Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Colección SES
Publication year range
1.
Med Res Rev ; 44(1): 23-65, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37246889

RESUMEN

Cytokines are compounds that belong to a special class of signaling biomolecules that are responsible for several functions in the human body, being involved in cell growth, inflammatory, and neoplastic processes. Thus, they represent valuable biomarkers for diagnosing and drug therapy monitoring certain medical conditions. Because cytokines are secreted in the human body, they can be detected in both conventional samples, such as blood or urine, but also in samples less used in medical practice such as sweat or saliva. As the importance of cytokines was identified, various analytical methods for their determination in biological fluids were reported. The gold standard in cytokine detection is considered the enzyme-linked immunosorbent assay method and the most recent ones have been considered and compared in this study. It is known that the conventional methods are accompanied by a few disadvantages that new methods of analysis, especially electrochemical sensors, are trying to overcome. Electrochemical sensors proved to be suited for the elaboration of integrated, portable, and wearable sensing devices, which could also facilitate cytokines determination in medical practice.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Saliva/química , Técnicas Biosensibles/métodos
2.
Thorax ; 79(9): 834-841, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39004507

RESUMEN

BACKGROUND: Diagnosing cystic fibrosis (CF) is not always straightforward, in particular when sweat chloride concentration (SCC) is intermediate and <2 CF-causing CFTR variants are identified. The physiological CFTR assays proposed in the guidelines, nasal potential difference and intestinal current measurement, are not readily available nor feasible at all ages. Rectal organoid morphology analysis (ROMA) was previously shown to discriminate between organoids from subjects with and without CF based on a distinct phenotypical difference: compared with non-CF organoids, CF organoids have an irregular shape and lack a visible lumen. The current study serves to further explore the role of ROMA when a CF diagnosis is inconclusive. METHODS: Organoid morphology was analysed using the previously established ROMA protocol. Two indices were calculated: the circularity index to quantify the roundness of organoids and the intensity ratio as a measure of the presence of a central lumen. RESULTS: Rectal organoids from 116 subjects were cultured and analysed together with the 189 subjects from the previous study. ROMA almost completely discriminated between CF and non-CF. ROMA indices correlated with SCC, pancreatic status and genetics, demonstrating convergent validity. For cases with an inconclusive diagnosis according to current guidelines, ROMA provided additional diagnostic information, with a diagnostic ROMA classification for 18 of 24 (75%). DISCUSSION: ROMA provides additional information to support a CF diagnosis when SCC and genetics are insufficient for diagnostic classification. ROMA is standardised and can be centralised, allowing future inclusion in the diagnostic work-up as first-choice physiological assay in case of an unclear diagnosis.


Asunto(s)
Fibrosis Quística , Organoides , Recto , Humanos , Fibrosis Quística/patología , Fibrosis Quística/diagnóstico , Organoides/patología , Recto/patología , Masculino , Femenino , Niño , Adolescente , Adulto , Adulto Joven , Preescolar , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Sudor/química
3.
Anal Chem ; 96(12): 4997-5005, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483157

RESUMEN

In the realm of clinical practice, the concurrent utilization of anticancer medications can enhance their overall therapeutic efficacy. However, it is crucial to acknowledge that the interactions among these anticancer drugs can potentially yield detrimental consequences on their intended outcomes. Consequently, the assessment of both anticancer potency and potential toxic side effects is greatly refined when multiple anticancer drugs are simultaneously detected and evaluated. Here, we designed a wearable electrochemical aptasensor array for monitoring multiple anticancer drugs in sweat. The integrated sensor array consists of three working electrodes modified with three different aptamers (Apt1, Apt2, and Apt3), a Au counter electrode, and a Ag/AgCl reference electrode. Molecular docking simulations were performed to show the binding affinities between three anticancer drugs and their corresponding aptamers. Various eigenvalues were derived from the square-wave voltammetry electrochemical signals, and these data sets were subjected to rigorous analysis through multivariate data analysis techniques. This analytical approach demonstrated exceptional performance by achieving flawless 100% accuracy in the precise identification of nine anticancer drugs consistently at uniform concentrations. Furthermore, the integrated wearable sensor array exhibited impressive capabilities, correctly recognizing all nine anticancer drugs with 100% accuracy and successfully distinguishing between these drugs in artificial sweat samples. The proposed sensor array presents good stability for 15 days. Flexibility tests showed stable device performance after 500 twisting cycles. This innovative wearable sensing array represents a novel approach for achieving real-time monitoring and precise adjustment of drug dosages. It offers invaluable insights for tailoring the treatment of anticancer drugs to individual patients, predicting both drug efficacy and potential adverse reactions within the field of clinical medicine.


Asunto(s)
Técnicas Biosensibles , Sudor , Humanos , Sudor/química , Simulación del Acoplamiento Molecular , Electrodos , Oligonucleótidos/análisis , Técnicas Electroquímicas
4.
Anal Chem ; 96(9): 3914-3924, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38387027

RESUMEN

Wearable, noninvasive sensors enable the continuous monitoring of metabolites in sweat and provide clinical information related to an individual's health and disease states. Uric acid (UA) is a key indicator highly associated with gout, hyperuricaemia, hypertension, kidney disease, and Lesch-Nyhan syndrome. However, the detection of UA levels typically relies on invasive blood tests. Therefore, developing a wearable device for noninvasive monitoring of UA concentrations in sweat could facilitate real-time personalized disease prevention. Here, we introduce 1,3,6,8-pyrene tetrasulfonic acid sodium salt (PyTS) as a bifunctional molecule functionalized with Ti3C2Tx via π-π conjugation to design nonenzymatic wearable sensors for sensitive and selective detection of UA concentration in human sweat. PyTS@Ti3C2Tx provides many oxidation-reduction active groups to enhance the electrocatalytic ability of the UA oxidation reaction. The PyTS@Ti3C2Tx-based electrochemical sensor demonstrates highly sensitive detection of UA in the concentration range of 5 µM-100 µM, exhibiting a lower detection limit of 0.48 µM compared to the uricase-based sensor (0.84 µM). In volunteers, the PyTS@Ti3C2Tx-based wearable sensor is integrated with flexible microfluidic sweat sampling and wireless electronics to enable real-time monitoring of UA levels during aerobic exercise. Simultaneously, it allows for comparison of blood UA levels via a commercial UA analyzer. Herein, this study provides a promising electrocatalyst strategy for nonenzymatic electrochemical UA sensor, enabling noninvasive real-time monitoring of UA levels in human sweat and personalized disease prevention.


Asunto(s)
Técnicas Biosensibles , Nitritos , Elementos de Transición , Dispositivos Electrónicos Vestibles , Humanos , Ácido Úrico/análisis , Titanio/análisis , Sudor/química
5.
Anal Chem ; 96(33): 13522-13532, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39110633

RESUMEN

Wearable sweat sensors are reshaping healthcare monitoring, providing real-time data on hydration and electrolyte levels with user-friendly, noninvasive devices. This paper introduces a highly portable two-channel microfluidic device for simultaneous sweat sampling and the real-time detection of volatile organic compound (VOC) biomarkers. This innovative wearable microfluidic system is tailored for monitoring diabetes through the continuous and noninvasive tracking of acetone and ammonia VOCs, and it seamlessly integrates with smartphones for easy data management. The core of this system lies in the utilization of carbon polymer dots (CPDs) and carbon dots (CDs) derived from monomers such as catechol, resorcinol, o-phenylenediamine, urea, and citric acid. These dots are seamlessly integrated into hydrogels made from gelatin and poly(vinyl alcohol), resulting in an advanced solid-state fluorometric sensor coating on a cellulose paper substrate. These sensors exhibit exceptional performance, offering linear detection ranges of 0.05-0.15 ppm for acetone and 0.25-0.37 ppm for ammonia, with notably low detection limits of 0.01 and 0.08 ppm, respectively. Rigorous optimization of operational parameters, encompassing the temperature, sample volume, and assay time, has been undertaken to maximize device performance. Furthermore, these sensors demonstrate impressive selectivity, effectively discerning between biologically similar substances and other potential compounds commonly present in sweat. As this field matures, the prospect of cost-effective, continuous, personalized health monitoring through wearable VOC sensors holds significant potential for overcoming barriers to comprehensive medical care in underserved regions. This highlights the transformative capacity of wearable VOC sweat sensing in ensuring equitable access to advanced healthcare diagnostics, particularly in remote or geographically isolated areas.


Asunto(s)
Diabetes Mellitus , Sudor , Compuestos Orgánicos Volátiles , Dispositivos Electrónicos Vestibles , Humanos , Compuestos Orgánicos Volátiles/análisis , Sudor/química , Diabetes Mellitus/diagnóstico , Acetona/análisis , Puntos Cuánticos/química , Carbono/química , Amoníaco/análisis , Polímeros/química
6.
Anal Chem ; 96(22): 9159-9166, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38726669

RESUMEN

Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.


Asunto(s)
Hidrogeles , Rayos Láser , Piel , Sudor , Dispositivos Electrónicos Vestibles , Humanos , Piel/química , Piel/metabolismo , Hidrogeles/química , Sudor/química , Sudor/metabolismo , Glucosa/análisis , Glucosa/metabolismo , Urea/química , Urea/análisis , Ácido Láctico/análisis , Ácido Láctico/química , Cristales Líquidos/química , Metilgalactósidos
7.
Small ; 20(26): e2311802, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258398

RESUMEN

Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K+) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K+ detection in the sweat. Herein, a wearable K+ sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K+ fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K+ sensor achieved a high sensitivity of 62 mV decade-1, good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K+ fluctuation in the human sweat.


Asunto(s)
Nanofibras , Polímeros , Potasio , Pirroles , Dispositivos Electrónicos Vestibles , Nanofibras/química , Pirroles/química , Polímeros/química , Potasio/química , Potasio/análisis , Humanos , Técnicas Biosensibles/métodos , Electrones , Iones , Sudor/química , Conductividad Eléctrica
8.
Analyst ; 149(3): 958-967, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38197472

RESUMEN

Cortisol hormone imbalances can be detected through non-invasive sweat monitoring using field-effect transistor (FET) biosensors, which provide rapid and sensitive detection. However, challenges like skin compatibility and integration with sweat collection have hindered FET biosensors as wearable sensing platforms. In this study, we present an integrated wearable sticker for real-time cortisol detection based on an extended-gate AlGaN/GaN high electron mobility transistor (HEMT) combined with a soft bottom substrate and flexible channel for sweat collection. The developed devices exhibit excellent linearity (R2 = 0.990) and a high sensitivity of 1.245 µA dec-1 for cortisol sensing from 1 nM to 100 µM in high-ionic-strength solution, with successful cortisol detection demonstrated using authentic human sweat samples. Additionally, the chip's microminiature design effectively reduces bending impact during the wearable process of traditional soft binding sweat sensors. The extendedgate structure design of the HEMT chip enhances both width-to-length ratio and active sensing area, resulting in an exceptionally low detection limit of 100 fM. Futhermore, due to GaN material's inherent stability, this device exhibits long-term stability with sustained performance within a certain attenuation range even after 60 days. These stickers possess small, lightweight, and portable features that enable real-time cortisol detection within 5 minutes through direct sweat collection. The application of this technology holds great potential in the field of personal health management, facilitating users to conveniently monitor their mental and physical conditions.


Asunto(s)
Compuestos de Aluminio , Técnicas Biosensibles , Galio , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Hidrocortisona/análisis , Electrones , Técnicas Biosensibles/métodos
9.
Clin Chem Lab Med ; 62(6): 1118-1125, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38253354

RESUMEN

OBJECTIVES: Urea and creatinine concentrations in plasma are used to guide hemodialysis (HD) in patients with end-stage renal disease (ESRD). To support individualized HD treatment in a home situation, there is a clinical need for a non-invasive and continuous alternative to plasma for biomarker monitoring during and between cycles of HD. In this observational study, we therefore established the correlation of urea and creatinine concentrations between sweat, saliva and plasma in a cohort of ESRD patients on HD. METHODS: Forty HD patients were recruited at the Dialysis Department of the Catharina Hospital Eindhoven. Sweat and salivary urea and creatinine concentrations were analyzed at the start and at the end of one HD cycle and compared to the corresponding plasma concentrations. RESULTS: A decrease of urea concentrations during HD was observed in sweat, from 27.86 mmol/L to 12.60 mmol/L, and saliva, from 24.70 mmol/L to 5.64 mmol/L. Urea concentrations in sweat and saliva strongly correlated with the concentrations in plasma (ρ 0.92 [p<0.001] and 0.94 [p<0.001], respectively). Creatinine concentrations also decreased in sweat from 43.39 µmol/L to 19.69 µmol/L, and saliva, from 59.00 µmol/L to 13.70 µmol/L. However, for creatinine, correlation coefficients were lower than for urea for both sweat and saliva compared to plasma (ρ: 0.58 [p<0.001] and 0.77 [p<0.001], respectively). CONCLUSIONS: The results illustrate a proof of principle of urea measurements in sweat and saliva to monitor HD adequacy in a non-invasive and continuous manner. Biosensors enabling urea monitoring in sweat or saliva could fill in a clinical need to enable at-home HD for more patients and thereby decrease patient burden.


Asunto(s)
Creatinina , Diálisis Renal , Saliva , Sudor , Urea , Humanos , Urea/análisis , Urea/sangre , Saliva/química , Creatinina/sangre , Creatinina/análisis , Sudor/química , Femenino , Masculino , Estudios de Cohortes , Persona de Mediana Edad , Anciano , Fallo Renal Crónico/terapia , Fallo Renal Crónico/sangre , Adulto , Biomarcadores/análisis , Biomarcadores/sangre
10.
Med Sci Monit ; 30: e943321, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38863180

RESUMEN

BACKGROUND This study explored the integration of conductive threads into a microfluidic compact disc (CD), developed using the xurographic method, for a potential sweat biosensing platform. MATERIAL AND METHODS The microfluidic CD platform, fabricated using the xurographic method with PVC films, included venting channels and conductive threads linked to copper electrodes. With distinct microfluidic sets for load and metering, flow control, and measurement, the CD's operation involved spinning for sequential liquid movement. Impedance analysis using HIOKI IM3590 was conducted for saline and artificial sweat solutions on 4 identical CDs, ensuring reliable conductivity and measurements over a 1 kHz to 200 kHz frequency range. RESULTS Significant differences in |Z| values were observed between saline and artificial sweat treatments. 27.5 µL of saline differed significantly from 27.5 µL of artificial sweat, 72.5 µL of saline from 72.5 µL of artificial sweat, and 192.5 µL of saline from 192.5 µL of sweat. Significant disparities in |Z| values were observed between dry fibers and Groups 2, 3, and 4 (varying saline amounts). No significant differences emerged between dry fibers and Groups 6, 7, and 8 (distinct artificial sweat amounts). These findings underscore variations in fiber characteristics between equivalent exposures, emphasizing the nuanced response of the microfluidic CD platform to different liquid compositions. CONCLUSIONS This study shows the potential of integrating conductive threads in a microfluidic CD platform for sweat sensing. Challenges in volume control and thread coating degradation must be addressed for transformative biosensing devices in personalized healthcare.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Sudor , Sudor/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Microfluídica/métodos , Microfluídica/instrumentación , Conductividad Eléctrica , Electrodos , Impedancia Eléctrica
11.
Scand J Med Sci Sports ; 34(8): e14701, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39049501

RESUMEN

Combat sports athletes often undergo rapid body mass loss (BML), which presents health risks. Hydration testing has been proposed as a possible solution to reduce or eliminate rapid BML. However, combat sports athletes may exhibit distinct physiological characteristics due to repeated exposure to BML. Thus, traditional and emerging hydration biomarkers should be investigated to determine their potential suitability for field use in this cohort. This study examined whether BML can explain changes in serum and urine osmolality (SosmΔ, UosmΔ), tear osmolarity (TosmΔ), hematocrit (HctΔ), and urine-specific gravity (USGΔ) after mild-moderate passive dehydration. Biomarker reliability was also assessed across two trials. Fifteen male and female combat sports athletes (age: 26.3 ± 5.3 years, body mass: 67.7 ± 9.9 kg) underwent a sauna protocol twice (5-28 days apart) aiming for 4% BML. The average BML in Trials 1 and 2 was 3.0 ± 0.7%. Regression analysis revealed that BML explained HctΔ (R2 = 0.22, p = 0.009) but not SosmΔ (R2 = 0.11, p = 0.079) or other biomarkers. Intraclass correlation coefficients (ICCs) were significant for all biomarkers except TosmΔ (ICC = 0.06, p = 0.37) and post-Tosm (ICC = 0.04, p = 0.42); post-Hct performed best (ICC = 0.82, p < 0.001). Contingency tables with post-Sosm (295 mOsm/kg) and post-USG (1.020) cutoffs revealed an 80% true negative rate (TNR) and a 62% true positive rate (TPR). Increasing the Sosm cutoff to 301 mOsm/kg decreased the TNR to 52% but increased the TPR to 83%. Although blood parameters were most sensitive to BML, they could only explain 11%-22% of biomarker variation. The typical USG cutoff misclassified 42% of athletes postdehydration, and reliability was generally poor-moderate. Alternative strategies should be pursued to manage rapid BML in combat sports.


Asunto(s)
Biomarcadores , Deshidratación , Sudor , Lágrimas , Humanos , Masculino , Biomarcadores/sangre , Adulto , Deshidratación/diagnóstico , Femenino , Concentración Osmolar , Adulto Joven , Sudor/química , Gravedad Específica , Hematócrito , Artes Marciales/fisiología , Baño de Vapor , Reproducibilidad de los Resultados , Pérdida de Peso , Atletas , Orina/química
12.
Eur J Appl Physiol ; 124(7): 2153-2160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38430262

RESUMEN

PURPOSE: Accurately measuring sweat sodium concentration ([Na+]) in the field is advantageous for coaches, scientists, and dieticians looking to tailor hydration strategies. The MX3 hydration testing system is a new portable analyser that uses pre-calibrated biosensors to measure sweat [Na+]. This study aimed to assess the validity and reliability of the MX3 hydration testing system. METHODS: Thirty-one (11 females) recreationally active participants completed one experimental trial. During this trial, participants exercised at a self-selected pace for 45 min in a warm environment (31.5 ± 0.8 °C, 63.2 ± 1.3% relative humidity). Sweat samples were collected from three measurement sites using absorbent patches. The samples were then analysed for sweat [Na+] using both the MX3 hydration testing system and the Horiba LAQUAtwin-NA-11. The reliability of the MX3 hydration testing system was determined following two measurements of the same sweat sample. RESULTS: The mean difference between measurements was 0.1 mmoL·L-1 (95% limits of agreement (LoA): - 9.2, 9.4). The analyser demonstrated a coefficient of variation (CV) of 5.6% and the standard error of measurement was 3.3 mmoL·L-1. When compared to the Horiba LAQUAtwin-NA-11, there was a mean difference of - 1.7 mmoL·L-1 (95% LoA: - 0.25 X ¯ , 0.25 X ¯ ) and the CV was 9.8%. CONCLUSION: The MX3 hydration testing system demonstrated very good single-trial reliability, moderate agreement and a very good CV relative to the Horiba LAQUAtwin-Na-11. To further validate its performance, the MX3 hydration testing system should be compared with analytical techniques known for superior reliability and validity.


Asunto(s)
Ejercicio Físico , Sodio , Sudor , Humanos , Sudor/química , Sudor/metabolismo , Femenino , Masculino , Reproducibilidad de los Resultados , Ejercicio Físico/fisiología , Sodio/análisis , Sodio/metabolismo , Adulto , Calor , Adulto Joven
13.
Mikrochim Acta ; 191(1): 77, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177621

RESUMEN

Sweat is easily accessible from the human skin's surface. It is secreted by the eccrine glands and contains a wealth of physiological information, including metabolites and electrolytes like glucose and Na ions. Sweat is a particularly useful biofluid because of its easy and non-invasive access, unlike other biofluids, like blood. On the other hand, nanomaterials have started to show promise operation as a competitive substitute for biosensors and molecular sensors throughout the last 10 years. Among the most synthetic nanomaterials that are studied, applied, and discussed, carbon nanomaterials are special. They are desirable candidates for sensor applications because of their many intrinsic electrical, magnetic, and optical characteristics; their chemical diversity and simplicity of manipulation; their biocompatibility; and their effectiveness as a chemically resistant platform. Carbon nanofibers (CNFs), carbon dots (CDs), carbon nanotubes (CNTs), and graphene have been intensively investigated as molecular sensors or as components that can be integrated into devices. In this review, we summarize recent advances in the use of carbon nanomaterials as sweat sensors and consider how they can be utilized to detect a diverse range of analytes in sweat, such as glucose, ions, lactate, cortisol, uric acid, and pH.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Humanos , Sudor/química , Nanotubos de Carbono/química , Nanoestructuras/química , Iones/análisis , Glucosa/análisis
14.
Mikrochim Acta ; 191(8): 451, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970693

RESUMEN

Ti3C2Tx MXene/CuxO composites were prepared by acid etching combined with electrochemical technique. The abundant active sites on the surface of MXene greatly increase the loading of CuxO nanoparticles, and the synergistic effect between the different components of the composite can accelerate the oxidation reaction of glucose. The results indicate that at the working potential of 0.55 V (vs. Ag/AgCl), the glucose sensor based on Ti3C2Tx MXene/CuxO composite presents large linear concentration ranges from 1 µM to 4.655 mM (sensitivity of 361 µA mM-1 cm-2) and from 5.155 mM to 16.155 mM (sensitivity of 133 µA mM-1 cm-2). The limit of detection is 0.065 µM. In addition, the sensor effectively avoids the oxidative interference of common interfering species such as ascorbic acid, dopamine and uric acid. The sensor has good reproducibility, stability and acceptable recoveries for the detection of glucose in human sweat sample (97.5-103.3%) with RSD values less than 4%. Based on these excellent properties it has great potential for the detection of glucose in real samples.


Asunto(s)
Cobre , Técnicas Electroquímicas , Glucosa , Límite de Detección , Titanio , Cobre/química , Humanos , Titanio/química , Glucosa/análisis , Glucosa/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Sudor/química , Electrodos , Oxidación-Reducción , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Nanocompuestos/química
15.
Mikrochim Acta ; 191(9): 530, 2024 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-39127988

RESUMEN

The synthesis of cobalt nanocrystal-graphene quantum dot-Ti3C2TX monolithic film electrode (Co-GQD-Ti3C2TX) is reported via self-assembly of Ti3C2TX nanosheets induced by protonated arginine-functionalized graphene quantum dot and subsequent reduction of cobalt (III). The resulting Co-GQD-Ti3C2TX shows good monolithic architecture, mechanical property, dispersibility and conductivity. The structure achieves excellent supercapacitor and sensing behavior. The self-charging supercapacitor produced by printing viscous Co-GQD-Ti3C2TX hydrogel on the back of flexible solar cell surface provides high specific capacitance (296 F g-1 at 1 A g-1), high-rate capacity (153 F g-1 at 20 A g-1), capacity retention (98.1% over 10,000-cycle) and energy density (29.6 W h kg-1 at 299.9 W kg-1). The electrochemical chip produced by printing Co-GQD-Ti3C2TX hydrogel on paper exhibits sensitive electrochemical response towards uric acid. The increase of uric acid between 0.01 and 800 µM causes a linear increase in differential pulse voltammetry signal with a detection limit of 0.0032 µM. The self-powered sensing platform integrating self-charging supercapacitor, electrochemical chip and micro electrochemical workstation was contentedly applied to monitoring uric acid in sweats and shows one broad application prospect in wearable electronic health monitoring device.


Asunto(s)
Cobalto , Capacidad Eléctrica , Técnicas Electroquímicas , Electrodos , Grafito , Límite de Detección , Puntos Cuánticos , Sudor , Titanio , Ácido Úrico , Cobalto/química , Puntos Cuánticos/química , Grafito/química , Sudor/química , Humanos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Titanio/química , Ácido Úrico/análisis , Ácido Úrico/química , Técnicas Biosensibles/métodos , Nanopartículas/química
16.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066041

RESUMEN

Non-invasive continuous health monitoring has become feasible with the advancement of biosensors. While monitoring certain biomarkers such as heart rate or skin temperature are now at a certain maturity, monitoring molecular biomarkers is still challenging. Progress has been shown in sampling, measurement, and interpretation of data toward non-invasive molecular sensors that can be integrated into daily wearable items. Toward this goal, this paper explores the potential of embroidered interdigitated transducer (IDT)-based sensors for non-invasive, continuous monitoring of human biomarkers, particularly glucose levels, in human sweat. The study employs innovative embroidery techniques to create flexible fabric-based sensors with gold-coated IDTs. In controlled experiments, we have shown the variation of glucose concentration in water can be wirelessly detected by tracking the resonant frequency of the embroidered sensors. The current sensors operate at 1.8 GHz to 2 GHz and respond to the change in glucose concentration with a sensitivity of 0.17 MHz/(mg/dL). The embroidered IDT-based sensors with wireless sensing will be a new measurement modality for molecular wearable sensors. The establishment of a wireless sensing mechanism for embroidered IDT-based sensors will be followed by an investigation of sweat for molecular detection. This will require adding functionalities for sampling and interpretation of acquired data. We envisage the embroidered IDT-based sensors offer a unique approach for seamless integration into clothing, paving the way for personalised, continuous health data capture.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Electrodos , Sudor , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Humanos , Biomarcadores/análisis , Tecnología Inalámbrica/instrumentación , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Sudor/química , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Glucosa/análisis
17.
Int J Mol Sci ; 25(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38928100

RESUMEN

Rich biological information in sweat provides great potential for health monitoring and management. However, due to the complexity of sweat, the development of environmentally friendly green electronic products is of great significance to the construction of ecological civilization. This study utilized a simple combination of polystyrene sulfonate sodium (PSS) and filter paper (FP) to prepare cellulose materials coated with conductive polymers, developing an electrochemical sensor based on the modified materials. The mechanical and electrochemical properties of the fabricated PSS/FP membrane were optimized by adjusting the feeding dosage of PSS. The realized PSS/FP composite containing 7% PSS displayed good conductivity (9.1 × 10-2 S/m), reducing electric resistance by 99.2% compared with the original FP membrane (6.7 × 10-4 S/m). The stable current of the membrane in simulated sweat under different pH environments is highly correlated with the pH values. Additionally, when the membrane is exposed to simulated sweat with varying ion concentrations, the current signal changes in real time with the concentration variations. The response time averages around 0.3 s.


Asunto(s)
Celulosa , Conductividad Eléctrica , Poliestirenos , Sudor , Sudor/química , Celulosa/química , Concentración de Iones de Hidrógeno , Poliestirenos/química , Polímeros/química , Humanos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos
18.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731882

RESUMEN

In cholinergic urticaria (CholU), small, itchy wheals are induced by exercise or passive warming and reduced sweating has been reported. Despite the described reduced muscarinic receptor expression, sweat duct obstruction, or sweat allergy, the underlying pathomechanisms are not well understood. To gain further insights, we collected skin biopsies before and after pulse-controlled ergometry and sweat after sauna provocation from CholU patients as well as healthy controls. CholU patients displayed partially severely reduced local sweating, yet total sweat volume was unaltered. However, sweat electrolyte composition was altered, with increased K+ concentration in CholU patients. Formalin-fixed, paraffin-embedded biopsies were stained to explore sweat leakage and tight junction protein expression. Dermcidin staining was not found outside the sweat glands. In the secretory coils of sweat glands, the distribution of claudin-3 and -10b as well as occludin was altered, but the zonula occludens-1 location was unchanged. In all, dermcidin and tight junction protein staining suggests an intact barrier with reduced sweat production capability in CholU patients. For future studies, an ex vivo skin model for quantification of sweat secretion was established, in which sweat secretion could be pharmacologically stimulated or blocked. This ex vivo model will be used to further investigate sweat gland function in CholU patients and decipher the underlying pathomechanism(s).


Asunto(s)
Urticaria Crónica Inducible , Glándulas Sudoríparas , Sudor , Uniones Estrechas , Sudor/química , Uniones Estrechas/metabolismo , Glándulas Sudoríparas/metabolismo , Ergometría , Proteínas de Uniones Estrechas/metabolismo , Urticaria Crónica Inducible/metabolismo , Urticaria Crónica Inducible/patología , Humanos , Masculino , Femenino , Adulto , Receptor Muscarínico M3/metabolismo , Biopsia con Aguja
19.
Rev Med Suisse ; 20(876): 1083-1086, 2024 May 29.
Artículo en Francés | MEDLINE | ID: mdl-38812341

RESUMEN

The technologies used to measure blood glucose have significantly evolved the past few years, especially with the introduction of continuous interstitial glucose measurements, simplifying the management of the disease. More recently, there has been a lot of interest regarding some potential revolutionary methods, such as smartwatches, and glucose measurements in sweat, saliva, and even tears. In this article, we review the different technologies that are under development, and notice that although promising, they rest imprecise. False measurements can have fatal consequences for our patients. Nevertheless, these innovations are promising and have the potential to change the daily life of people with diabetes in the future.


Les technologies utilisées pour mesurer les glycémies des personnes présentant un diabète ont beaucoup évolué ces dernières années, avec notamment l'introduction des mesures interstitielles en continu, rendant le contrôle glycémique plus aisé. Depuis peu, il y a un intérêt croissant, notamment dans les médias, autour de potentielles méthodes révolutionnaires via des montres intelligentes, la sueur, la salive et même les larmes. Dans cet article, nous répertorions les différentes technologies en cours d'investigation et notons que plusieurs d'entre elles restent imprécises, empêchant leur utilisation pour nos patients diabétiques, chez qui des mesures incorrectes peuvent avoir de graves conséquences. Néanmoins, ces nouveautés sont prometteuses et ont le potentiel de changer le quotidien des personnes présentant un diabète dans le futur.


Asunto(s)
Glucemia , Diabetes Mellitus , Humanos , Glucemia/análisis , Diabetes Mellitus/sangre , Diabetes Mellitus/diagnóstico , Automonitorización de la Glucosa Sanguínea/métodos , Automonitorización de la Glucosa Sanguínea/instrumentación , Sudor/química , Saliva/química , Glucosa/análisis , Lágrimas/química
20.
Int J Biol Macromol ; 267(Pt 2): 131658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636759

RESUMEN

Moisture evaporation plays a crucial role in thermal management of human body, particularly in perspiration process. However, current fabrics aim for sweat removal and takes little account of basic thermo-regulation of sweat, resulted in their limited evaporation capacity and heat dissipation at moderate/intense scenarios. In this study, a hygroscopic cooling (h-cool) fabric based on multi-functional design, for personal perspiration management, was described. By using economic and effective weaving technology, directional moisture transport routes and heat conductive pathways were incorporated in the construct. The resultant fabric showed 10 times greater one-way transport index higher than cotton, Dri-FIT and Coolswitch fabrics, which contributed to highly enhanced evaporation ability (∼4.5 times than cotton), not merely liquid diffusion. As a result, h-cool fabric performed 2.1-4.2 °C cooling efficacy with significantly reduced sweat consuming than cotton, Dri-FIT and Coolswitch fabrics in the artificial sweating skin. Finally, the practical applications by actually wearing h-cool fabric showed great evaporative-cooling efficacy during different physical activities. Owing to the excellent thermo-moisture management ability, we expect the novel concept and construct of h-cool fabric can provide promising strategy for developing functional textiles with great "cool" and comfortable "dry" tactile sensation at various daily scenarios.


Asunto(s)
Sudor , Textiles , Humanos , Sudor/química , Calor , Humectabilidad , Sudoración
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda