Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microbiology (Reading) ; 165(3): 254-269, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30556806

RESUMEN

Microbial sulfate reduction (SR) by sulfate-reducing micro-organisms (SRM) is a primary environmental mechanism of anaerobic organic matter mineralization, and as such influences carbon and sulfur cycling in many natural and engineered environments. In industrial systems, SR results in the generation of hydrogen sulfide, a toxic, corrosive gas with adverse human health effects and significant economic and environmental consequences. Therefore, there has been considerable interest in developing strategies for mitigating hydrogen sulfide production, and several specific inhibitors of SRM have been identified and characterized. Specific inhibitors are compounds that disrupt the metabolism of one group of organisms, with little or no effect on the rest of the community. Putative specific inhibitors of SRM have been used to control sulfidogenesis in industrial and engineered systems. Despite the value of these inhibitors, mechanistic and quantitative studies into the molecular mechanisms of their inhibition have been sparse and unsystematic. The insight garnered by such studies is essential if we are to have a more complete understanding of SR, including the past and current selective pressures acting upon it. Furthermore, the ability to reliably control sulfidogenesis - and potentially assimilatory sulfate pathways - relies on a thorough molecular understanding of inhibition. The scope of this review is to summarize the current state of the field: how we measure and understand inhibition, the targets of specific SR inhibitors and how SRM acclimatize and/or adapt to these stressors.


Asunto(s)
Adenosina Fosfosulfato/análogos & derivados , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfatos/química , Sulfatos/metabolismo , Adaptación Fisiológica/genética , Aniones/química , Aniones/metabolismo , Transporte Biológico , Sulfuro de Hidrógeno/metabolismo , Oxidación-Reducción , Sulfato Adenililtransferasa/genética , Sulfato Adenililtransferasa/metabolismo , Bacterias Reductoras del Azufre/genética , Bacterias Reductoras del Azufre/crecimiento & desarrollo , Bacterias Reductoras del Azufre/metabolismo
2.
Lab Invest ; 96(12): 1311-1326, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27748734

RESUMEN

Macular corneal dystrophy (MCD) is characterized by multiple punctate gray-white opacities in the corneal stromal region, due to the accumulation of abnormally sulfated keratan sulfates. We attempted to develop an in vitro model of MCD by simulating the sulfation inhibition using sodium chlorate, a chemical inhibitor of 3'-phosphoadenosine-5'-phosphosulfate (PAPs). The SEM and micro-Raman spectroscopy results showed the hallmark feature of MCD. Further the gene expression studies elucidated the direct effect of sulfation inhibition on the WNT pathway, that in turn downregulated production of matrix metalloproteinases (MMPs), which causes abnormal matrix deposits leading to loss of transparency in vivo. It also resulted in downregulation of integrin and cadherin complexation that leads to disruption of the epithelial layer in the MCD affected corneas. This study offers a promising initial step toward establishing a relevant in vitro MCD disease model, to assess signaling transduction pathways and devise potential treatment strategies based on MMP administration to the MCD affected corneas.


Asunto(s)
Córnea/patología , Distrofias Hereditarias de la Córnea/patología , Células del Estroma/patología , Animales , Células Cultivadas , Cloratos/toxicidad , Córnea/efectos de los fármacos , Córnea/metabolismo , Córnea/ultraestructura , Distrofias Hereditarias de la Córnea/metabolismo , Inhibidores Enzimáticos/toxicidad , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/patología , Epitelio Corneal/ultraestructura , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ontología de Genes , Cabras , Herbicidas/toxicidad , Procesamiento de Imagen Asistido por Computador , Metaloproteinasas de la Matriz/química , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/metabolismo , Microscopía Electrónica de Rastreo , Microtecnología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/metabolismo , Espectrometría Raman , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Células del Estroma/ultraestructura , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/metabolismo , Vía de Señalización Wnt/efectos de los fármacos
3.
J Bacteriol ; 197(1): 29-39, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25313388

RESUMEN

Although the enzymes for dissimilatory sulfate reduction by microbes have been studied, the mechanisms for transcriptional regulation of the encoding genes remain unknown. In a number of bacteria the transcriptional regulator Rex has been shown to play a key role as a repressor of genes producing proteins involved in energy conversion. In the model sulfate-reducing microbe Desulfovibrio vulgaris Hildenborough, the gene DVU_0916 was observed to resemble other known Rex proteins. Therefore, the DVU_0916 protein has been predicted to be a transcriptional repressor of genes encoding proteins that function in the process of sulfate reduction in D. vulgaris Hildenborough. Examination of the deduced DVU_0916 protein identified two domains, one a winged helix DNA-binding domain common for transcription factors, and the other a Rossman fold that could potentially interact with pyridine nucleotides. A deletion of the putative rex gene was made in D. vulgaris Hildenborough, and transcript expression studies of sat, encoding sulfate adenylyl transferase, showed increased levels in the D. vulgaris Hildenborough Rex (RexDvH) mutant relative to the parental strain. The RexDvH-binding site upstream of sat was identified, confirming RexDvH to be a repressor of sat. We established in vitro that the presence of elevated NADH disrupted the interaction between RexDvH and DNA. Examination of the 5' transcriptional start site for the sat mRNA revealed two unique start sites, one for respiring cells that correlated with the RexDvH-binding site and a second for fermenting cells. Collectively, these data support the role of RexDvH as a transcription repressor for sat that senses the redox status of the cell.


Asunto(s)
Proteínas Bacterianas/metabolismo , Desulfovibrio vulgaris/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , NAD/metabolismo , Sulfato Adenililtransferasa/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión , Desulfovibrio vulgaris/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/genética
4.
J Bacteriol ; 192(22): 5943-52, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20851900

RESUMEN

Molybdenum (Mo) is an important trace element that is toxic at high concentrations. To resolve the mechanisms underlying Mo toxicity, Rhodobacter capsulatus mutants tolerant to high Mo concentrations were isolated by random transposon Tn5 mutagenesis. The insertion sites of six independent isolates mapped within the same gene predicted to code for a permease of unknown function located in the cytoplasmic membrane. During growth under Mo-replete conditions, the wild-type strain accumulated considerably more Mo than the permease mutant. For mutants defective for the permease, the high-affinity molybdate importer ModABC, or both transporters, in vivo Mo-dependent nitrogenase (Mo-nitrogenase) activities at different Mo concentrations suggested that ModABC and the permease import molybdate in nanomolar and micromolar ranges, respectively. Like the permease mutants, a mutant defective for ATP sulfurylase tolerated high Mo concentrations, suggesting that ATP sulfurylase is the main target of Mo inhibition in R. capsulatus. Sulfate-dependent growth of a double mutant defective for the permease and the high-affinity sulfate importer CysTWA was reduced compared to those of the single mutants, implying that the permease plays an important role in sulfate uptake. In addition, permease mutants tolerated higher tungstate and vanadate concentrations than the wild type, suggesting that the permease acts as a general oxyanion importer. We propose to call this permease PerO (for oxyanion permease). It is the first reported bacterial molybdate transporter outside the ABC transporter family.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Molibdeno/metabolismo , Molibdeno/toxicidad , Rhodobacter capsulatus/efectos de los fármacos , Rhodobacter capsulatus/metabolismo , Sulfato Adenililtransferasa/antagonistas & inhibidores , Aniones , Proteínas Bacterianas/genética , Elementos Transponibles de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Mutagénesis Insercional , Rhodobacter capsulatus/genética , Análisis de Secuencia de ADN , Sulfato Adenililtransferasa/genética , Compuestos de Tungsteno/metabolismo , Compuestos de Tungsteno/toxicidad , Vanadatos/metabolismo , Vanadatos/toxicidad
5.
J Cell Biol ; 135(3): 819-27, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8909553

RESUMEN

Wingless, the Drosophila homologue of the proto-oncogene Wnt-1, encodes a secreted glycoprotein that regulates differentiation and proliferation of nearby cells. Here we report on the biochemical mechanism(s) by which the wingless signal is transmitted from cell to cell. When expressed in S2 cells, the majority (approximately 83%) of secreted wingless protein (WG) is bound to the cell surface and extracellular matrix through specific, noncovalent interactions. The tethered WG can be released by addition of exogenous heparan sulfate and chondroitin sulfate glycosaminoglycans. WG also binds directly to heparin agarose beads with high affinity. These data suggest that WG can bind to the cell surface via naturally occurring sulfated proteoglycans. Two lines of evidence indicate that extracellular glycosaminoglycans on the receiving cells also play a functional role in WG signaling. First, treatment of WG-responsive cells with glycosaminoglycan lyases reduced WG activity by 50%. Second, when WG-responsive cells were preincubated with 1 mM chlorate, which blocks sulfation, WG activity was inhibited to near-basal levels. Addition of exogenous heparin to the chlorate-treated cells was able to restore WG activity. Based on these results, we propose that WG belongs to the group of growth factor ligands whose actions are mediated by extracellular proteoglycan molecules.


Asunto(s)
Proteínas de Drosophila , Drosophila/fisiología , Glicosaminoglicanos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Membrana Celular/química , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/química , Glicosaminoglicanos/farmacología , Percloratos/farmacología , Polisacárido Liasas , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteoglicanos/metabolismo , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/farmacología , Compuestos de Sodio/farmacología , Sulfato Adenililtransferasa/antagonistas & inhibidores , Proteína Wnt1
6.
Indian J Exp Biol ; 44(9): 767-72, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16999035

RESUMEN

Synechococcus elongatus PCC 7942 was able to grow with several S sources. The sulphur metabolizing enzymes viz. ATP sulphurylase, cysteine synthase, thiosulphate reductase and L- and D-cysteine desulphydrases were regulated by sulphur sources, particularly by sulphur amino acids and organic sulphate esters. Sulphur starvation reduced ATP sulphurylase and cysteine synthase whereas reduced glutathione appreciated Cys degradation activity. With partially purified enzymes apparent Km values for sulphate, ATP, D- and L-Cys, thiosulphate, sulphide and O-acetyl serine were in a range of 12-50 microM. p-Nitrophenyl sulphate inhibited ATP sulphurylase competitively. Met was a feedback inhibitor of several key enzymes.


Asunto(s)
Compuestos de Azufre/metabolismo , Synechococcus/enzimología , Catálisis , Cromatografía DEAE-Celulosa , Cistationina gamma-Liasa/antagonistas & inhibidores , Cistationina gamma-Liasa/metabolismo , Cisteína Sintasa/antagonistas & inhibidores , Cisteína Sintasa/metabolismo , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/metabolismo , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/metabolismo , Sulfurtransferasas , Synechococcus/efectos de los fármacos , Synechococcus/crecimiento & desarrollo
7.
J Mol Biol ; 313(5): 1117-25, 2001 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-11700067

RESUMEN

The ubiquitous enzyme ATP sulfurylase (ATPS) catalyzes the primary step of intracellular sulfate activation, the formation of adenosine 5'-phosphosulfate (APS). It has been shown that the enzyme catalyzes the generation of APS from ATP and inorganic sulfate in vitro and in vivo, and that this reaction can be inhibited by a number of simple molecules. Here, we present the crystal structures of ATPS from the yeast Saccharomyces cerevisiae complexed with compounds that have inhibitory effects on the catalytic reaction of ATPS. Thiosulfate and ADP mimic the substrates sulfate and ATP in the active site, but are non-reactive and thus competitive inhibitors of the sulfurylase reaction. Chlorate is bound in a crevice between the active site and the intermediate domain III of the complex structure. It forms hydrogen bonds to residues of both domains and stabilizes a "closed" conformation, inhibiting the release of the reaction products APS and PPi. These new observations are evidence for the crucial role of the displacement mechanism for the catalysis by ATPS.


Asunto(s)
Adenosina Difosfato/metabolismo , Cloratos/metabolismo , Saccharomyces cerevisiae/enzimología , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/metabolismo , Tiosulfatos/metabolismo , Adenosina Difosfato/farmacología , Apoenzimas/química , Apoenzimas/metabolismo , Sitios de Unión , Catálisis/efectos de los fármacos , Cloratos/farmacología , Cristalización , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Fosfatos/metabolismo , Estructura Terciaria de Proteína , Electricidad Estática , Relación Estructura-Actividad , Sulfato Adenililtransferasa/antagonistas & inhibidores , Tiosulfatos/química , Tiosulfatos/farmacología
8.
J Biomol Struct Dyn ; 33(6): 1176-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24956239

RESUMEN

We have used docking techniques in order to propose potential inhibitors to the enzymes adenosine phosphosulfate reductase and adenosine triphosphate sulfurylase that are responsible, among other deleterious effects, for causing souring of oil and gas reservoirs. Three candidates selected through molecular docking revealed new and improved polar and hydrophobic interactions with the above-mentioned enzymes. Microbiological laboratory assays performed subsequently corroborated the results of computer modelling that the three compounds can efficiently control the biogenic sulfide production.


Asunto(s)
Ligandos , Simulación del Acoplamiento Molecular , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Unión Proteica , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/química
9.
Talanta ; 137: 156-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25770619

RESUMEN

An anthracene-armed tetraaza macrocyclic fluorescent probe 3-(9-anthrylmethyl)-3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene(l) for detecting Zn(2+) in aqueous medium was synthesized. L-Zn(2+) complex, showed selectivity toward pyrophosphate ion (PPi) by quenching the fluorescence in aqueous HEPES buffer (pH 7.4). Furthermore, L-Zn(2+) was also used to set up a real-time fluorescence assay for monitoring enzyme activities of alkaline phosphatase (ALP) and adenosine triphosphate sulfurylase (ATPS). In the presence of ALP inhibitor Na3VO4 and ATPS inhibitor chlorate, two enzymes activities decreased obviously, respectively.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Pruebas de Enzimas/métodos , Colorantes Fluorescentes/química , Sulfato Adenililtransferasa/metabolismo , Fosfatasa Alcalina/antagonistas & inhibidores , Fosfatasa Alcalina/química , Antracenos/química , Inhibidores Enzimáticos/farmacología , Espectrometría de Fluorescencia , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/química , Factores de Tiempo , Zinc/análisis , Zinc/química
10.
Biosci Rep ; 33(4)2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23789618

RESUMEN

In plants, sulfur must be obtained from the environment and assimilated into usable forms for metabolism. ATP sulfurylase catalyses the thermodynamically unfavourable formation of a mixed phosphosulfate anhydride in APS (adenosine 5'-phosphosulfate) from ATP and sulfate as the first committed step of sulfur assimilation in plants. In contrast to the multi-functional, allosterically regulated ATP sulfurylases from bacteria, fungi and mammals, the plant enzyme functions as a mono-functional, non-allosteric homodimer. Owing to these differences, here we examine the kinetic mechanism of soybean ATP sulfurylase [GmATPS1 (Glycine max (soybean) ATP sulfurylase isoform 1)]. For the forward reaction (APS synthesis), initial velocity methods indicate a single-displacement mechanism. Dead-end inhibition studies with chlorate showed competitive inhibition versus sulfate and non-competitive inhibition versus APS. Initial velocity studies of the reverse reaction (ATP synthesis) demonstrate a sequential mechanism with global fitting analysis suggesting an ordered binding of substrates. ITC (isothermal titration calorimetry) showed tight binding of APS to GmATPS1. In contrast, binding of PPi (pyrophosphate) to GmATPS1 was not detected, although titration of the E•APS complex with PPi in the absence of magnesium displayed ternary complex formation. These results suggest a kinetic mechanism in which ATP and APS are the first substrates bound in the forward and reverse reactions, respectively.


Asunto(s)
Glycine max/enzimología , Proteínas de Plantas/química , Sulfato Adenililtransferasa/química , Adenosina Fosfosulfato/química , Adenosina Trifosfato/química , Biocatálisis , Cloratos/química , Cinética , Proteínas de Plantas/antagonistas & inhibidores , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfatos/química
11.
FEBS J ; 280(13): 3050-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23517310

RESUMEN

All sulfation reactions rely on active sulfate in the form of 3'-phospho-adenosine-5'-phosphosulfate (PAPS). In fungi, bacteria, and plants, the enzymes responsible for PAPS synthesis, ATP sulfurylase and adenosine-5'-phosphosulfate (APS) kinase, reside on separate polypeptide chains. In metazoans, however, bifunctional PAPS synthases catalyze the consecutive steps of sulfate activation by converting sulfate to PAPS via the intermediate APS. This intricate molecule and the related nucleotides PAPS and 3'-phospho-adenosine-5'-phosphate modulate the function of various enzymes from sulfation pathways, and these effects are summarized in this review. On the ATP sulfurylase domain that initially produces APS from sulfate and ATP, APS acts as a potent product inhibitor, being competitive with both ATP and sulfate. For the APS kinase domain that phosphorylates APS to PAPS, APS is an uncompetitive substrate inhibitor that can bind both at the ATP/ADP-binding site and the PAPS/APS-binding site. For human PAPS synthase 1, the steady-state concentration of APS has been modelled to be 1.6 µM, but this may increase up to 60 µM under conditions of sulfate excess. It is noteworthy that the APS concentration for maximal APS kinase activity is 15 µM. Finally, we recognized APS as a highly specific stabilizer of bifunctional PAPS synthases. APS most likely stabilizes the APS kinase part of these proteins by forming a dead-end enzyme-ADP-APS complex at APS concentrations between 0.5 and 5 µM; at higher concentrations, APS may bind to the catalytic centers of ATP sulfurylase. Based on the assumption that cellular concentrations of APS fluctuate within this range, APS can therefore be regarded as a key modulator of PAPS synthase functions.


Asunto(s)
Adenosina Fosfosulfato/metabolismo , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Sulfato Adenililtransferasa/metabolismo , Adenosina Fosfosulfato/química , Adenosina Fosfosulfato/farmacología , Animales , Sitios de Unión/efectos de los fármacos , Biocatálisis/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Ligandos , Conformación Molecular/efectos de los fármacos , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Nucleótidos/química , Nucleótidos/metabolismo , Nucleótidos/farmacología , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/química
12.
Arthritis Res Ther ; 14(2): R49, 2012 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-22394585

RESUMEN

INTRODUCTION: Previous studies have indicated that transforming growth factor ß (TGF-ß) signaling has a critical role in cartilage homeostasis and repair, yet the mechanisms of TGF-ß's chondroprotective effects are not known. Our objective in this study was to identify downstream targets of TGF-ß that could act to maintain biochemical and biomechanical properties of cartilage. METHODS: Tibial joints from 20-week-old mice that express a dominant-negative mutation of the TGF-ß type II receptor (DNIIR) were graded histologically for osteoarthritic changes and tested by indentation to evaluate their mechanical properties. To identify gene targets of TGF-ß, microarray analysis was performed using bovine articular chondrocytes grown in micromass culture that were either treated with TGF-ß or left untreated. Phosphoadenosine phosphosynthetase 2 (PAPSS2) was identified as a TGF-ß-responsive gene. Papss2 expression is crucial for proper sulfation of cartilage matrix, and its deficiency causes skeletal defects in mice and humans that overlap with those seen in mice with mutations in TGF-ß-signaling genes. Regulation of Papss2 was verified by real time RT-PCR and Western blot analyses. Alterations in sulfation of glycosaminoglycans were analyzed by critical electrolyte concentration and Alcian blue staining and immunofluorescence for chondroitin-4-sulfate, unsulfated chondroitin and the aggrecan core protein. RESULTS: DNIIR mutants showed reduced mechanical properties and osteoarthritis-like changes when compared to wild-type control mice. Microarray analysis identified a group of genes encoding matrix-modifying enzymes that were regulated by TGF-ß. Papss2 was upregulated in bovine articular chondrocytes after treatment with TGF-ß and downregulated in cartilage from DNIIR mice. Articular cartilage in DNIIR mice demonstrated reduced Alcian blue staining at critical electrolyte concentrations and reduced chondroitin-4-sulfate staining. Staining for unsulfated chondroitin sulfate was increased, whereas staining for the aggrecan core protein was comparable in DNIIR and wild-type mice. CONCLUSION: TGF-ß maintains biomechanical properties and regulates expression of Papss2 and sulfation of glycosaminoglycans in mouse articular cartilage.


Asunto(s)
Cartílago Articular/metabolismo , Regulación de la Expresión Génica , Complejos Multienzimáticos/antagonistas & inhibidores , Sulfato Adenililtransferasa/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/fisiología , Animales , Fenómenos Biomecánicos/fisiología , Bovinos , Células Cultivadas , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/biosíntesis , Técnicas de Cultivo de Órganos , Sulfato Adenililtransferasa/biosíntesis
13.
J Biol Chem ; 282(30): 22112-21, 2007 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-17540769

RESUMEN

In mammals, the universal sulfuryl group donor molecule 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is synthesized in two steps by a bifunctional enzyme called PAPS synthetase. The APS kinase domain of PAPS synthetase catalyzes the second step in which APS, the product of the ATP-sulfurylase domain, is phosphorylated on its 3'-hydroxyl group to yield PAPS. The substrate APS acts as a strong uncompetitive inhibitor of the APS kinase reaction. We generated truncated and point mutants of the APS kinase domain that are active but devoid of substrate inhibition. Structural analysis of these mutant enzymes reveals the intrasubunit rearrangements that occur upon substrate binding. We also observe intersubunit rearrangements in this dimeric enzyme that result in asymmetry between the two monomers. Our work elucidates the structural elements required for the ability of the substrate APS to inhibit the reaction at micromolar concentrations. Because the ATP-sulfurylase domain of PAPS synthetase influences these elements in the APS kinase domain, we propose that this could be a communication mechanism between the two domains of the bifunctional enzyme.


Asunto(s)
Complejos Multienzimáticos/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Sulfato Adenililtransferasa/antagonistas & inhibidores , Clonación Molecular , Cristalografía por Rayos X , Homeostasis , Humanos , Cinética , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutagénesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Conformación Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Eliminación de Secuencia , Sulfato Adenililtransferasa/química , Sulfato Adenililtransferasa/genética
14.
Biochem Biophys Res Commun ; 344(4): 1207-15, 2006 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16647687

RESUMEN

Different reports have suggested the dependence of bone morphogenetic protein (BMP) activity on the sulfated glycosaminoglycan (GAG) chains found in proteoglycans. However, the requirement of sulfated molecules in early BMP-2-signaling responses has not been established. We have used sodium chlorate to inhibit sulfation in C2C12 cells and have analyzed BMP-2 induction of Id1. We show here that sulfation inhibition strongly decreases the specific and early induction of Id1 at the transcriptional level. This effect is not reverted by the addition of extracellular components, such as GAGs or extracellular matrix (ECM). The inhibition of GAG incorporation into proteoglycans, or their removal by GAG lyases, does not mimic the negative effect on Id1 expression, while sulfation inhibition also represses the Id1-induction exerted by a constitutively active form of the BMP receptor, suggesting that BMP-2-mediated Id1 induction has an intracellular requirement for sulfated molecules.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteína 1 Inhibidora de la Diferenciación/agonistas , Complejos Multienzimáticos/antagonistas & inhibidores , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfatos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteína Morfogenética Ósea 2 , Células Cultivadas , Cloratos/farmacología , Matriz Extracelular/metabolismo , Glicosaminoglicanos/farmacología , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Ratones , Sulfatos/antagonistas & inhibidores
15.
J Biol Chem ; 269(31): 19777-86, 1994 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-8051058

RESUMEN

Fungal (Penicillium chrysogenum) and yeast (Saccharomyces cerevisiae) ATP sulfurylases were shown to have very similar kinetic and chemical properties except that the fungal enzyme (a) contains a highly reactive Cys residue (SH-1) whose modification results in sigmoidal velocity curves (Renosto, F., Martin, R. L., and Segel, I. H. (1987) J. Biol. Chem. 262, 16279-16288) and (b) is allosterically inhibited by 3'-phosphoadenosine 5'-phosphosulfate (PAPS), while the yeast enzyme displays neither of these properties. The fungal enzyme subunit (64.3 kDa, 572 amino acids) is also larger than the yeast enzyme subunit (59.3 kDa, 521 amino acids). To correlate the unique allosteric properties of the fungal enzyme with specific structural features, we cloned and sequenced the ATP sulfurylase gene (aps) from P. chrysogenum. The yeast and fungal enzymes are homologous over the first 400 amino acids and contain two regions high in basic residues which are conserved in sulfurylases from Arabidopsis and the Riftia pachyptila (hydrothermal vent tube worm) chemolithotrophic symbiont. These regions may participate in forming the binding sites for MgATP2- and SO4(2-). The fungal enzyme has no sites for MgATP2- and SO4(2-). The fungal enzyme has no significant sequence homology to the yeast enzyme in the C-terminal 172 amino acids. This C-terminal region contains SH-1 (Cys-508) and has homology to MET14 (S. cerevisiae), CYSC (E. coli), and NODQ (Rhizobium meliloti), i.e. adenosine 5'-phosphosulfate (APS) kinase. The cumulative results suggest that (a) the allosteric PAPS binding site of P. chrysogenum ATP sulfurylase is located in the C-terminal domain of the protein and (b) that this domain may have evolved from APS kinase. In spite of the homology, this C-terminal region does not account for the APS kinase activity of P. chrysogenum. Fungal ATP sulfurylase has no significant homology to (or regulatory properties in common with) CYSD or CYSN, proteins reported to comprise E. coli ATP sulfurylase (Leyh, T., Vogt, T. F., and Suo, Y. (1992) J. Biol. Chem. 267, 10405-10410).


Asunto(s)
Penicillium chrysogenum/enzimología , Sulfato Adenililtransferasa/genética , Sitio Alostérico , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN de Hongos , Guanosina Trifosfato/metabolismo , Cinética , Datos de Secuencia Molecular , Penicillium chrysogenum/genética , Homología de Secuencia de Aminoácido , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfato Adenililtransferasa/metabolismo
16.
J Inherit Metab Dis ; 10(1): 62-5, 1987.
Artículo en Inglés | MEDLINE | ID: mdl-3033396

RESUMEN

The regional distribution of the phenylalanine-sensitive ATP-sulphurylase in fetal calf brain coincides with demyelinated lesions observed in the central nervous systems of untreated PKU patients. This would be expected if this species of ATP-sulphurylase played a role in the pathogenesis of brain dysfunction in the untreated or poorly controlled phenylketonuria patient.


Asunto(s)
Encéfalo/enzimología , Nucleotidiltransferasas/análisis , Fenilalanina/farmacología , Sulfato Adenililtransferasa/análisis , Animales , Bovinos , Enfermedades Desmielinizantes/enzimología , Sulfato Adenililtransferasa/antagonistas & inhibidores
17.
J Biol Chem ; 262(34): 16279-88, 1987 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-2824486

RESUMEN

ATP sulfurylase from Penicillium chrysogenum is a noncooperative homooligomer containing three free sulfhydryl groups per subunit. Under nondenaturing conditions, one SH group per subunit was modified by 5,5'-dithiobis-(2-nitrobenzoate), or N-ethylmaleimide. Modification had only a small effect on kcat, but markedly increased the [S]0.5 values for the substrates, MgATP and SO4(2-). MgATP and adenosine-5'-phosphosulfate protected against modification. The SH-modified enzyme displayed sigmoidal velocity curves for both substrates with Hill coefficients (nH) of 2. Fluorosulfonate (FSO3-) and other dead-end inhibitors competitive with SO4(2-) activated the SH-modified enzyme at low SO4(2-) concentration. In order to determine whether the sigmoidicity resulted from true cooperative binding (as opposed to a kinetically based mechanism), the shapes of the binding curves were established from the degree of protection provided by a ligand against phenylglyoxal-dependent irreversible inactivation under noncatalytic conditions. Under standard conditions (0.05 M Na-N-(2-hydroxyethyl)piperazine-N'-3-propanesulfonic acid buffer, pH 8, 30 degrees C, and 3mM phenylglyoxal) the native enzyme was inactivated with a k of 2.67 +/- 0.25 X 10-3 s-1, whereas k for the SH-modified enzyme was 5.44 +/- 0.27 X 10-3 s-1. The increased sensitivity of the modified enzyme resulted from increased reactivity of ligand-protectable groups. Both the native and the SH-modified enzyme displayed hyperbolic plots of delta k (i.e. protection) versus [MgATP], or [FSO3-], or [S2O3(2-]) in the absence of coligand (nH = 0.98 +/- 0.06). The plots of delta k versus [ligand] for the native enzyme were also hyperbolic in the presence of a fixed concentration of coligand. However, in the presence of a fixed [FSO3-] or [S2O3(2-]), the delta k versus [MgATP] plot for the SH-modified enzyme was sigmoidal, as was the plot of delta k versus [FSO3-] or [S2O3(2-]) in the presence of a fixed [MgATP]. The nH values were 1.92 +/- 0.09. The results indicate that substrates (or analogs) bind hyperbolically to unoccupied SH-modified subunits, but in a subunit-cooperative fashion to form a ternary complex.


Asunto(s)
Nucleotidiltransferasas/metabolismo , Penicillium chrysogenum/enzimología , Penicillium/enzimología , Sulfato Adenililtransferasa/metabolismo , Adenosina Trifosfato , Ácido Ditionitrobenzoico , Fluoruros , Cinética , Cianuro de Sodio , Relación Estructura-Actividad , Sulfato Adenililtransferasa/antagonistas & inhibidores , Compuestos de Sulfhidrilo , Ácidos Sulfúricos
18.
J Biol Chem ; 264(20): 11768-75, 1989 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-2545683

RESUMEN

ATP sulfurylase from Penicillium chrysogenum is a homohexamer that contains three free sulfhydryl groups/subunit, only one of which (designated SH-1) can be modified by disulfide, maleimide, and halide reagents under nondenaturing conditions. Modification of SH-1 has only a small effect on kcat but causes the [S]0.5 values for MgATP and SO4(2-) (or MoO4(2-) to increase by an order of magnitude. Additionally, the velocity curves become sigmoidal with a Hill coefficient (nH) of about 2 (Renosto, F., Martin, R. L., and Segel, I. H. (1987) J. Biol. Chem. 262, 16279-16288). Direct equilibrium binding measurements confirmed that [32P]MgATP binds to the SH-modified enzyme in a positively cooperative fashion (nH = 2.0) if a sulfate subsite ligand (e.g. FSO3-) is also present. [35S]Adenosine 5'-phosphosulfate (APS) binding to the SH-modified enzyme displayed positive cooperativity (nH = 1.9) in the absence of a PPi subsite ligand. The results indicate that positive cooperativity requires occupancy of the adenylyl and sulfate (but not the pyrophosphate) subsites. [35S]APS binding to the native enzyme displayed negative cooperativity (or binding to at least two classes of sites). Isotope trapping profiles for the single turnover of [35S]APS: (a) confirmed the equilibrium binding curves, (b) indicated that all six sites/hexamer are catalytically active, and (c) showed that APS does not dissociate at a significant rate from E.APS.PPi. The MgPPi concentration dependence of [35S]APS trapping was indicative of MgPPi binding to two classes of sites on both the native and SH-modified enzyme. Inactivation of the native or SH-modified enzyme by phenylglyoxal in the presence of saturating APS was biphasic. The semilog plots suggested that only half of the sites were highly protected. The cumulative data suggest a model in which pairs of sites or subunits can exist in three different states designated HH (both sites have a high APS affinity, as in the native free enzyme), LL (both sites have a low APS affinity as in the SH-modified enzyme), and LH (as in the APS-occupied native or SH-modified enzyme). Thus, the HH----LH transition displays negative cooperativity for APS binding while the LL----LH transition displays positive cooperativity. The relative reactivities of like-paired SH-reactive reagents were in the order: N-phenylmaleimide greater than N-ethylmaleimide; dithionitropyridine greater than dithionitrobenzoate; thiolyte-MQ greater than thiolyte-MB. The log kmod versus pH curve indicates that the pKa of SH-1 is greater than 9.(ABSTRACT TRUNCATED AT 400 WORDS)


Asunto(s)
Nucleotidiltransferasas/metabolismo , Penicillium chrysogenum/enzimología , Penicillium/enzimología , Sulfato Adenililtransferasa/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Concentración de Iones de Hidrógeno , Ligandos , Conformación Proteica , Sulfato Adenililtransferasa/antagonistas & inhibidores
19.
J Biol Chem ; 263(26): 12886-92, 1988 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-3417641

RESUMEN

The influence of chlorate, an inhibitor of sulfate adenylyltransferase, on biosynthesis and secretion of proteoglycans was investigated in cultured human skin fibroblasts. At up to 10 mM concentrations, chlorate caused a reduction of [35S]sulfate incorporation into small chondroitin sulfate/dermatan sulfate proteoglycan by up to 96%. Incorporation of [3H]leucine and [3H] glucosamine was only slightly affected. No influence was seen on the polymerization degree of the polysaccharide chain as judged by gel filtration, and on the kinetics of secretion of the proteoglycan. Concomitant with reduced sulfation, however, was an increased sensitivity toward chondroitin AC lyase which suggests a diminished epimerization of D-glucuronic acid to L-iduronic acid residues. Agarose gel electrophoresis revealed that all polysaccharide chains of control chondroitin sulfate/dermatan sulfate proteoglycan exhibited a similar sulfation degree. Chlorate treatment led to the formation of polysaccharide chains of widely varying degree of sulfation, but fully sulfated chains were synthesized even in the presence of 3 mM chlorate, and sulfate-free chondroitin was not detected. Studying the effects of chlorate treatment on the synthesis of other proteoglycan types it was found that, in cell-associated galactosaminoglycans, 6-sulfation of N-acetylgalactosamine residues was less affected than was 4-sulfation. In case of heparan sulfate the synthesis of sulfamate groups was less impaired than sulfate ester formation. Nitrous acid degradation at pH 4.1 indicated the presence of unsubstituted amino groups. Chlorate treatment may be considered as a means for the production of proteoglycans with defined structural alterations.


Asunto(s)
Cloratos/farmacología , Fibroblastos/metabolismo , Proteoglicanos/biosíntesis , Adulto , Células Cultivadas , Niño , Fibroblastos/efectos de los fármacos , Glucosamina/metabolismo , Humanos , Leucina/metabolismo , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfatos/metabolismo
20.
Biochem Biophys Res Commun ; 141(2): 870-7, 1986 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-3026396

RESUMEN

Chlorate is known to be an in vitro inhibitor of ATP-sulfurylase, the first enzyme in the biosynthesis of PAPS which is the ubiquitous co-substrate for sulfation. Here, the effect of chlorate on protein sulfation in intact cells was investigated. Treatment of various cell cultures with 1 mM sodium chlorate in a medium low in sulfate and sulfur-containing amino acids resulted in an inhibition of protein sulfation greater than 95%. Tyrosine as well as carbohydrate sulfation was blocked. Chlorate did not inhibit protein synthesis and did not exhibit any other toxic effects, even after prolonged treatment of cell cultures. Thus, chlorate treatment provides a powerful tool for studying the biological significance of protein sulfation.


Asunto(s)
Cloratos/farmacología , Nucleotidiltransferasas/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas/metabolismo , Sulfato Adenililtransferasa/antagonistas & inhibidores , Sulfatos/metabolismo , Animales , Células Cultivadas , Ratones , Fosforilación , Ratas , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda