Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Genes Dev ; 35(9-10): 713-728, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888555

RESUMEN

MED1 often serves as a surrogate of the general transcription coactivator complex Mediator for identifying active enhancers. MED1 is required for phenotypic conversion of fibroblasts to adipocytes in vitro, but its role in adipose development and expansion in vivo has not been reported. Here, we show that MED1 is not generally required for transcription during adipogenesis in culture and that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of fatty acid and triglyceride synthesis genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. During adipogenesis, MED1 is dispensable for induction of lineage-determining transcription factors (TFs) PPARγ and C/EBPα but is required for lipid accumulation in the late phase of differentiation. Mechanistically, MED1 controls the induction of lipogenesis genes by facilitating lipogenic TF ChREBP- and SREBP1a-dependent recruitment of Mediator to active enhancers. Together, our findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion.


Asunto(s)
Tejido Adiposo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Lipogénesis/genética , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/embriología , Animales , Células Cultivadas , Dieta , Ratones , Unión Proteica/genética
2.
Nature ; 510(7503): 76-83, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24899307

RESUMEN

Our understanding of adipose tissue biology has progressed rapidly since the turn of the century. White adipose tissue has emerged as a key determinant of healthy metabolism and metabolic dysfunction. This realization is paralleled only by the confirmation that adult humans have heat-dissipating brown adipose tissue, an important contributor to energy balance and a possible therapeutic target for the treatment of metabolic disease. We propose that the development of successful strategies to target brown and white adipose tissues will depend on investigations that elucidate their developmental origins and cell-type-specific functional regulators.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Adipocitos/patología , Adipogénesis , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/inervación , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/embriología , Tejido Adiposo Blanco/inervación , Tejido Adiposo Blanco/patología , Animales , Humanos , Lipólisis , Obesidad/metabolismo , Obesidad/patología , Sistema Nervioso Simpático/metabolismo , Termogénesis
3.
Breast J ; 24(2): 199-202, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28786166

RESUMEN

This paper aims to review the concept of hibernomas, with focus on their occurrence, in the breast. It will make reference to a specific case from the Helen Joseph Hospital's Breast Clinic situated in Johannesburg, South Africa. We describe the clinical, radiological and pathological findings in a patient as well as the final diagnosis and treatment (in the form of surgery). This report emphasizes the distinguishable features of hibernomas, and gives guidance as to the surgical approach in large hibernomas stressing the ease of achieving cosmesis without major oncoplastic techniques. More specifically, discussion as whether these rapidly growing, nonrecurring, usually encapsulated growths consisting of brown fat tissue similar to that found in hibernating animals arise from the breast or the underlying muscle is considered.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Lipoma/diagnóstico , Neoplasias de los Tejidos Blandos/diagnóstico , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/patología , Biopsia , Neoplasias de la Mama/embriología , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Femenino , Humanos , Lipoma/embriología , Lipoma/patología , Lipoma/cirugía , Mamografía , Persona de Mediana Edad , Neoplasias de los Tejidos Blandos/embriología , Neoplasias de los Tejidos Blandos/patología , Neoplasias de los Tejidos Blandos/cirugía , Ultrasonografía
4.
Proc Natl Acad Sci U S A ; 112(16): 5069-74, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25848030

RESUMEN

Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to Hedgehog (Hh) signaling. Furthermore, cell-autonomous activation of Hh signaling blocks early brown-preadipocyte differentiation, inhibits BAT formation in vivo, and results in replacement of neck BAT with poorly differentiated skeletal muscle. Finally, we show that Hh signaling inhibits BAT formation partially through up-regulation of chicken ovalbumin upstream promoter transcription factor II (COUP-TFII). Taken together, our studies uncover a previously unidentified role for Hh as an inhibitor of BAT development.


Asunto(s)
Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/citología , Animales , Factor de Transcripción COUP II/metabolismo , Diferenciación Celular/genética , Cilios/metabolismo , Ratones , Transducción de Señal/genética , Regulación hacia Arriba/genética
5.
Proc Natl Acad Sci U S A ; 111(40): 14466-71, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25197048

RESUMEN

Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α(+), myogenic factor 5(Cre)-lineage-marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2(GFP) embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Adipocitos/citología , Adipogénesis/genética , Tejido Adiposo/citología , Tejido Adiposo/embriología , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/embriología , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/embriología , Tejido Adiposo Blanco/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Biochim Biophys Acta ; 1851(5): 686-96, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25668679

RESUMEN

In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Factores de Transcripción/metabolismo , Adipoquinas/metabolismo , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/crecimiento & desarrollo , Tejido Adiposo Blanco/embriología , Tejido Adiposo Blanco/crecimiento & desarrollo , Adiposidad , Animales , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Humanos , Lipogénesis , Lipólisis , Morfogénesis , Transducción de Señal , Factores de Transcripción/genética
7.
Annu Rev Nutr ; 35: 295-320, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26076904

RESUMEN

There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.


Asunto(s)
Tejido Adiposo Pardo/crecimiento & desarrollo , Tejido Adiposo Pardo/fisiología , Adipocitos/clasificación , Adipocitos/fisiología , Tejido Adiposo/embriología , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo Pardo/embriología , Tejido Adiposo Blanco/fisiología , Animales , Dieta , Metabolismo Energético/fisiología , Epigénesis Genética , Femenino , Desarrollo Fetal , Edad Gestacional , Humanos , Canales Iónicos/fisiología , Fenómenos Fisiologicos Nutricionales Maternos , Proteínas Mitocondriales/fisiología , Embarazo , Termogénesis/fisiología , Proteína Desacopladora 1
8.
Am J Physiol Endocrinol Metab ; 308(12): E1043-55, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25898954

RESUMEN

Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium.


Asunto(s)
Tejido Adiposo Pardo/trasplante , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Tejido Adiposo Pardo/embriología , Animales , Glucemia/metabolismo , Embrión de Mamíferos , Femenino , Trasplante de Tejido Fetal , Resistencia a la Insulina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Embarazo
9.
BMC Dev Biol ; 14: 24, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24886590

RESUMEN

BACKGROUND: Chloride Intracellular Channel 4 (CLIC4) is one of seven members in the closely related CLIC protein family. CLIC4 is involved in multiple cellular processes including apoptosis, cellular differentiation, inflammation and endothelial tubulogenesis. Despite over a decade of research, no comprehensive in situ expression analysis of CLIC4 in a living organism has been reported. In order to fulfill this goal, we generated a knock-in mouse to express Green Fluorescent Protein (GFP) from the CLIC4 locus, thus substituting the GFP coding region for CLIC4. We used GFP protein expression to eliminate cross reaction with other CLIC family members. RESULTS: We analyzed CLIC4 expression during embryonic development and adult organs. During mid and late gestation, CLIC4 expression is modulated particularly in fetal brain, heart, thymus, liver and kidney as well as in developing brown adipose tissue and stratifying epidermis. In the adult mouse, CLIC4 is highly expressed globally in vascular endothelial cells as well as in liver, lung alveolar septae, pancreatic acini, spermatogonia, renal proximal tubules, cardiomyocytes and thymic epithelial cells. Neural expression included axonal tracks, olfactory bulb, Purkinje cell layer and dentate gyrus. Renal CLIC4 expression was most pronounced in proximal tubules, although altered renal function was not detected in the absence of CLIC4. Myeloid cells and B cells of the spleen are rich in CLIC4 expression as are CD4 and CD8 positive T cells. CONCLUSIONS: In a comprehensive study detailing CLIC4 expression in situ in a mouse model that excludes cross reaction with other family members, we were able to document previously unreported expression for CLIC4 in developing fetus, particularly the brain. In addition, compartmentalized expression of CLIC4 in specific adult tissues and cells provides a focus to explore potential functions of this protein not addressed previously.


Asunto(s)
Canales de Cloruro/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Mitocondriales/genética , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/crecimiento & desarrollo , Tejido Adiposo Pardo/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Canales de Cloruro/metabolismo , Epidermis/embriología , Epidermis/crecimiento & desarrollo , Epidermis/metabolismo , Corazón Fetal/embriología , Corazón Fetal/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Corazón/crecimiento & desarrollo , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Riñón/embriología , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Hígado/embriología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Proteínas Mitocondriales/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Timo/embriología , Timo/crecimiento & desarrollo , Timo/metabolismo
10.
FASEB J ; 27(8): 3257-71, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23682123

RESUMEN

Vascular endothelial growth factor (VEGF) is critical for angiogenesis, but also has pleiotropic effects on several nonvascular cells. Our aim was to investigate the role of VEGF in brown adipose tissue (BAT). We show that VEGF expression increases 2.5-fold during differentiation of cultured murine brown adipocytes and that VEGF receptor-2 is phosphorylated, indicating VEGF signaling. VEGF increased proliferation in brown preadipocytes in vitro by 70%, and blockade of VEGF signaling using anti-VEGFR2 antibody DC101 increased brown adipocyte apoptosis, as determined by cell number and activation of caspase 3. Systemic VEGF neutralization in mice, accomplished by adenoviral expression of soluble Flt1, resulted in 7-fold increase in brown adipocyte apoptosis, mitochondrial degeneration, and increased mitophagy compared to control mice expressing a null adenovirus. Absence of the heparan sulfate-binding VEGF isoforms, VEGF164 and VEGF188, resulted in abnormal BAT development in mice at E15.5, with fewer brown adipocytes and lower mitochondrial protein compared to wild-type littermates. These results suggest a role for VEGF in brown adipocytes and preadipocytes to promote survival, proliferation, and normal mitochondria and development.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/embriología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Caspasa 3/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
11.
Biochem J ; 453(2): 167-78, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23805974

RESUMEN

Obesity represents a major risk factor for the development of several of our most common medical conditions, including Type 2 diabetes, dyslipidaemia, non-alcoholic fatty liver, cardiovascular disease and even some cancers. Although increased fat mass is the main feature of obesity, not all fat depots are created equal. Adipocytes found in white adipose tissue contain a single large lipid droplet and play well-known roles in energy storage. By contrast, brown adipose tissue is specialized for thermogenic energy expenditure. Owing to its significant capacity to dissipate energy and regulate triacylglycerol (triglyceride) and glucose metabolism, and its demonstrated presence in adult humans, brown fat could be a potential target for the treatment of obesity and metabolic syndrome. Undoubtedly, fundamental knowledge about the formation of brown fat and regulation of its activity is imperatively needed to make such therapeutics possible. In the present review, we integrate the recent advancements on the regulation of brown fat formation and activity by developmental and hormonal signals in relation to its metabolic function.


Asunto(s)
Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/fisiología , Animales , Humanos , Enfermedades Metabólicas/fisiopatología , Obesidad/metabolismo , Células Madre/citología , Termogénesis
12.
Diabetologia ; 55(6): 1597-606, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22402988

RESUMEN

Adipose tissue function changes with development. In the newborn, brown adipose tissue (BAT) is essential for ensuring effective adaptation to the extrauterine environment, and its growth during gestation is largely dependent on glucose supply from the mother to the fetus. The amount, location and type of adipose tissue deposited can also determine fetal glucose homeostasis. Adipose tissue first appears at around mid-gestation. Total adipose mass then increases through late gestation, when it comprises a mixture of white and brown adipocytes. BAT possesses a unique uncoupling protein, UCP1, which is responsible for the rapid generation of large amounts of heat at birth. Then, during postnatal life some, but not all, depots are replaced by white fat. This process can be utilised to investigate the physiological conversion of brown to white fat, and how it is re-programmed by nutritional changes in pre- and postnatal environments. A reduction in early BAT deposition may perpetuate through the life cycle, thereby suppressing energy expenditure and ultimately promoting obesity. Normal fat development profiles in the offspring are modified by changes in maternal diet at defined stages of pregnancy, ultimately leading to adverse long-term outcomes. For example, excess macrophage accumulation and the onset of insulin resistance occur in an adipose tissue depot-specific manner in offspring born to mothers fed a suboptimal diet from early to mid-gestation. In conclusion, the growth of the different fetal adipose tissue depots varies according to maternal diet and, if challenged in later life, this can contribute to insulin resistance and impaired glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Desarrollo Fetal/fisiología , Tejido Adiposo Pardo/embriología , Tejido Adiposo Blanco/embriología , Animales , Femenino , Desarrollo Fetal/genética , Humanos , Resistencia a la Insulina , Modelos Biológicos , Embarazo
13.
J Cell Physiol ; 227(4): 1688-700, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21678425

RESUMEN

Epidemiological and fetal programming studies point to the role of fetal growth in adult adipose tissue (AT) mass in large mammals. Despite the incidence of fetal AT growth for human health and animal production outcomes, there is still a lack of relevant studies. We determined the cellular and large-scale-molecular features of bovine fetal perirenal AT sampled at 110, 180, 210, and 260 days post-conception (dpc) with the aim of identifying key cellular and molecular events in AT growth. The increase in AT weight from 110 to 260 dpc resulted from an increase in adipocyte volume and particularly adipocyte number that were concomitant with temporal changes in the abundance of 142 proteins revealed by proteomics. At 110 and 180 dpc, we identified proteins such as TCP1, FKBP4, or HSPD1 that may regulate adipocyte precursor proliferation by controlling cell-cycle progression and/or apoptosis or delaying PPARγ-induced differentiation. From 180 dpc, the up-regulation of PPARγ-induced proteins, lipogenic and lipolytic enzymes, and adipokine expression may underpin the differentiation and increase in adipocyte volume. Also from 180 dpc, we unexpectedly observed up-regulations in the ß-subunit of ATP synthase, which is normally bypassed in brown AT, as well as in aldehyde dehydrogenases ALDH2 and ALDH9A1, which were predominantly expressed in mouse white AT. These results, together with the observed abundant unilocular adipocytes at 180 and 260 dpc, strongly suggest that fetal bovine perirenal AT has much more in common with white than with brown AT.


Asunto(s)
Tejido Adiposo Pardo/embriología , Bovinos/embriología , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/embriología , Tejido Adiposo Blanco/metabolismo , Animales , Apoptosis , Bovinos/metabolismo , Recuento de Células , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Edad Gestacional , Humanos , Riñón/embriología , Lipogénesis , Lipólisis , Ratones , Modelos Animales , Embarazo , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad de la Especie
14.
Annu Rev Nutr ; 31: 33-47, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21548774

RESUMEN

We here discuss the role of brown adipose tissue on energy homeostasis and assess its potential as a target for body weight management. Because of their high number of mitochondria and the presence of uncoupling protein 1, brown fat adipocytes can be termed as energy inefficient for adenosine-5'-triphosphate (ATP) production but energy efficient for heat production. Thus, the energy inefficiency of ATP production, despite high energy substrate oxidation, allows brown adipose tissue to generate heat for body temperature regulation. Whether such thermogenic property also plays a role in body weight regulation is still debated. The recent (re)discovery of brown adipose tissue in human adults and a better understanding of brown adipose tissue development have encouraged the quest for new alternatives to treat obesity since obese individuals seem to have less brown adipose tissue mass/activity than do their lean counterparts. In this review, we discuss the physiological relevance of brown adipose tissue on thermogenesis and its potential usefulness on body weight control in humans.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/crecimiento & desarrollo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Adulto , Animales , Peso Corporal , Niño , Metabolismo Energético , Humanos , Recién Nacido , Mitocondrias/metabolismo , Termogénesis
15.
J Nutr Biochem ; 100: 108908, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34801687

RESUMEN

Succinic acid widely exists in foods and is used as a food additive. Succinate not only serves as an energy substrate, but also induces protein succinylation. Histone succinylation activates gene transcription. The brown adipose tissue (BAT) is critical for prevention of obesity and metabolic dysfunction, and the fetal stage is pivotal for BAT development. Up to now, the role of maternal succinate supplementation on fetal BAT development and offspring BAT function remains unexamined. To test, female C57BL/6J mice (2-month-old) were separated into 2 groups, received with or without 0.5% succinic acid in drinking water during gestation and lactation. After weaning, female offspring were challenged with high fat diet (HFD) for 12 weeks. Newborn, female weanling, and HFD female offspring mice were analyzed. For neonatal and weaning mice, the BAT weight relative to the whole body weight was significantly increased in the succinate group. The expression of PGC-1α, a key transcription co-activator promoting mitochondrial biogenesis, was elevated in BAT of female neonatal and offspring born to succinate-fed dams. Consistently, maternal succinate supplementation enhanced thermogenesis and the expression of thermogenic genes in offspring BAT. Additionally, maternal succinate supplementation protected female offspring against HFD-induced obesity. Furthermore, in C3H10T1/2 cells, succinate supplementation promoted PGC-1α expression and brown adipogenesis. Mechanistically, succinate supplementation increased permissive histone succinylation and H3K4me3 modification in the Ppargc1a promoter, which correlated with the higher expression of Ppargc1a. In conclusion, maternal succinate supplementation during pregnancy and lactation enhanced fetal BAT development and offspring BAT thermogenesis, which prevented HFD-induced obesity and metabolism dysfunction in offspring.


Asunto(s)
Adipogénesis , Tejido Adiposo Pardo/embriología , Suplementos Dietéticos , Ácido Succínico/administración & dosificación , Termogénesis , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/fisiología , Animales , Animales Recién Nacidos , Línea Celular , Dieta Alta en Grasa , Femenino , Código de Histonas , Histonas/metabolismo , Lactancia , Ratones , Ratones Endogámicos C57BL , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Embarazo , Regiones Promotoras Genéticas
16.
Curr Opin Cell Biol ; 11(6): 689-94, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10600710

RESUMEN

Studies from the past several years have revealed that adipogenesis is controlled by an interplay of transcription factors, including members of the CCAAT/enhancer binding protein family and peroxisome proliferator activated receptor gamma. In addition to providing a new understanding of this aspect of the energy balance systems, these factors provide potential new targets for therapeutic intervention in metabolic diseases, such as obesity and type 2 diabetes mellitus.


Asunto(s)
Tejido Adiposo/embriología , Transcripción Genética , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Diabetes Mellitus/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Obesidad/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
17.
Biochim Biophys Acta Gene Regul Mech ; 1863(1): 194437, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730826

RESUMEN

Browning of white adipocytes (WAs) (also referred as beige cells) was demonstrated to execute thermogenesis by consuming stored lipids as do brown adipocytes (BAs), and this is highly related to metabolic homeostasis. Alternative splicing (AS) constitutes a pivotal mechanism for defining cellular fates and functional specifications. Nevertheless, the impacts of AS regulation on the browning of WAs have not been comprehensively investigated. In this study, we first identified the discriminative expression and splicing profiles of the muscleblind-like 1 (MBNL1) gene in postnatal brown adipose tissues (BATs) compared to those of embryonic BATs. A shift in the MBNL1+ex 5 isoform 7 (MBNL17) to MBNL1-ex 5 isoform 1 (MBNL11) was characterized throughout BAT development or during the in vitro browning of pre-WAs, 3T3-L1 cells. The interplay between MBNL1 and the exonic CCUG motif constitutes an autoregulatory mechanism for excluding MBNL1 exon 5. The simultaneous association of RNA-binding motif protein 4a (RBM4a) with exonic and intronic CU elements collaboratively mediates the skipping of MBNL1 exon 5. Overexpressing the MBNL11 isoform exhibited a more-prominent effect than that of the MBNL17 isoform on programming its own transcripts and beige cell-related splicing events in a CCUG motif-mediated manner. In addition to splicing regulation, overexpression of the MBNL11 and MBNL17 isoforms differentially enhanced beige adipogenic signatures of 3T3-L1 cells. Our findings demonstrated that MBNL1 constitutes an emerging and autoregulatory mechanism involved in development of beige cells.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/crecimiento & desarrollo , Empalme Alternativo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética , Células 3T3-L1 , Tejido Adiposo Pardo/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Exones , Ratones , Ratones Endogámicos C57BL , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo
18.
Cell Rep ; 29(6): 1410-1418.e6, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693883

RESUMEN

Browning induction or transplantation of brown adipose tissue (BAT) or brown/beige adipocytes derived from progenitor or induced pluripotent stem cells (iPSCs) can represent a powerful strategy to treat metabolic diseases. However, our poor understanding of the mechanisms that govern the differentiation and activation of brown adipocytes limits the development of such therapy. Various genetic factors controlling the differentiation of brown adipocytes have been identified, although most studies have been performed using in vitro cultured pre-adipocytes. We investigate here the differentiation of brown adipocytes from adipose progenitors in the mouse embryo. We demonstrate that the formation of multiple lipid droplets (LDs) is initiated within clusters of glycogen, which is degraded through glycophagy to provide the metabolic substrates essential for de novo lipogenesis and LD formation. Therefore, this study uncovers the role of glycogen in the generation of LDs.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipogénesis/genética , Tejido Adiposo Pardo/metabolismo , Embrión de Mamíferos/metabolismo , Glucógeno/metabolismo , Gotas Lipídicas/metabolismo , Adipocitos Marrones/ultraestructura , Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/ultraestructura , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Glucógeno/ultraestructura , Humanos , Gotas Lipídicas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Interferente Pequeño , Transcriptoma
19.
J Physiol ; 586(16): 4017-27, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18599539

RESUMEN

Although the fetal pineal gland does not secrete melatonin, the fetus is exposed to melatonin of maternal origin. In the non-human primate fetus, melatonin acts as a trophic hormone for the adrenal gland, stimulating growth while restraining cortisol production. This latter physiological activity led us to hypothesize that melatonin may influence some fetal functions critical for neonatal adaptation to extrauterine life. To test this hypothesis we explored (i) the presence of G-protein-coupled melatonin binding sites and (ii) the direct modulatory effects of melatonin on noradrenaline (norepinephrine)-induced middle cerebral artery (MCA) contraction, brown adipose tissue (BAT) lypolysis and ACTH-induced adrenal cortisol production in fetal sheep. We found that melatonin directly inhibits the response to noradrenaline in the MCA and BAT, and also inhibits the response to ACTH in the adrenal gland. Melatonin inhibition was reversed by the melatonin antagonist luzindole only in the fetal adrenal. MCA, BAT and adrenal tissue displayed specific high-affinity melatonin binding sites coupled to G-protein (K(d) values: MCA 64 +/- 1 pm, BAT 98.44 +/- 2.12 pm and adrenal 4.123 +/- 3.22 pm). Melatonin binding was displaced by luzindole only in the adrenal gland, supporting the idea that action in the MCA and BAT is mediated by different melatonin receptors. These direct inhibitory responses to melatonin support a role for melatonin in fetal physiology, which we propose prevents major contraction of cerebral vessels, restrains cortisol release and restricts BAT lypolysis during fetal life.


Asunto(s)
Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/fisiología , Glándulas Suprarrenales/embriología , Glándulas Suprarrenales/fisiología , Melatonina/administración & dosificación , Melatonina/fisiología , Arteria Cerebral Media/embriología , Arteria Cerebral Media/fisiología , Tejido Adiposo Pardo/efectos de los fármacos , Glándulas Suprarrenales/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Arteria Cerebral Media/efectos de los fármacos , Ovinos , Resistencia Vascular/efectos de los fármacos , Resistencia Vascular/fisiología
20.
J Endocrinol ; 238(1): R53-R62, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29789429

RESUMEN

Although brown adipose tissue (BAT) is one of the smallest organs in the body, it has the potential to have a substantial impact on both heat production as well as fat and carbohydrate metabolism. This is most apparent at birth, which is characterised with the rapid appearance and activation of the BAT specific mitochondrial uncoupling protein (UCP)1 in many large mammals. The amount of brown fat then gradually declines with age, an adaptation that can be modulated by the thermal environment. Given the increased incidence of maternal obesity and its potential transmission to the mother's offspring, increasing BAT activity in the mother could be one mechanism to prevent this cycle. To date, however, all rodent studies investigating maternal obesity have been conducted at standard laboratory temperature (21°C), which represents an appreciable cold challenge. This could also explain why offspring weight is rarely increased, suggesting that future studies would benefit from being conducted at thermoneutrality (~28°C). It is also becoming apparent that each fat depot has a unique transcriptome and show different developmental pattern, which is not readily apparent macroscopically. These differences could contribute to the retention of UCP1 within the supraclavicular fat depot, the most active depot in adult humans, increasing heat production following a meal. Despite the rapid increase in publications on BAT over the past decade, the extent to which modifications in diet and/or environment can be utilised to promote its activity in the mother and/or her offspring remains to be established.


Asunto(s)
Tejido Adiposo Pardo/embriología , Tejido Adiposo Pardo/fisiología , Reproducción/fisiología , Tejido Adiposo Pardo/crecimiento & desarrollo , Animales , Peso Corporal/fisiología , Femenino , Humanos , Masculino , Obesidad/metabolismo , Obesidad/fisiopatología , Embarazo , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Termogénesis/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda