridos Bacterianos , Staphylococcus aureus , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/metabolismo , Acetilgalactosamina/análisis , Operón , Escherichia coli/genética , Expresión Génica , Pared Celular/química
19.
J Struct Biol ; 216(3): 108116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39151742

RESUMEN

Oleate hydratase (OhyA) is a bacterial peripheral membrane protein that catalyzes FAD-dependent water addition to membrane bilayer-embedded unsaturated fatty acids. The opportunistic pathogen Staphylococcus aureus uses OhyA to counteract the innate immune system and support colonization. Many Gram-positive and Gram-negative bacteria in the microbiome also encode OhyA. OhyA is a dimeric flavoenzyme whose carboxy terminus is identified as the membrane binding domain; however, understanding how OhyA binds to cellular membranes is not complete until the membrane-bound structure has been elucidated. All available OhyA structures depict the solution state of the protein outside its functional environment. Here, we employ liposomes to solve the cryo-electron microscopy structure of the functional unit: the OhyA•membrane complex. The protein maintains its structure upon membrane binding and slightly alters the curvature of the liposome surface. OhyA preferentially associates with 20-30 nm liposomes with multiple copies of OhyA dimers assembling on the liposome surface resulting in the formation of higher-order oligomers. Dimer assembly is cooperative and extends along a formed ridge of the liposome. We also solved an OhyA dimer of dimers structure that recapitulates the intermolecular interactions that stabilize the dimer assembly on the membrane bilayer as well as the crystal contacts in the lattice of the OhyA crystal structure. Our work enables visualization of the molecular trajectory of membrane binding for this important interfacial enzyme.


Asunto(s)
Microscopía por Crioelectrón , Membrana Dobles de Lípidos , Liposomas , Staphylococcus aureus , Microscopía por Crioelectrón/métodos , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Liposomas/química , Liposomas/metabolismo , Staphylococcus aureus/enzimología , Fosfolípidos/metabolismo , Fosfolípidos/química , Hidroliasas/química , Hidroliasas/metabolismo , Hidroliasas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Modelos Moleculares , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Membrana Celular/metabolismo
20.
J Biol Chem ; 299(5): 104648, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965616

RESUMEN

IsdG-type enzymes catalyze the noncanonical degradation of heme to iron, staphylobilin (SB), and formaldehyde (HCHO), presumably by binding heme in an unusually distorted conformation. Their unique mechanism has been elucidated for MhuD from Mycobacterium tuberculosis, revealing an unusual ring opening of hydroxyheme by dioxygenation. A similar mechanism has been postulated for other IsdG enzymes; however, MhuD, which is special as an IsdG-type enzyme, retains a formyl group in the linearized tetrapyrrole. Recent reports on Staphylococcus aureus IsdG have suggested the formation of SB retaining a formyl group (formyl-SB), but its identification is preliminary. Furthermore, the reaction properties of formyl-SB and the mechanism of HCHO release remain unclear. In this study, the complex reaction of S. aureus IsdG was reexamined to elucidate its mechanism, including the identification of reaction products and their control mechanisms. Depending on the reaction conditions, IsdG produced both SB and formyl-SB as the main product, the latter of which was isolated and characterized by MS and NMR measurements. The formyl-SB product was generated upon the reaction between hydroxyheme-IsdG and O2 without reduction, indicating the dioxygenation mechanism as found for MhuD. Under reducing conditions, hydroxyheme-IsdG was converted also to SB and HCHO by activating another O2 molecule. These results provide the first overview of the complicated IsdG reaction. The heme distortion in the IsdG-type enzymes is shown to generally promote ring cleavage by dioxygenation. The presence or absence of HCHO release can be influenced by many factors, and the direct identification of S. aureus heme catabolites is of interest.


Asunto(s)
Formaldehído , Hemo Oxigenasa (Desciclizante) , Hemo , Staphylococcus aureus , Catálisis , Formaldehído/metabolismo , Hemo/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Staphylococcus aureus/enzimología , Mycobacterium tuberculosis/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda