Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25.344
Filtrar
Más filtros

Publication year range
1.
Cell ; 182(4): 919-932.e19, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32763156

RESUMEN

Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.


Asunto(s)
Biopelículas/crecimiento & desarrollo , ADN/química , Pseudomonas aeruginosa/fisiología , Piocianina/química , ADN/metabolismo , Técnicas Electroquímicas , Electrodos , Transporte de Electrón/efectos de los fármacos , Colorantes Fluorescentes/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Fenazinas/química , Fenazinas/metabolismo , Fenazinas/farmacología , Piocianina/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(31): e2400525121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042683

RESUMEN

Per- and polyfluoroalkyl substances (PFAS), particularly the perfluorinated ones, are recalcitrant to biodegradation. By integrating an enrichment culture of reductive defluorination with biocompatible electrodes for the electrochemical process, a deeper defluorination of a C6-perfluorinated unsaturated PFAS was achieved compared to the biological or electrochemical system alone. Two synergies in the bioelectrochemical system were identified: i) The in-series microbial-electrochemical defluorination and ii) the electrochemically enabled microbial defluorination of intermediates. These synergies at the material-microbe interfaces surpassed the limitation of microbial defluorination and further turned the biotransformation end products into less fluorinated products, which could be less toxic and more biodegradable in the environment. This material-microbe hybrid system brings opportunities in the bioremediation of PFAS driven by renewable electricity and warrants future research on mechanistic understanding of defluorinating and electroactive microorganisms at the material-microbe interface for system optimizations.


Asunto(s)
Biodegradación Ambiental , Anaerobiosis , Halogenación , Electrodos/microbiología , Fluorocarburos/metabolismo , Fluorocarburos/química , Técnicas Electroquímicas/métodos , Bacterias/metabolismo
3.
Nat Chem Biol ; 20(11): 1420-1433, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39327453

RESUMEN

Biomolecular condensation is a key mechanism for organizing cellular processes in a spatiotemporal manner. The phase-transition nature of this process defines a density transition of the whole solution system. However, the physicochemical features and the electrochemical functions brought about by condensate formation are largely unexplored. We here illustrate the fundamental principles of how the formation of condensates generates distinct electrochemical features in the dilute phase, the dense phase and the interfacial region. We discuss the principles by which these distinct chemical and electrochemical environments can modulate biomolecular functions through the effects brought about by water, ions and electric fields. We delineate the potential impacts on cellular behaviors due to the modulation of chemical and electrochemical environments through condensate formation. This Perspective is intended to serve as a general road map to conceptualize condensates as electrochemically active entities and to assess their functions from a physical chemistry aspect.


Asunto(s)
Condensados Biomoleculares , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Transición de Fase , Electroquímica , Agua/química , Humanos , Técnicas Electroquímicas/métodos , Iones/química , Iones/metabolismo
4.
Chem Rev ; 124(20): 11187-11241, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39377473

RESUMEN

Genetic code expansion is a promising genetic engineering technology that incorporates noncanonical amino acids into proteins alongside the natural set of 20 amino acids. This enables the precise encoding of non-natural chemical groups in proteins. This review focuses on the applications of genetic code expansion in bioelectrocatalysis and biomaterials. In bioelectrocatalysis, this technique enhances the efficiency and selectivity of bioelectrocatalysts for use in sensors, biofuel cells, and enzymatic electrodes. In biomaterials, incorporating non-natural chemical groups into protein-based polymers facilitates the modification, fine-tuning, or the engineering of new biomaterial properties. The review provides an overview of relevant technologies, discusses applications, and highlights achievements, challenges, and prospects in these fields.


Asunto(s)
Biocatálisis , Materiales Biocompatibles , Código Genético , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Técnicas Biosensibles , Aminoácidos/química , Aminoácidos/genética , Fuentes de Energía Bioeléctrica , Humanos , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Técnicas Electroquímicas , Ingeniería Genética
5.
Nat Mater ; 23(7): 969-976, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38671159

RESUMEN

Electrode arrays that interface with peripheral nerves are used in the diagnosis and treatment of neurological disorders; however, they require complex placement surgeries that carry a high risk of nerve injury. Here we leverage recent advances in soft robotic actuators and flexible electronics to develop highly conformable nerve cuffs that combine electrochemically driven conducting-polymer-based soft actuators with low-impedance microelectrodes. Driven with applied voltages as small as a few hundreds of millivolts, these cuffs allow active grasping or wrapping around delicate nerves. We validate this technology using in vivo rat models, showing that the cuffs form and maintain a self-closing and reliable bioelectronic interface with the sciatic nerve of rats without the use of surgical sutures or glues. This seamless integration of soft electrochemical actuators with neurotechnology offers a path towards minimally invasive intraoperative monitoring of nerve activity and high-quality bioelectronic interfaces.


Asunto(s)
Microelectrodos , Nervios Periféricos , Animales , Ratas , Nervios Periféricos/fisiología , Nervio Ciático/fisiología , Ratas Sprague-Dawley , Técnicas Electroquímicas/métodos
6.
Nat Mater ; 23(11): 1547-1555, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39112738

RESUMEN

Reusable point-of-care biosensors offer a cost-effective solution for serial biomarker monitoring, addressing the critical demand for tumour treatments and recurrence diagnosis. However, their realization has been limited by the contradictory requirements of robust reusability and high sensing capability to multiple interactions among transducer surface, sensing probes and target analytes. Here we propose a drug-mediated organic electrochemical transistor as a robust, reusable epidermal growth factor receptor sensor with striking sensitivity and selectivity. By electrostatically adsorbing protonated gefitinib onto poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and leveraging its strong binding to the epidermal growth factor receptor target, the device operates with a unique refresh-in-sensing mechanism. It not only yields an ultralow limit-of-detection concentration down to 5.74 fg ml-1 for epidermal growth factor receptor but, more importantly, also produces an unprecedented regeneration cycle exceeding 200. We further validate the potential of our devices for easy-to-use biomedical applications by creating an 8 × 12 diagnostic drug-mediated organic electrochemical transistor array with excellent uniformity to clinical blood samples.


Asunto(s)
Técnicas Biosensibles , Poliestirenos , Transistores Electrónicos , Técnicas Biosensibles/instrumentación , Poliestirenos/química , Receptores ErbB , Humanos , Técnicas Electroquímicas/instrumentación , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Polímeros/química
7.
Nat Mater ; 23(8): 1115-1122, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867019

RESUMEN

Continuous and in situ detection of biomarkers in biofluids (for example, sweat) can provide critical health data but is limited by biofluid accessibility. Here we report a sensor design that enables in situ detection of solid-state biomarkers ubiquitously present on human skin. We deploy an ionic-electronic bilayer hydrogel to facilitate the sequential dissolution, diffusion and electrochemical reaction of solid-state analytes. We demonstrate continuous monitoring of water-soluble analytes (for example, solid lactate) and water-insoluble analytes (for example, solid cholesterol) with ultralow detection limits of 0.51 and 0.26 nmol cm-2, respectively. Additionally, the bilayer hydrogel electrochemical interface reduces motion artefacts by a factor of three compared with conventional liquid-sensing electrochemical interfaces. In a clinical study, solid-state epidermal biomarkers measured by our stretchable wearable sensors showed a high correlation with biomarkers in human blood and dynamically correlated with physiological activities. These results present routes to universal platforms for biomarker monitoring without the need for biofluid acquisition.


Asunto(s)
Biomarcadores , Epidermis , Hidrogeles , Dispositivos Electrónicos Vestibles , Biomarcadores/sangre , Biomarcadores/análisis , Humanos , Hidrogeles/química , Epidermis/metabolismo , Electrónica , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos
8.
Mol Psychiatry ; 29(10): 3076-3085, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38664492

RESUMEN

With advances in our understanding regarding the neurochemical underpinnings of neurological and psychiatric diseases, there is an increased demand for advanced computational methods for neurochemical analysis. Despite having a variety of techniques for measuring tonic extracellular concentrations of neurotransmitters, including voltammetry, enzyme-based sensors, amperometry, and in vivo microdialysis, there is currently no means to resolve concentrations of structurally similar neurotransmitters from mixtures in the in vivo environment with high spatiotemporal resolution and limited tissue damage. Since a variety of research and clinical investigations involve brain regions containing electrochemically similar monoamines, such as dopamine and norepinephrine, developing a model to resolve the respective contributions of these neurotransmitters is of vital importance. Here we have developed a deep learning network, DiscrimNet, a convolutional autoencoder capable of accurately predicting individual tonic concentrations of dopamine, norepinephrine, and serotonin from both in vitro mixtures and the in vivo environment in anesthetized rats, measured using voltammetry. The architecture of DiscrimNet is described, and its ability to accurately predict in vitro and unseen in vivo concentrations is shown to vastly outperform a variety of shallow learning algorithms previously used for neurotransmitter discrimination. DiscrimNet is shown to generalize well to data captured from electrodes unseen during model training, eliminating the need to retrain the model for each new electrode. DiscrimNet is also shown to accurately predict the expected changes in dopamine and serotonin after cocaine and oxycodone administration in anesthetized rats in vivo. DiscrimNet therefore offers an exciting new method for real-time resolution of in vivo voltammetric signals into component neurotransmitters.


Asunto(s)
Aprendizaje Profundo , Dopamina , Neurotransmisores , Norepinefrina , Ratas Sprague-Dawley , Serotonina , Animales , Dopamina/metabolismo , Neurotransmisores/metabolismo , Ratas , Norepinefrina/metabolismo , Norepinefrina/análisis , Serotonina/metabolismo , Masculino , Técnicas Electroquímicas/métodos , Encéfalo/metabolismo , Algoritmos , Microdiálisis/métodos , Redes Neurales de la Computación
9.
Chem Rev ; 123(12): 7953-8039, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37262362

RESUMEN

Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Nanotecnología/métodos , Biomarcadores , Microfluídica
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35058361

RESUMEN

Bioelectrochemistry employs an array of high-surface-area meso- and macroporous electrode architectures to increase protein loading and the electrochemical current response. While the local chemical environment has been studied in small-molecule and heterogenous electrocatalysis, conditions in enzyme electrochemistry are still commonly established based on bulk solution assays, without appropriate consideration of the nonequilibrium conditions of the confined electrode space. Here, we apply electrochemical and computational techniques to explore the local environment of fuel-producing oxidoreductases within porous electrode architectures. This improved understanding of the local environment enabled simple manipulation of the electrolyte solution by adjusting the bulk pH and buffer pKa to achieve an optimum local pH for maximal activity of the immobilized enzyme. When applied to macroporous inverse opal electrodes, the benefits of higher loading and increased mass transport were employed, and, consequently, the electrolyte adjusted to reach -8.0 mA ⋅ cm-2 for the H2 evolution reaction and -3.6 mA ⋅ cm-2 for the CO2 reduction reaction (CO2RR), demonstrating an 18-fold improvement on previously reported enzymatic CO2RR systems. This research emphasizes the critical importance of understanding the confined enzymatic chemical environment, thus expanding the known capabilities of enzyme bioelectrocatalysis. These considerations and insights can be directly applied to both bio(photo)electrochemical fuel and chemical synthesis, as well as enzymatic fuel cells, to significantly improve the fundamental understanding of the enzyme-electrode interface as well as device performance.


Asunto(s)
Técnicas Electroquímicas , Electroquímica , Enzimas/química , Algoritmos , Tampones (Química) , Electrodos , Electrólitos/química , Microelectrodos , Estructura Molecular , Porosidad , Relación Estructura-Actividad
11.
Proc Natl Acad Sci U S A ; 119(34): e2208060119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972962

RESUMEN

As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.


Asunto(s)
Técnicas Biosensibles , Óxido Nítrico , Osteoartritis , Tecnología Inalámbrica , Animales , Técnicas Biosensibles/métodos , Enfermedad Crónica , Diagnóstico Precoz , Técnicas Electroquímicas/métodos , Electrodos , Óxido Nítrico/análisis , Osteoartritis/diagnóstico , Conejos
12.
Chem Soc Rev ; 53(15): 7960-7982, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38985007

RESUMEN

The rapid advancements in nucleic acid-based electrochemical sensors for implantable and wearable applications have marked a significant leap forward in the domain of personal healthcare over the last decade. This technology promises to revolutionize personalized healthcare by facilitating the early diagnosis of diseases, monitoring of disease progression, and tailoring of individual treatment plans. This review navigates through the latest developments in this field, focusing on the strategies for nucleic acid sensing that enable real-time and continuous biomarker analysis directly in various biofluids, such as blood, interstitial fluid, sweat, and saliva. The review delves into various nucleic acid sensing strategies, emphasizing the innovative designs of biorecognition elements and signal transduction mechanisms that enable implantable and wearable applications. Special perspective is given to enhance nucleic acid-based sensor selectivity and sensitivity, which are crucial for the accurate detection of low-level biomarkers. The integration of such sensors into implantable and wearable platforms, including microneedle arrays and flexible electronic systems, actualizes their use in on-body devices for health monitoring. We also tackle the technical challenges encountered in the development of these sensors, such as ensuring long-term stability, managing the complexity of biofluid dynamics, and fulfilling the need for real-time, continuous, and reagentless detection. In conclusion, the review highlights the importance of these sensors in the future of medical engineering, offering insights into design considerations and future research directions to overcome existing limitations and fully realize the potential of nucleic acid-based electrochemical sensors for healthcare applications.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Ácidos Nucleicos , Dispositivos Electrónicos Vestibles , Humanos , Ácidos Nucleicos/análisis , Biomarcadores/análisis , Biomarcadores/sangre
13.
Nano Lett ; 24(31): 9768-9775, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39057181

RESUMEN

Excessive production of waste polyethylene terephthalate (PET) poses an ecological challenge, which necessitates developing technologies to extract the values from end-of-life PET. Upcycling has proven effective in addressing the low profitability of current recycling strategies, yet existing upcycling technologies operate under energy-intensive conditions. Here we report a cascade strategy to steer the transformation of PET waste into glycolate in an overall yield of 92.6% under ambient conditions. The cascade approach involves setting up a robust hydrolase with 95.6% PET depolymerization into ethylene glycol (EG) monomer within 12 h, followed by an electrochemical process initiated by a CO-tolerant Pd/Ni(OH)2 catalyst to convert the EG intermediate into glycolate with high Faradaic efficiency of 97.5%. Techno-economic analysis and life cycle assessment indicate that, compared with the widely adopted electrochemical technology that heavily relies on alkaline pretreatment for PET depolymerization, our designed enzymatic-electrochemical approach offers a cost-effective and low-carbon pathway to upgrade PET.


Asunto(s)
Técnicas Electroquímicas , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Catálisis , Glicol de Etileno/química , Poliésteres/química , Reciclaje , Hidrolasas/química
14.
Nano Lett ; 24(31): 9591-9597, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39051981

RESUMEN

Spinel oxides have emerged as a promising candidate in the realm of nanozymes with variable oxidation states, while their limited active sites and low conductivity hinder further application. In this work, we synthesize a series of metal-doped NiCo2O4 nanospheres decorated with Pd, which are deployed as highly efficient nanozymes for the detection of cancer biomarkers. Through meticulous modulation of the molar ratio between NiCo2O4 and Pd, we orchestrated precise control over the oxygen vacancies and electronic structure within the nanozymes, a key factor in amplifying the catalytic prowess. Leveraging the superior H2O2 reduction catalytic properties of Fe-NiCo2O4@Pd, we have successfully implemented its application in the electrochemical detection of biomarkers, achieving unparalleled analytical performance, much higher than that of Pd/C and other reported nanozymes. This research paves the way for innovative electron modification strategies in the design of high-performance nanozymes, presenting a formidable tool for clinical diagnostic analyses.


Asunto(s)
Cobalto , Peróxido de Hidrógeno , Óxidos , Paladio , Catálisis , Paladio/química , Cobalto/química , Óxidos/química , Peróxido de Hidrógeno/química , Oxidación-Reducción , Níquel/química , Humanos , Técnicas Electroquímicas
15.
Nano Lett ; 24(39): 12233-12238, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39287191

RESUMEN

MicroRNAs (MiRNAs) are valuable biomarkers for the diagnosis and prognosis of diseases. The development of reliable assays is an urgent pursuit. We herein fabricate a novel electrochemical sensing strategy based on the conformation transitions of DNA nanostructures and click chemistry. Duplex-specific nuclease (DSN)-catalyzed reaction is first used for the disintegration of the DNA triangular pyramid frustum (DNA TPF). A DNA triangle is formed, which in turn assists strain-promoted alkyne-azide cycloaddition (SPAAC) to localize single-stranded DNA probes (P1). After SPAAC ligation, multiple DNA hairpins are spontaneously folded, and the labeled electrochemical species are dragged near the electrode interface. By recording and analyzing the responses, a highly sensitive electrochemical biosensor is established, which exhibits high sensitivity and reproducibility. Clinical applications have been verified with good stability. This sensing strategy relies on the integration of DNA nanostructures and click chemistry, which may inspire further designs for the development of DNA nanotechnology and applications in clinical chemistry.


Asunto(s)
Técnicas Biosensibles , Química Clic , ADN , Técnicas Electroquímicas , Nanoestructuras , Técnicas Biosensibles/métodos , Nanoestructuras/química , Técnicas Electroquímicas/métodos , ADN/química , Humanos , Reacción de Cicloadición , MicroARNs/análisis , Alquinos/química , Azidas/química , Nanotecnología/métodos , Conformación de Ácido Nucleico , Sondas de ADN/química
16.
Nano Lett ; 24(17): 5301-5307, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38625005

RESUMEN

The accurate diagnosis of diabetic nephropathy relies on achieving ultrasensitive biosensing for biomarker detection. However, existing biosensors face challenges such as poor sensitivity, complexity, time-consuming procedures, and high assay costs. To address these limitations, we report a WS2-based plasmonic biosensor for the ultrasensitive detection of biomarker candidates in clinical human urine samples associated with diabetic nephropathy. Leveraging plasmonic-based electrochemical impedance microscopy (P-EIM) imaging, we observed a remarkable charge sensitivity in monolayer WS2 single crystals. Our biosensor exhibits an exceptionally low detection limit (0.201 ag/mL) and remarkable selectivity in detecting CC chemokine ligand 2 (CCL2) protein biomarkers, outperforming conventional techniques such as ELISA. This work represents a breakthrough in traditional protein sensors, providing a direction and materials foundation for developing ultrasensitive sensors tailored to clinical applications for biomarker sensing.


Asunto(s)
Biomarcadores , Técnicas Biosensibles , Quimiocina CCL2 , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/orina , Nefropatías Diabéticas/diagnóstico , Técnicas Biosensibles/métodos , Quimiocina CCL2/orina , Biomarcadores/orina , Límite de Detección , Técnicas Electroquímicas/métodos
17.
Nano Lett ; 24(23): 6939-6947, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814180

RESUMEN

The risk of harmful microorganisms to ecosystems and human health has stimulated exploration of singlet oxygen (1O2)-based disinfection. It can be potentially generated via an electrocatalytic process, but is limited by the low production yield and unclear intermediate-mediated mechanism. Herein, we designed a two-site catalyst (Fe/Mo-N/C) for the selective 1O2 generation. The Mo sites enhance the generation of 1O2 precursors (H2O2), accompanied by the generation of intermediate •HO2/•O2-. The Fe site facilitates activation of H2O2 into •OH, which accelerates the •HO2/•O2- into 1O2. A possible mechanism for promoting 1O2 production through the ROS-mediated chain reaction is reported. The as-developed electrochemical disinfection system can kill 1 × 107 CFU mL-1 of E. coli within 8 min, leading to cell membrane damage and DNA degradation. It can be effectively applied for the disinfection of medical wastewater. This work provides a general strategy for promoting the production of 1O2 through electrocatalysis and for efficient electrochemical disinfection.


Asunto(s)
Desinfección , Escherichia coli , Peróxido de Hidrógeno , Oxidación-Reducción , Oxígeno Singlete , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Desinfección/métodos , Catálisis , Escherichia coli/metabolismo , Peróxido de Hidrógeno/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/química , Técnicas Electroquímicas , Molibdeno/química , Hierro/química , Aguas Residuales/química , Aguas Residuales/microbiología
18.
J Biol Chem ; 299(3): 103011, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36781124

RESUMEN

Tau protein's reversible assembly and binding of microtubules in brain neurons are regulated by charge-neutralizing phosphorylation, while its hyperphosphorylation drives the irreversible formation of cytotoxic filaments associated with neurodegenerative diseases. However, the structural changes that facilitate these diverse functions are unclear. Here, we analyzed K18, a core peptide of tau, using newly developed spectroelectrochemical instrumentation that enables electroreduction as a surrogate for charge neutralization by phosphorylation, with simultaneous, real-time quantitative analyses of the resulting conformational transitions and assembly. We observed a tipping point between behaviors that paralleled the transition between tau's physiologically required, reversible folding and assembly and the irreversibility of assemblies. The resulting rapidly electroassembled structures represent the first fibrillar tangles of K18 that have been formed in vitro at room temperature without using heparin or other charge-complementary anionic partners. These methods make it possible to (i) trigger and analyze in real time the early stages of conformational transitions and assembly without the need for preformed seeds, heterogenous coacervation, or crowding; (ii) kinetically resolve and potentially isolate never-before-seen early intermediates in these processes; and (iii) develop assays for additional factors and mechanisms that can direct the trajectory of assembly from physiologically benign and reversible to potentially pathological and irreversible structures. We anticipate wide applicability of these methods to other amyloidogenic systems and beyond.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Microtúbulos/metabolismo , Péptidos/metabolismo , Fosforilación , Proteínas tau/metabolismo , Técnicas Electroquímicas
19.
Crit Rev Clin Lab Sci ; 61(6): 473-495, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38450458

RESUMEN

Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.


Asunto(s)
Técnicas Biosensibles , Detección Precoz del Cáncer , Técnicas Electroquímicas , Neoplasias , Humanos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Detección Precoz del Cáncer/métodos , Neoplasias/diagnóstico , Biomarcadores de Tumor/análisis , ADN/análisis , ARN/análisis
20.
J Am Chem Soc ; 146(33): 22982-22992, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39132893

RESUMEN

Incorporation of C(sp3)-F bonds in biologically active compounds is a common strategy employed in medicinal and agricultural chemistry to tune pharmacokinetic and pharmacodynamic properties. Due to the limited number of robust strategies for C(sp3)-H fluorination of complex molecules, time-consuming de novo syntheses of such fluorinated analogs are typically required, representing a major bottleneck in the drug discovery process. In this work, we present a general and operationally simple strategy for site-specific ß-C(sp3)-H fluorination of amine derivatives including carbamates, amides, and sulfonamides, which is compatible with a wide range of functional groups including N-heteroarenes. In this approach, an improved electrochemical Shono oxidation is used to set the site of functionalization via net α,ß-desaturation to access enamine derivatives. We further developed a series of new transformations of these enamine intermediates to synthesize a variety of ß-fluoro-α-functionalized structures, allowing efficient access to pertinent targets to accelerate drug discovery campaigns.


Asunto(s)
Aminas , Halogenación , Aminas/química , Estructura Molecular , Técnicas Electroquímicas , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda