Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.666
Filtrar
Más filtros

Publication year range
1.
Nature ; 629(8012): 652-659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693261

RESUMEN

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Asunto(s)
Susceptibilidad a Enfermedades , Disbiosis , Padre , Microbioma Gastrointestinal , Insuficiencia Placentaria , Lesiones Prenatales , Espermatozoides , Animales , Femenino , Masculino , Ratones , Embarazo , Disbiosis/complicaciones , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Leptina/metabolismo , Ratones Endogámicos C57BL , Placenta/metabolismo , Placenta/fisiopatología , Insuficiencia Placentaria/etiología , Insuficiencia Placentaria/metabolismo , Insuficiencia Placentaria/fisiopatología , Resultado del Embarazo , Lesiones Prenatales/etiología , Lesiones Prenatales/metabolismo , Lesiones Prenatales/fisiopatología , Transducción de Señal , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/fisiopatología , Susceptibilidad a Enfermedades/etiología
2.
Nature ; 626(8001): 1116-1124, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355802

RESUMEN

Transposable elements (TEs) are a major constituent of human genes, occupying approximately half of the intronic space. During pre-messenger RNA synthesis, intronic TEs are transcribed along with their host genes but rarely contribute to the final mRNA product because they are spliced out together with the intron and rapidly degraded. Paradoxically, TEs are an abundant source of RNA-processing signals through which they can create new introns1, and also functional2 or non-functional chimeric transcripts3. The rarity of these events implies the existence of a resilient splicing code that is able to suppress TE exonization without compromising host pre-mRNA processing. Here we show that SAFB proteins protect genome integrity by preventing retrotransposition of L1 elements while maintaining splicing integrity, via prevention of the exonization of previously integrated TEs. This unique dual role is possible because of L1's conserved adenosine-rich coding sequences that are bound by SAFB proteins. The suppressive activity of SAFB extends to tissue-specific, giant protein-coding cassette exons, nested genes and Tigger DNA transposons. Moreover, SAFB also suppresses LTR/ERV elements in species in which they are still active, such as mice and flies. A significant subset of splicing events suppressed by SAFB in somatic cells are activated in the testis, coinciding with low SAFB expression in postmeiotic spermatids. Reminiscent of the division of labour between innate and adaptive immune systems that fight external pathogens, our results uncover SAFB proteins as an RNA-based, pattern-guided, non-adaptive defence system against TEs in the soma, complementing the RNA-based, adaptive Piwi-interacting RNA pathway of the germline.


Asunto(s)
Elementos Transponibles de ADN , Intrones , Precursores del ARN , Empalme del ARN , ARN Mensajero , Animales , Humanos , Masculino , Ratones , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Exones/genética , Genoma/genética , Intrones/genética , Especificidad de Órganos/genética , ARN de Interacción con Piwi/genética , ARN de Interacción con Piwi/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermátides/citología , Espermátides/metabolismo , Empalme del ARN/genética , Testículo , Meiosis
3.
Nature ; 630(8017): 720-727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839949

RESUMEN

Spermatozoa harbour a complex and environment-sensitive pool of small non-coding RNAs (sncRNAs)1, which influences offspring development and adult phenotypes1-7. Whether spermatozoa in the epididymis are directly susceptible to environmental cues is not fully understood8. Here we used two distinct paradigms of preconception acute high-fat diet to dissect epididymal versus testicular contributions to the sperm sncRNA pool and offspring health. We show that epididymal spermatozoa, but not developing germ cells, are sensitive to the environment and identify mitochondrial tRNAs (mt-tRNAs) and their fragments (mt-tsRNAs) as sperm-borne factors. In humans, mt-tsRNAs in spermatozoa correlate with body mass index, and paternal overweight at conception doubles offspring obesity risk and compromises metabolic health. Sperm sncRNA sequencing of mice mutant for genes involved in mitochondrial function, and metabolic phenotyping of their wild-type offspring, suggest that the upregulation of mt-tsRNAs is downstream of mitochondrial dysfunction. Single-embryo transcriptomics of genetically hybrid two-cell embryos demonstrated sperm-to-oocyte transfer of mt-tRNAs at fertilization and suggested their involvement in the control of early-embryo transcription. Our study supports the importance of paternal health at conception for offspring metabolism, shows that mt-tRNAs are diet-induced and sperm-borne and demonstrates, in a physiological setting, father-to-offspring transfer of sperm mitochondrial RNAs at fertilization.


Asunto(s)
Dieta Alta en Grasa , Epigénesis Genética , Mitocondrias , ARN Mitocondrial , Espermatozoides , Animales , Femenino , Humanos , Masculino , Ratones , Índice de Masa Corporal , Dieta Alta en Grasa/efectos adversos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Epidídimo/citología , Epigénesis Genética/genética , Fertilización/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Obesidad/genética , Obesidad/metabolismo , Obesidad/etiología , Oocitos/metabolismo , Sobrepeso/genética , Sobrepeso/metabolismo , Herencia Paterna/genética , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Espermatozoides/metabolismo , Testículo/citología , Transcripción Genética
4.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38477640

RESUMEN

Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.


Asunto(s)
Espermatogonias , Testículo , Adulto , Masculino , Humanos , Células Intersticiales del Testículo , Células de Sertoli , Espermatogénesis
5.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934417

RESUMEN

Spermatogonial stem cells (SSCs) undergo self-renewal division to sustain spermatogenesis. Although it is possible to derive SSC cultures in most mouse strains, SSCs from a 129 background never proliferate under the same culture conditions, suggesting they have distinct self-renewal requirements. Here, we established long-term culture conditions for SSCs from mice of the 129 background (129 mice). An analysis of 129 testes showed significant reduction of GDNF and CXCL12, whereas FGF2, INHBA and INHBB were higher than in testes of C57BL/6 mice. An analysis of undifferentiated spermatogonia in 129 mice showed higher expression of Chrna4, which encodes an acetylcholine (Ach) receptor component. By supplementing medium with INHBA and Ach, SSC cultures were derived from 129 mice. Following lentivirus transduction for marking donor cells, transplanted cells re-initiated spermatogenesis in infertile mouse testes and produced transgenic offspring. These results suggest that the requirements of SSC self-renewal in mice are diverse, which has important implications for understanding self-renewal mechanisms in various animal species.


Asunto(s)
Ratones Endogámicos C57BL , Espermatogénesis , Espermatogonias , Testículo , Animales , Masculino , Ratones , Espermatogonias/citología , Espermatogonias/metabolismo , Espermatogénesis/genética , Espermatogénesis/fisiología , Testículo/metabolismo , Testículo/citología , Autorrenovación de las Células , Células Madre Germinales Adultas/metabolismo , Células Madre Germinales Adultas/citología , Células Cultivadas , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Ratones Endogámicos , Diferenciación Celular , Proliferación Celular , Células Madre/citología , Células Madre/metabolismo , Ratones Transgénicos
6.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38832826

RESUMEN

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Asunto(s)
Citocinesis , Drosophila melanogaster , Ecdisona , Células Germinativas , Testículo , Animales , Masculino , Ecdisona/metabolismo , Testículo/metabolismo , Femenino , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citología , Nicho de Células Madre , Células Madre/metabolismo , Células Madre/citología , Diferenciación Celular , Transducción de Señal , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
7.
Development ; 151(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953252

RESUMEN

Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.


Asunto(s)
Fertilidad , Espermatogonias , Testículo , Animales , Masculino , Ratones , Diferenciación Celular , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/metabolismo , Fertilidad/genética , Infertilidad Masculina/genética , Ratones Noqueados , Estabilidad del ARN/genética , Células de Sertoli/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Espermatogonias/citología , Testículo/metabolismo
8.
Nat Methods ; 21(7): 1231-1244, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38844627

RESUMEN

Spatially resolved transcriptomics (SRT) studies are becoming increasingly common and large, offering unprecedented opportunities in mapping complex tissue structures and functions. Here we present integrative and reference-informed tissue segmentation (IRIS), a computational method designed to characterize tissue spatial organization in SRT studies through accurately and efficiently detecting spatial domains. IRIS uniquely leverages single-cell RNA sequencing data for reference-informed detection of biologically interpretable spatial domains, integrating multiple SRT slices while explicitly considering correlations both within and across slices. We demonstrate the advantages of IRIS through in-depth analysis of six SRT datasets encompassing diverse technologies, tissues, species and resolutions. In these applications, IRIS achieves substantial accuracy gains (39-1,083%) and speed improvements (4.6-666.0) in moderate-sized datasets, while representing the only method applicable for large datasets including Stereo-seq and 10x Xenium. As a result, IRIS reveals intricate brain structures, uncovers tumor microenvironment heterogeneity and detects structural changes in diabetes-affected testis, all with exceptional speed and accuracy.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Humanos , Animales , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica/métodos , Ratones , Masculino , Biología Computacional/métodos , Encéfalo/metabolismo , Análisis de Secuencia de ARN/métodos , Testículo/metabolismo
9.
PLoS Biol ; 22(4): e3002605, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687805

RESUMEN

Although sex chromosomes have evolved from autosomes, they often have unusual regulatory regimes that are sex- and cell-type-specific such as dosage compensation (DC) and meiotic sex chromosome inactivation (MSCI). The molecular mechanisms and evolutionary forces driving these unique transcriptional programs are critical for genome evolution but have been, in the case of MSCI in Drosophila, subject to continuous debate. Here, we take advantage of the younger sex chromosomes in D. miranda (XR and the neo-X) to infer how former autosomes acquire sex-chromosome-specific regulatory programs using single-cell and bulk RNA sequencing and ribosome profiling, in a comparative evolutionary context. We show that contrary to mammals and worms, the X down-regulation through germline progression is most consistent with the shutdown of DC instead of MSCI, resulting in half gene dosage at the end of meiosis for all 3 X's. Moreover, lowly expressed germline and meiotic genes on the neo-X are ancestrally lowly expressed, instead of acquired suppression after sex linkage. For the young neo-X, DC is incomplete across all tissue and cell types and this dosage imbalance is rescued by contributions from Y-linked gametologs which produce transcripts that are translated to compensate both gene and protein dosage. We find an excess of previously autosomal testis genes becoming Y-specific, showing that the neo-Y and its masculinization likely resolve sexual antagonism. Multicopy neo-sex genes are predominantly expressed during meiotic stages of spermatogenesis, consistent with their amplification being driven to interfere with mendelian segregation. Altogether, this study reveals germline regulation of evolving sex chromosomes and elucidates the consequences these unique regulatory mechanisms have on the evolution of sex chromosome architecture.


Asunto(s)
Drosophila , Células Germinativas , Meiosis , RNA-Seq , Cromosomas Sexuales , Análisis de la Célula Individual , Testículo , Animales , Masculino , Testículo/metabolismo , Cromosomas Sexuales/genética , Análisis de la Célula Individual/métodos , Células Germinativas/metabolismo , Drosophila/genética , Drosophila/metabolismo , RNA-Seq/métodos , Meiosis/genética , Compensación de Dosificación (Genética) , Evolución Molecular , Femenino , Cromosoma X/genética , Análisis de Expresión Génica de una Sola Célula
10.
PLoS Genet ; 20(3): e1011170, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38451917

RESUMEN

The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.


Asunto(s)
Testículo , Pez Cebra , Animales , Masculino , Femenino , Testículo/metabolismo , Pez Cebra/genética , Andrógenos/genética , Andrógenos/metabolismo , Gónadas/metabolismo , Diferenciación Sexual/genética , Estrógenos/genética
11.
Proc Natl Acad Sci U S A ; 121(7): e2312724121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315849

RESUMEN

Cryptorchidism is the most common form of disorder of sex development in male dogs, but its hereditary predisposition is poorly elucidated. The gonadal transcriptome of nine unilaterally cryptorchid dogs and seven control dogs was analyzed using RNA-seq. Comparison between the scrotal and inguinal gonads of unilateral cryptorchid dogs revealed 8,028 differentially expressed genes (DEGs) (3,377 up-regulated and 4,651 down-regulated). A similar number of DEGs (7,619) was found by comparing the undescended testicles with the descended testicles of the control dogs. The methylation status of the selected DEGs was also analyzed, with three out of nine studied DEGs showing altered patterns. Bioinformatic analysis of the cDNA sequences revealed 20,366 SNP variants, six of which showed significant differences in allelic counts between cryptorchid and control dogs. Validation studies in larger cohorts of cryptorchid (n = 122) and control (n = 173) dogs showed that the TT genotype (rs850666472, p.Ala1230Val) and the AA genotype in 3'UTR (16:23716202G>A) in KATA6, responsible for acetylation of lysine 9 in histone H3, are associated with cryptorchidism (P = 0.0383). Both the transcript level of KAT6A and H3K9 acetylation were lower in undescended testes, and additionally, the acetylation depended on the genotypes in exon 17 and the 3'UTR. Our study showed that the massive alteration of the transcriptome in undescended testicles is not caused by germinal DNA variants in DEG regulatory sequences but is partly associated with an aberrant DNA methylation and H3K9 acetylation patterns. Moreover, variants of KAT6A can be considered markers associated with the risk of this disorder.


Asunto(s)
Criptorquidismo , Histona Acetiltransferasas , Animales , Perros , Masculino , Regiones no Traducidas 3' , Criptorquidismo/genética , Criptorquidismo/veterinaria , Expresión Génica , Histona Acetiltransferasas/genética , Procesamiento Proteico-Postraduccional , Testículo/patología
12.
PLoS Genet ; 20(3): e1011210, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38536778

RESUMEN

Sex is determined by multiple factors derived from somatic and germ cells in vertebrates. We have identified amhy, dmrt1, gsdf as male and foxl2, foxl3, cyp19a1a as female sex determination pathway genes in Nile tilapia. However, the relationship among these genes is largely unclear. Here, we found that the gonads of dmrt1;cyp19a1a double mutants developed as ovaries or underdeveloped testes with no germ cells irrespective of their genetic sex. In addition, the gonads of dmrt1;cyp19a1a;cyp19a1b triple mutants still developed as ovaries. The gonads of foxl3;cyp19a1a double mutants developed as testes, while the gonads of dmrt1;cyp19a1a;foxl3 triple mutants eventually developed as ovaries. In contrast, the gonads of amhy;cyp19a1a, gsdf;cyp19a1a, amhy;foxl2, gsdf;foxl2 double and amhy;cyp19a1a;cyp19a1b, gsdf;cyp19a1a;cyp19a1b triple mutants developed as testes with spermatogenesis via up-regulation of dmrt1 in both somatic and germ cells. The gonads of amhy;foxl3 and gsdf;foxl3 double mutants developed as ovaries but with germ cells in spermatogenesis due to up-regulation of dmrt1. Taking the respective ovary and underdeveloped testis of dmrt1;foxl3 and dmrt1;foxl2 double mutants reported previously into consideration, we demonstrated that once dmrt1 mutated, the gonad could not be rescued to functional testis by mutating any female pathway gene. The sex reversal caused by mutation of male pathway genes other than dmrt1, including its upstream amhy and downstream gsdf, could be rescued by mutating female pathway gene. Overall, our data suggested that dmrt1 is the only male pathway gene tested indispensable for sex determination and functional testis development in tilapia.


Asunto(s)
Procesos de Determinación del Sexo , Tilapia , Animales , Femenino , Masculino , Regulación del Desarrollo de la Expresión Génica , Gónadas/metabolismo , Ovario/metabolismo , Procesos de Determinación del Sexo/genética , Diferenciación Sexual/genética , Testículo/metabolismo , Tilapia/genética
13.
PLoS Genet ; 20(6): e1011337, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38935810

RESUMEN

Sperm heads contain not only the nucleus but also the acrosome which is a distinctive cap-like structure located anterior to the nucleus and is derived from the Golgi apparatus. The Golgi Associated RAB2 Interactors (GARINs; also known as FAM71) protein family shows predominant expression in the testis and all possess a RAB2-binding domain which confers binding affinity to RAB2, a small GTPase that is responsible for membrane transport and vesicle trafficking. Our previous study showed that GARIN1A and GARIN1B are important for acrosome biogenesis and that GARIN1B is indispensable for male fertility in mice. Here, we generated KO mice of other Garins, namely Garin2, Garin3, Garin4, Garin5a, and Garin5b (Garin2-5b). Using computer-assisted morphological analysis, we found that the loss of each Garin2-5b resulted in aberrant sperm head morphogenesis. While the fertilities of Garin2-/- and Garin4-/- males are normal, Garin5a-/- and Garin5b-/- males are subfertile, and Garin3-/- males are infertile. Further analysis revealed that Garin3-/- males exhibited abnormal acrosomal morphology, but not as severely as Garin1b-/- males; instead, the amounts of membrane proteins, particularly ADAM family proteins, decreased in Garin3 KO spermatozoa. Moreover, only Garin4 KO mice exhibit vacuoles in the sperm head. These results indicate that GARINs assure correct head morphogenesis and some members of the GARIN family function distinctively in male fertility.


Asunto(s)
Fertilidad , Infertilidad Masculina , Ratones Noqueados , Cabeza del Espermatozoide , Animales , Masculino , Ratones , Acrosoma/metabolismo , Fertilidad/genética , Aparato de Golgi/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Morfogénesis/genética , Proteína de Unión al GTP rab2/metabolismo , Proteína de Unión al GTP rab2/genética , Cabeza del Espermatozoide/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/crecimiento & desarrollo
14.
PLoS Genet ; 20(7): e1011357, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39074078

RESUMEN

Hexokinase (HK) catalyzes the first irreversible rate-limiting step in glycolysis that converts glucose to glucose-6-phosphate. HK1 is ubiquitously expressed in the brain, erythrocytes, and other tissues where glycolysis serves as the major source of ATP production. Spermatogenic cell-specific type 1 hexokinase (HK1S) is expressed in sperm but its physiological role in male mice is still unknown. In this study, we generate Hk1s knockout mice using the CRISPR/Cas9 system to study the gene function in vivo. Hk1s mRNA is exclusively expressed in testes starting from postnatal day 18 and continuing to adulthood. HK1S protein is specifically localized in the outer surface of the sperm fibrous sheath (FS). Depletion of Hk1s leads to infertility in male mice and reduces sperm glycolytic pathway activity, yet they have normal motile parameters and ATP levels. In addition, by using in vitro fertilization (IVF), Hk1s deficient sperms are unable to fertilize cumulus-intact or cumulus-free oocytes, but can normally fertilize zona pellucida-free oocytes. Moreover, Hk1s deficiency impairs sperm migration into the oviduct, reduces acrosome reaction, and prevents capacitation-associated increases in tyrosine phosphorylation, which are probable causes of infertility. Taken together, our results reveal that HK1S plays a critical role in sperm function and male fertility in mice.


Asunto(s)
Fertilidad , Hexoquinasa , Infertilidad Masculina , Ratones Noqueados , Capacitación Espermática , Espermatozoides , Tirosina , Animales , Hexoquinasa/genética , Hexoquinasa/metabolismo , Masculino , Ratones , Fosforilación , Espermatozoides/metabolismo , Capacitación Espermática/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Fertilidad/genética , Tirosina/metabolismo , Femenino , Testículo/metabolismo , Motilidad Espermática/genética , Glucólisis , Espermatogénesis/genética
15.
Genome Res ; 33(12): 2060-2078, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38129075

RESUMEN

In mammals, the adult testis is the tissue with the highest diversity in gene expression. Much of that diversity is attributed to germ cells, primarily meiotic spermatocytes and postmeiotic haploid spermatids. Exploiting a newly developed cell purification method, we profiled the transcriptomes of such postmitotic germ cells of mice. We used a de novo transcriptome assembly approach and identified thousands of novel expressed transcripts characterized by features distinct from those of known genes. Novel loci tend to be short in length, monoexonic, and lowly expressed. Most novel genes have arisen recently in evolutionary time and possess low coding potential. Nonetheless, we identify several novel protein-coding genes harboring open reading frames that encode proteins containing matches to conserved protein domains. Analysis of mass-spectrometry data from adult mouse testes confirms protein production from several of these novel genes. We also examine overlap between transcripts and repetitive elements. We find that although distinct families of repeats are expressed with differing temporal dynamics during spermatogenesis, we do not observe a general mode of regulation wherein repeats drive expression of nonrepetitive sequences in a cell type-specific manner. Finally, we observe many fairly long antisense transcripts originating from canonical gene promoters, pointing to pervasive bidirectional promoter activity during spermatogenesis that is distinct and more frequent compared with somatic cells.


Asunto(s)
Regiones Promotoras Genéticas , Espermatogénesis , Transcriptoma , Animales , Masculino , Ratones , Espermatogénesis/genética , ARN no Traducido/genética , Testículo/metabolismo , Espermatocitos/metabolismo , Perfilación de la Expresión Génica/métodos , Espermátides/metabolismo
16.
Mol Cell Proteomics ; 23(2): 100720, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246484

RESUMEN

Nonobstructive azoospermia is the leading cause of male infertility. Abnormal levels of transmembrane protein 225 (TMEM225), a testis-specific protein, have been found in patients with nonobstructive azoospermia, suggesting that TMEM225 plays an essential role in male fertility. Here, we generated a Tmem225 KO mouse model to explore the function and mechanism of TMEM225 in male reproduction. Male Tmem225 KO mice were infertile. Surprisingly, Tmem225 deletion did not affect spermatogenesis, but TMEM225-null sperm exhibited abnormalities during epididymal maturation, resulting in reduced sperm motility and an abnormal hairpin-loop configuration. Furthermore, proteomics analyses of cauda sperm revealed that signaling pathways related to mitochondrial function, the glycolytic pathway, and sperm flagellar morphology were abnormal in Tmem225 KO sperm, and spermatozoa lacking TMEM225 exhibited high reactive oxygen species levels, reduced motility, and flagellar folding, leading to typical asthenospermia. These findings suggest that testicular TMEM225 may control the sperm maturation process by regulating the expression of proteins related to mitochondrial function, glycolysis, and sperm flagellar morphology in epididymal spermatozoa.


Asunto(s)
Azoospermia , Humanos , Masculino , Ratones , Animales , Azoospermia/metabolismo , Maduración del Esperma , Motilidad Espermática , Semen , Espermatozoides/metabolismo , Testículo/metabolismo , Espermatogénesis , Fertilidad , Ratones Noqueados
17.
Nucleic Acids Res ; 52(10): 5514-5528, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38499491

RESUMEN

Male development in mammals depends on the activity of the two SOX gene: Sry and Sox9, in the embryonic testis. As deletion of Enhancer 13 (Enh13) of the Sox9 gene results in XY male-to-female sex reversal, we explored the critical elements necessary for its function and hence, for testis and male development. Here, we demonstrate that while microdeletions of individual transcription factor binding sites (TFBS) in Enh13 lead to normal testicular development, combined microdeletions of just two SRY/SOX binding motifs can alone fully abolish Enh13 activity leading to XY male-to-female sex reversal. This suggests that for proper male development to occur, these few nucleotides of non-coding DNA must be intact. Interestingly, we show that depending on the nature of these TFBS mutations, dramatically different phenotypic outcomes can occur, providing a molecular explanation for the distinct clinical outcomes observed in patients harboring different variants in the same enhancer.


Asunto(s)
Elementos de Facilitación Genéticos , Procesos de Determinación del Sexo , Animales , Femenino , Humanos , Masculino , Ratones , Sitios de Unión/genética , Elementos de Facilitación Genéticos/genética , Eliminación de Secuencia , Procesos de Determinación del Sexo/genética , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/crecimiento & desarrollo , Fenotipo
18.
Dev Biol ; 508: 46-63, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38242343

RESUMEN

Male germ cells are connected by intercellular bridges (ICBs) in a syncytium due to incomplete cytokinesis. Syncytium is thought to be important for synchronized germ cell development by interchange of cytoplasmic factors via ICBs. Mammalian ADP-ribosylation factor 6 (ARF6) is a small GTPase that is involved in many cellular mechanisms including but not limited to regulating cellular structure, motility, vesicle trafficking and cytokinesis. ARF6 localizes to ICBs in spermatogonia and spermatocytes in mice. Here we report that mice with global depletion of ARF6 in adulthood using Ubc-CreERT2 display no observable phenotypes but are male sterile. ARF6-deficient males display a progressive loss of germ cells, including LIN28A-expressing spermatogonia, and ultimately develop Sertoli-cell-only syndrome. Specifically, intercellular bridges are lost in ARF6-deficient testis. Furthermore, germ cell-specific inactivation using the Ddx4-CreERT2 results in the same testicular morphological phenotype, showing the germ cell-intrinsic requirement of ARF6. Therefore, ARF6 is essential for spermatogenesis in mice and this function is conserved from Drosophila to mammals.


Asunto(s)
Factor 6 de Ribosilación del ADP , Espermatogénesis , Animales , Femenino , Masculino , Ratones , Drosophila , Mamíferos , Espermatocitos , Espermatogénesis/genética , Espermatogonias , Testículo
19.
Dev Biol ; 512: 13-25, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38703942

RESUMEN

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Mitocondrias , Espermatogénesis , Testículo , Animales , Espermatogénesis/genética , Espermatogénesis/fisiología , Masculino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Mitocondrias/metabolismo , Testículo/metabolismo , Morfogénesis/genética , Transducción de Señal , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Técnicas de Silenciamiento del Gen , Factores de Transcripción STAT/metabolismo , Espermátides/metabolismo
20.
Dev Biol ; 509: 11-27, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311163

RESUMEN

Undifferentiated spermatogonia are composed of a heterogeneous cell population including spermatogonial stem cells (SSCs). Molecular mechanisms underlying the regulation of various spermatogonial cohorts during their self-renewal and differentiation are largely unclear. Here we show that AKT1S1, an AKT substrate and inhibitor of mTORC1, regulates the homeostasis of undifferentiated spermatogonia. Although deletion of Akt1s1 in mouse appears not grossly affecting steady-state spermatogenesis and male mice are fertile, the subset of differentiation-primed OCT4+ spermatogonia decreased significantly, whereas self-renewing GFRα1+ and proliferating PLZF+ spermatogonia were sustained. Both neonatal prospermatogonia and the first wave spermatogenesis were greatly reduced in Akt1s1-/- mice. Further analyses suggest that OCT4+ spermatogonia in Akt1s1-/- mice possess altered PI3K/AKT-mTORC1 signaling, gene expression and carbohydrate metabolism, leading to their functionally compromised developmental potential. Collectively, these results revealed an important role of AKT1S1 in mediating the stage-specific signals that regulate the self-renewal and differentiation of spermatogonia during mouse spermatogenesis.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Espermatogonias , Masculino , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Testículo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Espermatogénesis/genética , Diferenciación Celular/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda